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{bianchi,najim}@telecom-paristech.fr, merouane.debbah@supelec.fr, mylene.maida@normalesup.org

ABSTRACT
In this contribution, we provide a theoretical study of two hypothe-
sis tests allowing to detect the presence of an unknown transmitter
using several sensors. Both tests are based on the analysis of the
eigenvalues of the sampled covariance matrix of the received signal.
The Generalized Likelihood Ratio Test (GLRT) derived in [1] is
analyzed under the assumption that both the numberK of sensors
and the lengthN of the observation window tend to infinity at
the same rate:K/N → c ∈ (0, 1). The GLRT is compared
with a test based on the condition number used which is used in
cognitive radio applications. Using results of random matrix theory
for spiked models and tools of Large Deviations, we provide the
error exponent curve associated with both test and prove that the
GLRT outperforms the test based on the condition number.

I. INTRODUCTION

In the context of cognitive networks [2], sensing is one the major
of steps in order for the flexible network to adapt its parameters
to the environment context. In general, the sensing procedure
requires the knowledge of the noise variance as well as a high
number of samples for a successful test. This is rarely compatible
with the mobile constraints of the users and has pushed the
community to propose alternative methods based on collaborative
sensing to reduce the number of samples required [3], [4]. The
techniques proposed trade the time dimension (samples) with the
space dimension (antennas or base stations) and do not require the
knowledge of the noise variance, which is one of the drawbacks
of energy detector techniques [5]. The general idea of these new
techniques compute some functionals of the eigenvalues of the
sample covariance matrix which cancel out the noise variance.

The paper is articulated as follows: next Section focuses on
the problem formulation and contains the signal model, while in
Section III the two tests are detailed. The asymptotic analytical
study is detailed in Section IV. Simulation results illustrate our
claims.

II. SIGNAL MODEL

Consider a secondary wireless network formed byK nodes,
working in sensing mode. We assume that allK nodes are
simultaneously sensing a given sub-bandB of the spectrum. For
eachk = 1, . . . , K, we denote byyk(n) the complex envelope of
the signal received by thekth sensor in bandB after proper filtering
and sampling. Denote byy(n) = [y1(n), . . . , yK(n)]T the vector
obtained when stacking allK sensors’ observations at timen into
a column vector. The aim is to detect the presence of a primary
transmitter in bandB. We respectively denote byH0 andH1 the
hypotheses corresponding to the case where “bandB is free” and

“a primary device is already transmitting in bandB”:

y(n) =

(

w(n): H0

h s(n) + w(n): H1

, (1)

wherew(n) represents a complex circular temporally-white Gaus-
sian noise vector with zero mean and covariance matrix equal to
σ2

IK . In the H1-case, vectorh ∈ C
K×1 represents the complex-

valued Single-Input Multiple-Output (SIMO) channel between the
primary transmitter and theK receiving nodes. Sequences(n)
denotes the unknown data process sent by the active primary
device. Sequences(n) is assumed to be an independent identically
distributed (i.i.d.) zero mean random sequence. We assume without
restriction thats(n) has unit variance. In order to be able to derive
hypothesis testing procedures and to analyze their performance in
terms of probability of false alarm and power, we make the usual
assumption that the transmitted symbols are Gaussian distributed,
says(n) ∼ CN(0, 1). We assume that

• the noise varianceσ2 is unknown,
• the channel matrixh is unknown.

In the sequel, we denote byN the number of samples observed
by each sensork. Consider the followingK × N data matrixY:

Y = [y(0), . . . , y(N − 1)] . (2)

In order to test hypothesisH0 versusH1, the aim is to construct
a relevant test functionϕ : C

K×N → {0, 1} with the sense that
one decides hypothesisH0 (resp.H1) wheneverϕ(Y) = 0 (resp.
ϕ(Y) = 1). As usual, we restrict ourselves to the search for test
functions such that the probability of false alarm does not exceed
a predefined levelα i.e.,

PH0
[ϕ(Y) = 1] ≤ α , (3)

wherePHi
[E] represents the probability of a given eventE under

hypothesisHi, i = 0, 1. On the otherhand, the power of the test is
given byPH1

[ϕ(Y) = 1].

III. EIGEN-BASED HYPOTHESIS TESTS

III-A. Generalized Likelihood Ratio Test

We respectively denote byp0(Y; σ2) and p1(Y; h, σ2) the
likelihood functions of the observation matrixy indexed by the
unknown parametersh and σ2 under hypothesesH0 and H1

respectively:

p0(Y; σ2) = (πσ2)−NK exp

„

− N

σ2
tr R̂

«

(4)

p1(Y; h, σ2) = (πK detR)−N exp
“

−N tr (R̂R
−1)
”

(5)



where R = R(h, σ2) is the true covariance matrix underH1

defined by

R = hh
H + σ2

IK

and whereR̂ is the sampled covariance matrix:

R̂ =
1

N
YY

H .

