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Open Issues on the Statistical Spectrum
Characterization of Random Vandermonde Matrices

Giusi Alfano, Mérouane Debbah, Oyvind Ryan

Abstract— Recently, analytical methods for finding moments
of random Vandermonde matrices with entries on the unit circle
have been proposed in the literature. Vandermonde matrices play
an important role in signal processing and wireless applications,
among which the multiple-antenna channel modeling, precoding
or sparse sampling theory. Recent investigations allowed to ex-
tend the combinatorial approach usually exploited to characterize
the spectral behavior of large random matrices with indepen-
dent and identically distributed (i.i.d.) entries to Vandermonde
structured matrices, under fairly broad assumptions on the
entries distributions. While in several cases explicit expressions
of the moments of the associated Gram matrix, as well as more
advanced models involving the Vandermonde matrix could be
provided, several issues are still open in the spectral behavior
characterization, with applications either in signal processing (de-
convolution, compressed sensing) and/or wireless communications
(capacity estimation, topology information retrieving, etc).

I. PROBLEM DESCRIPTION

A Vandermonde matrix [6] with entries on the unit circle
has the following form

V =
1√
N




1 · · · 1
e−jω1 · · · e−jωL

...
. . .

...
e−j(N−1)ω1 · · · e−j(N−1)ωL


 ; (1)

we will mainly focus on the case where ω1,..., ωL are i.i.d.
random variables taking values on [0, 2π). Throughout the
paper, the ωi will be called phase distributions, V will denote
any Vandermonde matrix, of dimensions N ×L, with a given
phase distribution. Let c denote the aspect ratio of the abovede-
fined matrix, i.e. limL,N→+∞ L

N → c. Other models of
particular interest are the generalized Vandermonde matrices,
whose columns do not consist of uniformly distributed powers,
namely

V =
1√
N




e−jbNf(0)cω1 · · · e−jbNf(0)cωL

e−jbNf( 1
N )cω1 · · · e−jbNf( 1

N )cωL

...
. . .

...
e−jbNf( N−1

N )cω1 · · · e−jbNf( N−1
N )cωL


 ,

(2)
where f is called the power distribution, and is a map from
[0, 1) to itself. More general cases can also be considered, for
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instance by replacing f with a random variable, i.e.

V =
1√
N




e−jNλ1ω1 · · · e−jNλ1ωL

e−jNλ2ω1 · · · e−jNλ2ωL

...
. . .

...
e−jNλN ω1 · · · e−jNλN ωL


 , (3)

with λi’s, i.i.d. on [0, 1), and also independent from the ωj’s.
The basic quantities of interest are defined in the following:

Definition 1: Let us consider an N ×N Hermitian matrix
A. The averaged empirical cumulative distribution function
of the eigenvalues (also referred to as the averaged empirical
spectral distribution (ESD)) of A is defined as

FN
A(λ) =

1
N

N∑

i=1

1E [{λi(A) ≤ λ}] ,

where λ1(A), . . . , λN (A) are the eigenvalues of A and 1{·}
is the indicator function. If FN

A(·) converges as N →∞, then
the corresponding limit (asymptotic ESD, AESD) is denoted
by FA(·). The corresponding asymptotic probability density
function is denoted by fA(·).
Explicit AESD expression is available only for a rather limited
number of cases, depending either on the pdf of the entries
of the random matrix under exam, or on the amount and
structure of correlation between them. In alternative, implicit
characterization, often through some integral transforms [14],
plays an essential role in the analysis of systems which can be
adequately represented through sums and products of random
matrices.

In general, other than the AESD, one would like to have
the joint eigenvalue distribution of matrices or some marginal
distribution (e.g., the extremal eigenvalues distributions).

In particular, if we consider a probability measure ρ on
the real line, which has moments of all order, and denoting
by (mk(ρ) :=

∫
tkdρ(t))k≥0 the sequence of its moments,

we know that such a given sequence of moments {mk, k ≥
0} does not uniquely determine the associated probability
distribution. A trivial sufficient condition, however, is the
existence of the moment generating function1. In any case, for
computing the eigenvalue distribution, one needs to determine
the moments of all orders.

