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ABSTRACT “a primary device is already transmitting in bafid:
In this contribution, we provide a theoretical study of two hypothe- ) %
sis tests allowing to detect the presence of an unknown transmitter (n) = w(n): 0 @
using several sensors. Both tests are based on the analysis of the hs(n)+w(n): Hy

eigenvalues of the sampled covariance matrix of the received signal.
The Generalized Likelihood Ratio Test (GLRT) derived in [1] is wherew(n) represents a complex circular temporally-white Gaus-
analyzed under the assumption that both the nuntb@f sensors  sjan noise vector with zero mean and covariance matrix equal to
and the lengthV of the observation window tend to infinity at 521, In the H;-case, vectoh € CK*! represents the complex-
the same rate’X/N — c € (0,1). The GLRT is compared valued Single-Input Multiple-Output (SIMO) channel between the
with a test b_ased on the condl_tlon number used which is used iBrimary transmitter and the< receiving nodes. Sequencén)
COgnIt!Ve I’adIO appllcatlons. US|ng reSUItS Of r.andom matnxltheorydenotes the unknown data process sent by the active primary
for spiked models and tools of Large Deviations, we provide thejevice. Sequence(n) is assumed to be an independent identically
error exponent curve associated with both test and prove that th@stributed (i.i.d.) zero mean random sequence. We assume without
GLRT outperforms the test based on the condition number. restriction thats(n) has unit variance. In order to be able to derive
hypothesis testing procedures and to analyze their performance in
terms of probability of false alarm and power, we make the usual
assumption that the transmitted symbols are Gaussian distributed,
. INTRODUCTION say s(n) ~ €N(0,1). We assume that

In the context of cognitive networks [2], sensing is one the major « the noise variance? is unknown,
of steps in order for the flexible network to adapt its parameters o the channel matridh is unknown.
to the environment context. In general, the sensing procedure
requires the knowledge of the noise variance as well as a high In the sequel, we denote hy the number of samples observed
number of samples for a successful test. This is rarely compatibley each sensok. Consider the followingk’ x N data matrixY
with the mobile constraints of the users and has pushed the
community to propose alternative methods based on collaborative Y =[y(0),...,y(N - 1)]. (2)

tse“hsifﬁg to reduce tg‘et néJmtt;‘er th S%mp'es _reqL(Jired [F]')[A']:th-r?‘ﬁq order to test hypothesi&l, versusH, the aim is to construct
echniques proposed trade the time dimension (samples) wi L K XN ;
space dimension (antennas or base stations) and do not require g‘%ee lggiirgetseshtyz)uor;ﬁgggo’ ((rjesp Hl_))vér?é}%vvglrf;‘(g];a :seon?reestgat

knowledge of the noise variance, which is one of the drawback - :
of energy detector techniques [5]. The general idea of these ne@%‘é%oﬁs%u’éﬁ that the probabilty of fase alarm doce not exceed
techniques compute some functionals of the eigenvalues of th, predefined level ie.,

sample covariance matrix which cancel out the noise variance.
The paper is articulated as follows: next Section focuses on Pu, [p(Y)=1] < a, ©)

the problem formulation and contains the signal model, while in -

Section Il the two tests are detailed. The asymptotic analyticalvhere Py, [€] represents the probability of a given evehunder

study is detailed in Section IV. Simulation results illustrate ourhypothesisH;, i = 0, 1. On the otherhand, the power of the test is

claims. given byPy, [p(Y) = 1].
Il. SIGNAL MODEL Ill. EIGEN-BASED HYPOTHESIS TESTS
. . IlI-A. Generalized Likelihood Ratio Test
Consider a secondary wireless network formed A&ynodes, . N 5

working in sensing mode. We assume that &ll nodes are Ve respectively denote byo(Y;o”) and pi(Y;h,o”) the
simultaneously sensing a given sub-baBdof the spectrum. For likelihood functions of the ob25ervat|on matrix indexed by the
eachk = 1,..., K, we denote by, (n) the complex envelope of Unknown parameter$ and o~ under hypotheses{, and Hi
the signal received by theth sensor in ban@ after proper filtering ~ "eSpectively:
and sampling. Denote by(n) = [y1(n), ..., yx(n)]” the vector N .
obtained when stacking alt’ sensors’ observations at timeinto po(Y;0°%) = (o) V¥ exp <——2tr R) (4)
a column vector. The aim is to detect the presence of a primary g
transmitter in bandB. We respectively denote b¥f, and H; the . 2y _ (K -N _ S5 —1
hypotheses corresponding to the case where “Bansl free” and p1(Y;h,o7) = (7 det R) " exp ( Ntr (RR )> ®)