In the ideal case where parametersh and σ2 are supposed to be
available, it is well known that a uniformly most powerful test is
obtained through theNeyman-Pearsonprocedure, which consists in
rejecting the null hypothesis for large values of the likelihood ratio
statisticp1(Y; σ2)/p0(Y; h, σ2). Unfortunately, parametersh and
σ2 are unknown in our context so that a uniformly powerful test
can no longer be that easily defined. In this case, a suboptimal but
classical approach consists in replacing the true likelihood ratio by
the following generalized likelihood ratio (GLR)

LN =
sup

h,σ2 p1(Y; h, σ2)

supσ2 p0(Y; σ2)
. (6)

In the GLRT procedure, one rejects hypothesisH0 wheneverLN >
ξN , whereξN is a certain threshold which is selected so that the
probability of false alarm (3) does not exceed a given levelα.
Denote byλ1 > λ2 · · · > λK ≥ 0 the ordered eigenvalues of̂R
(all distincts with probability one). As we shall see below, the GLR
can be written as a function of the ratio

T
(1)
N =

λ1

1
K

tr R̂
. (7)

The following proposition follows from the results of [1] after
straightforward manipulations.

Proposition 1. The GLR (6) writes

LN =

0

@C T
(1)
N

 

1 − T
(1)
N

K

!K−1
1

A

−N

whereC =
`

1 − 1
K

´K−1
is a constant.

By Proposition 1, the GLR can be written as a function of
the ratio T

(1)
N between the largest eigenvalueλ1 of the sampled

covariance matrixR̂ and the normalized trace of̂R, say LN =

φN,K(T
(1)
N ) where φN,K : x 7→ Cx−N

`

1 − x
K

´N(1−K)
. Note

that T
(1)
N belongs to the interval(1, K) with probability one and

that functionφN,K is increasing on this interval. The GLRT rejects
the null hypothesis when inequalityLN > ξN holds. AsφN,K is
increasing, the latter inequality is equivalent toT

(1)
N > φ−1

N,K(ξN ).
Otherwise stated, the GLRT reduces to the test which rejects the
null hypothesis for large values ofT (1)

N :

T
(1)
N

H1

≷
H0

γN (8)

whereγN = φ−1
K (ξN ) is a certain threshold which is such that the

probability of false alarm does not exceed a given levelα. Before
studying the performance of the above test, we must now complete
the definition of this test by providing a practical way to set the
thresholdγ

(1)
N in (8).

III-B. Setting the Threshold γ
(1)
N

In order to maximize the power of our test while keeping the PFA
constraint (3) satisfied, we must select the thresholdγ

(1)
N such that

PH0

h

T
(1)
N ≤ γ

(1)
N

i

= α. This requires the tedious computation of

the distribution function ofT (1)
N underH0 for eachN, K. Such a

computation is usually impractical in cognitive radio applications,
due to complexity/delay constraints, along with the fact that the
number of sensors nodesK and the number of observationsN
are frequently varying. In order to simplify the selection ofγ

(1)
N ,

we recently investigated in [6] the asymptotic case where both the
numberK of sensors and the number of observations are assumed
to be large. In this case, simple expressions of the thresholdγ

(1)
N

can be derived. More precisely, we studied the behaviour ofT
(1)
N

underH0 in the asymptotic regime

N → ∞, K → ∞, K/N → c, (9)

where0 < c < 1 is a constant. This asymptotic regime is relevant
under cognitive radio constraints, as the secondary system must
be able to decide the presence/absence of primary transmitters in
a moderate amount of time: the numberK of sensors and the
numberN of samples have therefore the same order of magnitude.
In the asymptotic regime (9), it was proved in [6] that, putting
cN = K/N ,

N2/3

0

B

@

T
(1)
N − (1 +

√
cN )2

(1 +
√

cN )
“

1√
cN

+ 1
”1/3

1

C

A

D−−→
H0

X

where
D−−→
H0

stands for the convergence in distribution underH0

and whereX is a random variable which follows the Tracy-Widom
distribution functionFTW (.) associated with the Gaussian unitary
Ensemble (see [6] for details). As a consequence, we obtain the
following result.

Proposition 2. The power of test (8) is maximum under con-
straint (3) only if the thresholdγ(1)

N writes

γ
(1)
N = (1 +

√
cN )2 +

β
(1)
N

N2/3
(10)

for someβ(1)
N which tends to(1+

√
c)
“

1√
c

+ 1
”1/3

F−1
TW (1−α).