1A more sophisticated one is the Carleman condition, which states that the
sequence characterizes a distribution if the following holds:

∞∑

i=1

m
− 1

2i
2i = ∞
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Moments, as well as eigenvalues distribution computation,
are of crucial interest in performance analysis of several
wireless communications and signal processing systems. In
the following, we will describe some application scenarios,
stressing the dependence of the performance indices on the
moments and, more in general, on some functions of the
eigenvalues of (generalized and not) random Vandermonde
matrices.

While in some cases computation have already been per-
formed, the general result is not yet available, thus making the
problem an actual challenge in application of random matrix
theory to information- and/or estimation-theoretic analysis of
wireless systems.

The main problem could be thus stated as
Problem 1: Compute, for any integer n, the expression of

the so called mixed moments

Mn = limN→∞E[trL( D1(N)VHVD2(N)VHV
· · · ×Dn(N)VHV)], (4)

for any sequence of matrices {Dr(N)}1≤r≤n whose joint
limit distribution exists.

This has been already performed in some relevant cases
[10] for the phase distributions of V, and for several values
of n. In particular, results have been provided for the case
of uniformly distributed phases, and it has also been proved
that the uniform phase distribution minimizes the value of the
mixed moments with respect to all phase distribution. The
analysis has been carried out always under the assumption of
diagonal {Dr(N)}1≤r≤n, independent on the Vandermonde
matrices. Other open issues of major concern may be the
following

Problem 2: Compute, for any integer n,

Mn = limN→∞E[trL( D1(N)VHVD2(N)VHV
· · · ×Dn(N)VHV)], (5)

for non-diagonal {Dr(N)}1≤r≤n whose joint limit distri-
bution exists, and/or for any sequence of matrices Dn(N),
whose joint limit distribution exists, with independent but not
identically distributed columns.

Problem 3: Obtain explicit expressions for the probability
density function (p.d.f.) of the AESD of a matrix of the type
VV†.

Problem 4: Obtain explicit expressions for the p.d.f. of the
extremal eigenvalues of VV†, say λmin and λmax.

A. Analytical difficulties and discussion

The solution to the abovementioned issues is relevant in
several applications. Before to go into application details, we
briefly notice some of the difficulties met up to now.

First of all, notice that the proposed evaluation method
for the asymptotic mixed moments would fail both for the
evaluation of mixed moments with non-diagonal matrices D,
as well as for the derivation of an explicit AESD expression.
Indeed, as shown in [10], the support of such a function is
not compact, hence the availability of the moments would not
be sufficient to obtain the sought-for expression. Also, the ex-
tremal eigenvalues characterization, too, cannot be performed
based on the tools developed in [10]; rather, a good candidate

strategy would be to develop for Vandermonde matrices an
analytical machinery, analogous to the Stieltjes, R and S
transforms, usually exploited in free probability [5]. It is worth
to stress that, in our case, the machinery would obviously
depend on the explicit distribution of the entries. Indeed, one
of the interesting features of free probability (when freeness
is proved between matrices) is that the machinery is the
same whatever the exact distribution of the entries of the
matrices involved. Here, the new R and S transforms would
be distribution entries dependent.

Finally, recall that we have been only concerned in ana-
lyzing the spectral behavior of random Vandermonde objects
with entries lying on the unit circle. The generalization to the
case of non unit modulus elements is even more challenging
than previous issues. Indeed, the factor 1√

N
, as well as the

assumption that the Vandermonde entries e−jωi lie on the
unit circle, are included in (1) to ensure that the analysis will
give limiting asymptotic behaviour. Without this assumption,
the problem at hand is more involved, since the rows of the
Vandermonde matrix with the highest powers would dominate
in the calculations of the moments for large matrices, and
also grow faster to infinity than the 1√

N
factor in (1), making

asymptotic analysis difficult.

II. MOTIVATION

The main motivation is to compute free deconvolution with
random Vandermonde matrices, which is at the heart of cogni-
tive (cooperative) inference techniques. Free deconvolution is
a recent application of free probability to signal processing. It
enables to compute the eigenvalues of involved models of sum
or product of random matrices using combinatorial techniques.
It has some some strong connections with other works on G-
estimation [4].