where R = R(h,o?) is the true covariance matrix undei; IlI-B. Setting the Threshold 75\})
defined by In order to maximize the power of our test while keeping the PFA
R = hh 4+ 521 constraint (3) satisfied, we must select the thresh{;\]d such that

P, [T,(Vl) < ’y](\})] = «. This requires the tedious computation of

and whereR s the sampled covariance matrix: the distribution function ofFI(Vl) under Hy for eachN, K. Such a

1 computation is usually impractical in cognitive radio applications,
R=_—_YY". due to complexity/delay constraints, along with the fact that the
N number of sensors nodds and the number of observatiod$
) are frequently varying. In order to simplify the selection ,
In the ideal case where parametérsand o are supposed to be we recently investigated in [6] the asymptotic case where both the
available, it is well known that a uniformly most powerful test is numberK of sensors and the number of observations are assumed
obtained through thleyman-Pearsoprocedure, which consists in  to be large. In this case, simple expressions of the threghjéPd
rejecting t?e nu2ll)7yp(othesis ;()JI’ large values of the likelihood ratio.4 pe derived. More precisely, we studied the behaviOLTI(\Qﬁ
statisticp1 (Y;0°)/po(Y; h,o?). Unfortunately, parameteés and : ' ; -
o? are unknown in our context so that a uniformly powerful testunderHO in the asymptotic regime

can no longer be that easily defined. In this case, a suboptimal but N — o0, K — 00, K/N — ¢, 9)
classical approach consists in replacing the true likelihood ratio by ) . ) .
the following generalized likelihood ratio (GLR) Where0 < ¢ < 1 is a constant. This asymptotic regime is relevant

under cognitive radio constraints, as the secondary system must

be able to decide the presence/absence of primary transmitters in
) (6) @ moderate amount of time: the numb&t of sensors and the
sup,2 po(Y;02) numberN of samples have therefore the same order of magnitude.

In the asymptotic regime (9), it was proved in [6] that, putting

In the GLRT procedure, one rejects hypothddiswheneverL y > cy = K/N,
&n, whereéy is a certain threshold which is selected so that the
probability of false alarm (3) does not exceed a given level ) 7™ _ (1 2 )
Denote byA; > Xy--- > A > 0 the ordered eigenvalues &t N%/3 N —(L+vew) e 2. x
(all distincts with probability one). As we shall see below, the GLR (1+ /en) ( Lo 1) Ho

Suph,a2 pl(Y7 h7 02)

Ly =

can be written as a function of the ratio VEN
A where —— stands for the convergence in distribution undé
T(l) — 1 (7 Ho . . . .
N L R and whereX is a random variable which follows the Tracy-Widom

distribution functionFrw (.) associated with the Gaussian unitary
Ensemble (see [6] for details). As a consequence, we obtain the

The following proposition follows from the results of [1] after h
following result.

straightforward manipulations.
Proposition 2. The power of test (8) is maximum under con-

Proposition 1. The GLR (6) writes straint (3) only if the threshold/](\,l) writes

o\ &) 2 By
Ly=|cTy <1—IJ\<’,> =0+ Ven) + o (10)

1/3
for somes{}’ which tends tq1 + /c) (% + 1) Frg (1—a).

K—1 .
) is a constant.