The above Proposition was used in [6] to derive practical guide-
lines to select the thresholdγ(1)

N without resorting to a tedious com-

putation of the exact distribution functionx 7→ PH0

h

T
(1)
N ≤ x

i

.
This result will also be useful in Section IV in order to analyze
the performance of the proposed hypothesis test. Before providing
such a performance analysis, we mention the existence of an other
hypothesis testing approach which has been recently developed
in [4], [3], [7] for cognitive radio contexts.

III-C. An Other Existing Hypothesis Testing Approach
A different approach introduced in several papers devoted to

cognitive radio contexts [4], [3], [7] consists in rejecting theH0-
hypothesis when the following statistic

T
(2)
N =

λ1

λK
(11)

lies above a well chosen thresholdγ(2)
N . The introduction of the

above statisticT (2)
N can be motivated by the following observation.

Assume that the followinglimiting signal-to-noise ratio(SNR) is
well defined :

ρ = lim
K→∞

‖h‖2

σ2
(12)



Fig. 1. ROC curves of testsT (1)
N andT

(2)
N – K=10, N=50, ρ=1.

where‖h‖ denotes the L2-norm of theK × 1 vectorh. Then, in
the asymptotic regime (9),

T
(2)
N

a.s.−−→
H0

(1 −√
c)2

(1 +
√

c)2

T
(2)
N

a.s.−−→
H1

8

<

:

(1+ρ)(1+c/ρ)

(1+
√

c)2
if ρ >

√
c

(1−√
c)2

(1+
√

c)2
if ρ <

√
c .

(13)

Provided that the SNR is large enough (ρ >
√

c), T
(2)
N converges

to different values depending on the true hypothesis. This motivates
the fact that the value ofT (2)

N can be used to decide which
hypothesis is true.

III-D. Simulation Analysis
In the following, we compare by simulations both tests in the

case whereK = 10, N = 50 and ρ = 1. For a fixed levelα,
the thresholdsγ1,2

N corresponding to the probability of error under
H0 are given byPH0

(T
(1,2)
N ≥ γ

(1,2)
N ) = α. The power of the

test is then given byPH1
(T

(1,2)
N ≥ γ

(1,2)
N ). Figure (1) provides

the ROC curve for both tests. tests. It clearly shows that the test
T1 outperforms the testT2. In the rest of the paper, we provide a

theoretical performance study of the tests based onT
(1)
N andT

(2)
N

respectively to sustain the experimental claims of Figure 1. Using
large deviations arguments, we rigorously prove that the test (8)
based onT (1)

N outperforms the test based onT
(2)
N .

IV. ERROR EXPONENTS

IV-A. Definition
The most natural approach to characterize the performance of

the tests associated with statisticsT
(1)
N and T

(2)
N is to evalute the

power of each of these tests, or equivalently the miss probability
PH1

“

T
(i)
N < γ

(i)
N

”

, i = 1, 2. As the miss probability has no
simple expression in the general case, we propose to study the
asymptotic behaviour of the miss probability in the asymptotic
regime (9) of interest. More precisely, for each testi = 1, 2, we
prove the existence and provide the expression of the following
error exponents

Ei,ρ = lim
N→∞

− 1

N
log inf

n

PH1

“

T
(i)
N < γ

”o

, (14)

where the infemum is taken w.r.t. allγ such that PFA constraint (3)
holds for a fixed levelα. Of course, asN, K tend to infinity, one
may as well take benefit of the increasing number of data in order

not only to decrease the miss probability, but to decrease the PFA
as well. As a consequence, it is of practical interest to analyze
the detection performance when both the miss probability and the
PFA tend to zero at exponential speed. A couple(a, b) ∈ (0,∞)×
(0,∞) is said to be anachievablepair of error exponents for the
testT (i)

N if there exists a sequence of thresholdsγN such that, in
the asymptotic regime (9),

lim
N→∞

− 1

N
log PH0

“

T
(i)
N > γN

”

= a (15)

lim
N→∞

− 1

N
log PH1

“

T
(i)
N < γN

”

= b . (16)

We denote bySi the set of achievable pairs of error exponents for
testT (i)

N and we refer to this set as theerror exponent curve.