As a straightforward example, suppose that A and B are
independent large square Hermitian (or symmetric) random
matrices, then under some very general conditions, free de-
convolution enables to :
• Deduce the eigenvalue distribution of A from those of

A + B and B.
• Deduce the eigenvalue distribution of A from those of

AB and B.
The concept is even broader as it provides a method to

retrieve the eigenvalue distribution of, say, A, from any
functional f(A,B) and from B2.

Often more than in the case of free deconvolution, however,
functionals of the eigenvalues of the channel matrix are enough
to characterize the measure of information flow or to retrieve
information.

Typically, as for the information rate, one is interested in

Cn =
1
n

n∑

i=1

f(λi),

2The applications of such a deconvolution in wireless communications with
free matrices [1, and references therein] have provided a useful framework
when the number of observations is of the same order as the dimensions of
the system, as is the case also in the G-estimation theory.
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Fig. 1. Mobile Random networks

where f is a continous function (log(1 + x) for example)3.
Note that Cn is a random variable (due to the fact that the
eigenvalues λi are random) and can be expressed as:

Cn =
∫

f(λ)
1
n

δ(λ− λi)dλ (6)

=
∫

f(λ)dρn(λ) (7)

We call here ρn the eigenvalue distribution which turns out
to be nothing else than a projection of the vector of eigenvalues
[λ1, ..., λn] into a single quantity. Note that this approach is
meaningful when one wants information about the whole set
of values taken by the coordinated of the vector and not about
each coordinate. It is therefore less explicit than the joint
eigenvalue distribution but contains all what is required for our
problem. ρn is also a random variable but as the dimension of
the system grows, the behavior of the eigenvalue distribution
becomes deterministic in many cases. We will denote it ρ.
Of course, other projections may also be of interest in other
applications such as the maximum of the vector [λ1, ..., λn].

In wireless intelligent random networks, devices are au-
tonomous and should take optimal decisions based on their
sensing capabilities (the number of samples they acquire, see
also figure 1). Of particularly interest are information measures
such as capacity, signal to noise ratio, estimation of powers
or even topology identification. Information measures are
usually related to the spectrum (eigenvalues) of the underlying
network and not on the specific structure (eigenvectors). This
entails many simplifications that make free deconvolution a
very appealing framework for the design of these networks.

However, once again, practical applications show that the
limiting eigenvalue distributions in wireless communications
depends only a subset of parameters, typically:

dρ(λ) =
1
L

L∑

i=1

δ(λ− λi),

where L is small compared to p and is related to the problem
of interest (class of users with a given power in multi-user
systems, number of scatterers in an environment, rank of the
MIMO matrix in multiple antenna systems for example).

In this case, the moments are related to the eigenvalues by
the following relations:

3In general, the function f should have other constraints (bounded) but for
clarity reasons, we do not go into more details

mk(ρ) :=
1
L

L∑

i=1

λk
i . (8)

As detailed in [11], [9], [3], one needs only to compute L
moments to retrieve the eigenvalues in equation (8). This sim-
plifies drastically the problems and favors a moment approach
to the free deconvolution framework rather than deriving the
explicit spectrum.

The Newton-Girard Formulas [11] can be used to retrieve
the eigenvalues from the moments. These formulas state a
relationship between the elementary symmetric polynomials

Πj(λ1, ..., λL) =
∑

i1<···<ij≤L

λi1 · · ·λij
, (9)

and

Sp(λ1, ..., λL) =
L∑

i=1

λp
i

= L×mp(ρ)

through the recurrence relation

(−1)mmΠm(λ1, ..., λL)
+

∑m
k=1(−1)k+mSk(λ1, ..., λL)Πm−k(λ1, ..., λL) = 0.

(10)
Interestingly, the characteristic polynomial

(λ− λ1) · · · (λ− λL)

(which roots provides the eigenvalues of the associated matrix)
can be fully characterized as its L− k coefficient is given by:
(−1)kΠk(λ1, ..., λL). As mp(ρ) (we will show later on how
these quantities can be computed) are known for 1 ≤ p ≤ L,
(10) can be used repeatedly to compute Πm(λ1, ..., λL), 1 ≤
m ≤ L.