— _ 1
where( = (1 K The above Proposition was used in [6] to derive practical guide-

By Proposition 1, the GLR can be written as a function of lines to select the thresho}gi}) without resorting to a tedious com-
the ratio 7'\ between the largest eigenvalue of the sampled putation of the exact distribution functian — Py, |7 < z|.
covariance matridt and the normalized trace @&, say Ly = This result will also be useful in Section 1V in order to analyze
¢N,K(TJ<\,1)) where oy x : x — Cz™ Y (1 — %) 0=K) Note the performance of the proposed hypothesis test. Before providing

that Tf\,l) belongs to the intervall, K') with probability one and such a performance analysis, we mention the existence of an other
that functiong x is increasing on this interval. The GLRT rejects NYPOthesis testing approach which has been recently developed

the null hypothesis when inequalityy > &y holds. As¢y x is N [4l, [3], [7] for cognitive radio contexts.

increasing, the latter inequality is equivalenﬂl’ﬁ) > ¢§}K(£N). IlI-C. An Other Existing Hypothesis Testing Approach
Otherwise stated, the GLRT reduces to the test which rejects the A different approach introduced in several papers devoted to
null hypothesis for large values df\: cognitive radio contexts [4], [3], [7] consists in rejecting the-
hypothesis when the following statistic
Ty fg N ®) 7@ = M (11)
N HO N AK

lies above a well chosen threshoi,(ﬁ?). The introduction of the

above statisti(TJ(V2> can be motivated by the following observation.
ssume that the followindimiting signal-to-noise ratiqSNR) is

whereyy = ¢%' (¢n) is a certain threshold which is such that the
probability of false alarm does not exceed a given leveBefore
studying the performance of the above test, we must now comple

the definition of this test by providing a practical way to set the ell defined : s
thresholdy} in (8). p=lim T (12)



1 _ not only to decrease the miss probability, but to decrease the PFA

09 — as well. As a consequence, it is of practical interest to analyze

o e the detection performance when both the miss probability and the

TN e PFA tend to zero at exponential speed. A couflgh) € (0, co) x

°'7/ \ (0,00) is said to be arachievablepair of error exponents for the
5 A testT](\;) if there exists a sequence of thresholds such that, in
gosf S& the asymptotic regime (9),

0.4 Test 1

034 1 . 1 i

A ——— | g st (10> 0) =09

o1 . 1 (4) _

lim —— log Py, (TN < w) —b. (16)
o i i N—oo N
o] 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1

False Alarm Probability Level

We denote bys; the set of achievable pairs of error exponents for
Fig. 1. ROC curves of testg") and7? — K=10, N=50, p=1. testT " and we refer to this set as theeror exponent curve

IV-B. Main Result

where||h|| denotes the L2-norm of th& x 1 vectorh. Then, in

the asymptotic regime (9), In order to express the error exponents of interest, we need fur-

ther notations. Recall that the limiting probability distribution of the

7@ as (1— Ve)? empirical distribution of the eigenvalugy (z) = #-3=2) of
Noomy (14 /c)? R= %YYH is (under both assumptiong, or H1) Marchenko-
Pastur distribution:
(A4+p)(A+c/p)
@) as. Urve?r  Te>ye P () — M-yl -2),
Ty T ) R _ (13) vp (dy) = Li- 2+ (Y) e Y,
lg e z

+ 2 - _ 2 H
Provided that the SNR is large enough /o), T2 converges ~WhereA™ = (1 + Ve)® andA™ = (1 —/c)”. We also introduce
to different values depending on the true hypothesis. This motivatess,, = (1 + p) (1 + %) (recall that the largest eigenvalug

2 . .
the fact that the value oﬂ“f\,) can be used to decide which converges toward™ under Hy and toward\Z%, under H; - see

hypothesis is true. for instance [8]). Of prime importance is the Stielties transform of
IlI-D. Simulation Analysis Pyp, f(z) = [ “@%(:y) which admits the following well-known

In the following, we compare by simulations both tests in thedosed'form representations:

case whereK = 10, N = 50 and p = 1. For a fixed levelq,
the thresholdsy}v’2 corresponding to the probability of error under

Hy, are given byPHO(T](V1’2) > %(\}’2)) = «. The power of the
test is then given byPy, (Tf\,l’Q) > 71(\}’2)). Figure (1) provides _ _ ]
the ROC curve for both tests. tests. It clearly shows that the testheree, = 1 if z > A" ande, = —1 if z € (0, A™). Define:

Ty outperforms the tesl. In the rest of the paper, we provide a

(1—z—c)+e/(1—z—0c)2—dcx
2cx

f(z) =

)

theoretical performance study of the tests based”gn and 7"’ F'(z) = [log(z — y)Pyp(dy) forz > AT,
respectively to sustain the experimental claims of Figure 1. Using F~(z) = [log(y — z)Pyp(dy) forz € (0,A7)
large deviations arguments, we rigorously prove that the test (8)
based onT](\,l) outperforms the test based G?ﬁ). and letf(z) = — 1