IV-B. Main Result

In order to express the error exponents of interest, we need fur-
ther notations. Recall that the limiting probability distribution of the
empirical distribution of the eigenvaluesFN (x) = #{i, λi≤x}

K
of

R̂ = 1
N

YY
H is (under both assumptionsH0 or H1) Mařchenko-

Pastur distribution:

PM̌P(dy) = 1(λ−,λ+)(y)

p

(λ+ − y)(y − λ−)

2πcy
dy,

whereλ+ = (1 +
√

c)2 andλ− = (1 −√
c)2. We also introduce

λ∞
spk = (1 + ρ)

“

1 + c
ρ

”

(recall that the largest eigenvalueλ1

converges towardλ+ underH0 and towardλ∞
spk underH1 - see

for instance [8]). Of prime importance is the Stieltjes transform of
PM̌P, f(x) =

R

P
M̌P

(dy)

y−x
which admits the following well-known

closed-form representations:

f(x) =
(1 − x − c) + ǫx

p

(1 − x − c)2 − 4cx

2cx
,

whereǫx = 1 if x > λ+ and ǫx = −1 if x ∈ (0, λ−). Define:



F
+(x) =

R

log(x − y)PM̌P(dy) for x > λ+,
F

−(x) =
R

log(y − x)PM̌P(dy) for x ∈ (0, λ−)
.

and let f̃(x) = − 1
x(1+cf(x))

.

Lemma 1. The following representations hold true:

F
+(x) = log(x) +

1

c
log(1 + cf(x)) + log(1 + f̃(x))

+xf(x)f̃(x)

F
−(x) = log(x) +

1

c
log(1 + cf(x)) + log(−(1 + f̃(x)))

+xf(x)f̃(x) .

For similar computations, see for example [9, Section 4]. We are
now in position to introduce the functions that will help to express
the error exponents. Denote by∆(· | A) the convex indicator
function defined by:

∆(x | A) =



0 if x ∈ A,
∞ else.



Define for eachρ >
√

c:

I+
ρ (x) =

x − λ∞
spk

(1 + ρ)
− (1 − c) log

 

x

λ∞
spk

!

−c
`

F
+(x) − F

+(λ∞
spk)

´

+ ∆(x | [λ+,∞)) ,

I+
0 (x) = x − λ+ − (1 − c) log

“ x

λ+

”

−2c
`

F
+(x) − F

+(λ∞
spk)

´

+ ∆(x | [λ+,∞)) ,

I−(y) = y − λ∞
spk − (1 − c) log

 

y

λ∞
spk

!

−2c
`

F
−(y) − F

−(λ−)
´

+ ∆(y | (0, λ−]) .

As one may expect,I+
ρ (resp. I0) and I− are associated to

the Large Deviation Principle (LDP) governingλ1 and λK re-
spectively whenρ >

√
c (resp. ρ = 0). Define Γρ(t) =

inf
n

I+
ρ (x) + I−(y), x

y
= t
o

for ρ >
√

c and defineΓ0 sim-
ilarly. It can be shown thatΓρ and Γ0 are associated to the LDP
governingλ1/λK whenρ >

√
c andρ = 0 respectively.

Theorem 1. Assume thatρ >
√

c. Error exponentsE1,ρ and E2,ρ

are well defined and are given by:

E1, ρ = E2, ρ = I+
ρ (λ+) .

The error exponent curves of both tests are given by:

S1 =
˘

(I+
0 (x), I+

ρ (x)) : x ∈ (λ+, λ∞
spk)

¯

(17)

S2 =



(Γ0(x), Γρ(x)) : x ∈ (λ+/λ−,
λ∞

spk

λ− )

ff

. (18)

In particular, the error exponent curveS1 uniformly dominatesS2

in the sense that for each(a, b) ∈ S2 there exitsb′ > b such that
(a, b′) ∈ S1.

The proof will be provided in an extended version of this paper.

IV-C. Comments and Numerical Results

In terms of error exponents, both testsT
(1)
N and T

(2)
N admit

the same error exponent as long as the levelα of the test is
kept fixed. Furthermore, error exponents do not depend onα.
Figure 2 represents the error exponent of both tests in log-scale
as a function of the SNRρ in dB. Error exponents are compared
with the error exponent associated with the Neyman-Pearson test,
achieved in the ideal case where parametersH andσ are known.
The error exponent of the Neyman-Pearson test can be derived from
Stein’s Lemma, and provides an upper bound on the achievable
error exponents. Note that whenρ <

√
c, the test statisticT (1)

N
converges to the same limit underH0 and underH1. A similar
behaviour occurs forT (2)

N due to equation (13). Thus, both tests
fail when ρ <

√
c. Therefore, it is not surprising that the error

exponent tends to zero whenρ is close to
√

c.
Figure 3 represents the error exponent curvesS1 andS2 for ρ =

1 and c = 0.5. As stated by Theorem 1, the error exponent curve
associated with testT (1)

N uniformly dominates the one associated
with T

(2)
N .
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