For a given L, the previous algorithm works quite fine.
However, in practice, L is not a priori known and a neat
framework is still under study, considering even general cases
where measures have densities (and are not a discrete sum
of diracs). Non-optimal minimization methods for finding the
appropriate L have been proposed in [9]. The general idea
is to take L = n, in other words corresponding to the real
dimension of the matrix. This of course incurs a burden in
terms of complexity as the dimension of the matrix increases.
In practice, as previously recalled, the problems ware well
structured and therefore, one can use a finite small L which
yields a good approximation of the distribution.

III. EXAMPLES IN WIRELESS RANDOM NETWORKS

There are several examples in the literature which fall under
the previous example. Some have been thoroughly studied in
[9].

A. Topology information

The most simple example is the case where f is identity.
This case is of practical interest when one performs channel
sounding measurements. The transmitter sends an impulse on a
given band to sound the environment. The channel response (or
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more precisely its power delay profile through the covariance
of the received signal) contains information on the structure
of the environment. By appropriate ray tracing techniques [7],
[8], localization can be performed with a single receiver. The
time-delayed channel impulse response can be written as:

x(τ) =
L∑

k=1

σkskg(τ − τk),

where sk are zero mean unit gaussian variables and σk are
their associated variances (due to the topology), L represent
the total number of scatterers and g is the transmit filter. In the
frequency domain, the received vector for a given frequency
fi in the presence of noise, can be written:

yi = xi + ni,

where xi =
∑L

k=1 skG(fi)e−j2πfiτk ; notice that, in general,
τi < τi+1. In matrix form,

y = R
1
2 s + n,

where R
1
2 = GΘΣ. Here, G is a diagonal matrix with entries

G(fi), Θ is n × L matrix with entries e−j2πfiτk and Σ is a
diagonal matrix with entries σk. s and n are respectively L×1
and n× 1 zero mean unit variance Gaussian vectors. The free
deconvolution framework enables to infer on the L non-zero
eigenvalues of R and therefore σk as suggested in [10].

B. Capacity and SINR estimation

In the case of cognitive TDD (Time Division Duplex)
MIMO systems (the transmitter and the receiver have multi-
antenna elements), the receiver would like to infer on the rate
based only on the knowledge of the variance of the noise σ2,
but without any training systems and using only p samples.
The TDD mode here enables channel reciprocity by providing
the same rate on both ends. The received signal can be written
as:

yi = Hsi + ni,

where H is the n× n MIMO matrix. The information rate is
given by [12]:

C = log det(I +
1
σ2

HH∗)

=
n∑

i=1

log(1 + λi). (11)

One can also be interested in the estimation of the SINR
(Signal to Interference plus Noise Ratio) at the output of the
MMSE receiver (if Bit Error Rate requirements are imposed)
which is asymptotically given by [13]:

SINR =
1
n

trace
(
HH∗ + σ2

)−1

=
1
n

n∑

i=1

1
λi + σ2

.

In both cases, the number of non-zero eigenvalues is also
limited to L in general as the medium (matrix H) provides
only a finite number of degrees of freedom. One can compute
these eigenvalues by using the free deconvolution framework
on YY∗. Indeed, this has been already performed for matrices
with i.i.d Gaussian entries. However, in the case of line of
sight, H turns out to be a product of two Vandermonde
matrices with independent, but not necessarily identically
distributed entries.

C. Power estimation

In TDD heterogenous systems where a terminal is connected
to several base stations, determining the power of the signal
received from each base station is important as it will induce
the adequate rate splitting between the different base stations.
Suppose that each base station in the downlink has a given
signature vector of size n × 1 hk

4 (OFDM, CDMA) with
random i.i.d components, the received signal can be written
as:

y =
L∑

k=1

hk

√
Pksk + n,

where Pk is the power received from each base station. L is
the number of base stations, sk is the signal transmitted by
base station k and y and n are respectively the n×1 received
signal and additive noise. It turns out here once again that one
can infer on the powers Pk knowing only YY∗ as shown in
[3].

IV. CONCLUSION

The open problem of characterizing the spectral behavior
of products of Vandermonde structured random matrices and
matrices independent from them has been stated and recently
computed partial solutions have been discussed. The rele-
vance of the computation of the asymptotic moments of such
products of random matrices, as well as of some marginal
eigenvalues distributions, to signal processing applications has
been stressed and illustrated through several examples.
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