T z(l4cf(x)) "

IV. ERROR EXPONENTS Lemma 1. The following representations hold true:

IV-A. Definition

The most natural approach to characterize the performance of _ _ 1
the tests associated with statist[6§1) and TI(VQ) is to evalute the Fi(z) = log(z)+ c log(1 + cf(z)) + log(1 + £())
power of each of these tests, or equivalently the miss probability +af(2)f(z)
Pr, (T](VZ> <'y1<\§) , i = 1,2. As the miss probability has no . _ 1l Lt of | o
simple expression in the general case, we propose to study thef (#) = log(z) + —log(l+ cf(x)) +log(—(1 +£(2)))
asymptotic behaviour of the miss probability in the asymptotic +af(2)f(z) .
regime (9) of interest. More precisely, for each tést 1,2, we
prove the existence and provide the expression of the following

error exponents Fo_r simil_ay computations, see for example [9, Section 4]. We are
1 now in position to introduce the functions that will help to express
€. = lim —— logi f{]p (T(i) < )}7 14) the error exponents. Denote h¥(- | A) the convex indicator
P TN TN R Py ST (14) function defined by:

where the infemum is taken w.r.t. allsuch that PFA constraint (3)
holds for a fixed levek.. Of course, agV, K tend to infinity, one Az | A) = 0 ifzeA,
may as well take benefit of the increasing number of data in order r T ] oo else.



Define for eactp > /c:

I;r(x) = ﬁ — (I —c)log (/\;.;k>
—c (F+(:c) —FT( S;k)) + Az | [T, 00))
If(z) = z—AT—(1-c)log ()\%)
—2c (F+(x) — F+( ;’;k)) + Az | [A+7oo)) ,
- = S —(1—¢)log | —L-

—2c(F (y) —F (A7) + A [ (0,A7]) .

As one may expect[,j’ (resp. Ip) and I~ are associated to
the Large Deviation Principle (LDP) governing, and Ax re-
spectively whenp > /c (resp.p = 0). Define I',(¢t) =
inf {I;“(x) +17(y), 5= t} for p > /c and definel'y sim-
ilarly. It can be shown thal’, andT'y are associated to the LDP
governing: /Ax whenp > /c andp = 0 respectively.

Theorem 1. Assume thap > /c. Error exponent<£,,, and &2,
are well defined and are given by:

gl,p = 82,/) = I;()\+) .

The error exponent curves of both tests are given by:

$i1 = {J(2),1,(x)) : x€ (A", 250} (17)
)\OO
82 = {(Fo(m),l“p(x)) cxe (WA, /\S‘_’k)} . (18)
In particular, the error exponent curv@; uniformly dominatess,

in the sense that for eactu, b) € 8- there exitsb” > b such that
(a, bl) € 8.

The proof will be provided in an extended version of this paper.

IV-C. Comments and Numerical Results

In terms of error exponents, both teﬂé}) and T}VQ) admit
the same error exponent as long as the levebf the test is
kept fixed. Furthermore, error exponents do not dependxon

Log of the Error exponent for different values of ¢
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Figure 2 represents the error exponent of both tests in log-scale

as a function of the SNR in dB. Error exponents are compared
with the error exponent associated with the Neyman-Pearson te

achieved in the ideal case where parameldrand o are known.

The error exponent of the Neyman-Pearson test can be derived fr

Fig. 3. Error exponent curve$; and8, associated with both tests

SHD and T - p=1-¢=0.5.

Stein’s Lemma, and provides an upper bound on the achievable

error exponents. Note that when< +/c, the test statistiCTI(Vl)
converges to the same limit undéf, and underH;. A similar

behaviour occurs foﬂ‘ﬁ) due to equation (13). Thus, both tests
fail when p < +/c. Therefore, it is not surprising that the error

exponent tends to zero whenis close to\/c.
Figure 3 represents the error exponent cus/eands, for p =

1 andc = 0.5. As stated by Theorem 1, the error exponent curve
associated with teSl“}V” uniformly dominates the one associated [7]

with 7.
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