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Abstract
This work is concerning the development of a stress sensor for high strain rate ap-
plications (Hopkinson bar apparatus). The physical principle of the sensor is based
on the piezomagnetic behavior of remanent magnetic material. Experiments con-
sist in anhysteretic and hysteretic piezomagnetic measurements of a low carbon
steel. We then propose a model for the piezomagnetic behavior based on a modi-
fied formulation of Jiles model and a multi-scale model for the anhysteretic part.
Modeling and experiments are in good agreement.
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1. Introduction

The Hopkinson bar apparatus is the usual tool to identify the mechanical be-
havior of materials at high strain rates [7]. The impact is provided by a projectile
(striker) launched at high velocity V0 against an incident bar (input bar), which
crushes the specimen against the transmitted bar (output bar - see Figure 1). The
measurements (stress σ(t), celerity) are generally provided by strain gauges ce-
mented on the bars [14]. Figure 2 shows an example of compressive stress wave
during an impact with Hopkinson bar apparatus. This measurement is carried out
by strain gauges.

The use of a pick-up coil wound around a previously magnetized Hopkinson
bar (remanent or submitted to a constant magnetic field H) is an alternative possi-
ble solution (Figure 1). When passing through the coil, the stress wave produces
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Figure 1: Hopkinson bar apparatus with pick-up coil wound on a magnetized bar
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Figure 2: Measurement of the stress level during an impact using Hopkison bar apparatus - strain
gauges measurement

an emf signal V (t) (Figure 3a). This signal is the expression of a change in mag-
netization M following Lenz law [1] (see Figure 3b) where B, n and S denote
respectively the magnetic induction, the number of turns of the coil and its area
(µ0 is the permeability of air).

V (t) = nS
dB
dt

= nSµ0
dM
dt

= nSµ0
dM
dσ

dσ

dt
(1)

σ(t) =
1

nSµ0

∫ (dM(H =Cst,σ)
dσ

)−1

V (t)dt (2)

The change of magnetization due to stress M(σ) is corresponding to the piezo-
magnetic behavior of the material [5]. M(σ) is usually non-linear, non-monotonous
and hysteretic [13, 8]. The stress σ(t) can then be theoretically estimated from the
emf signal V (t) using a time integration procedure [2]. Such an estimation sup-
poses to precisely know the derivative expression dM/dσ at constant field and so
require a mathematical modeling of M(σ) function including its hysteretic char-
acter.

Experimental results have been discussed extensively elsewhere [11, 8]. The
main results presented herein illustrate the different mechanisms involved in the
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Figure 3: Impact provided by Hopkinson bar apparatus: a) measurement of the emf signal; b)
associated variation of magnetization - the magnetic field level is estimated at H = 860 A/m

phenomenon and the influence of some parameters (amplitude, frequency, mag-
netic field level). In this study, we focused on modeling aspects of the anhysteretic
and hysteretic piezomagnetic behavior. We especially use a so-called multiscale
model in order to compute the anhysteretic piezomagnetic behavior [4]. This
model naturally takes both stress and magnetic field loading into account. The
modeling of the piezomagnetic hysteresis is made thanks to a modified formula-
tion of Jiles-Atherton hysteretic model for ferromagnetic behavior [10].

2. Experimental procedure

The material used for the experiments is a low carbon steel (0.2wt% C), for
which the behavior1 is very close to the behavior of a pure iron. A first step was

1Mechanical, magnetic and magneto-mechanical (magnetostrictive) behaviors.
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Figure 4: Experimental set-up

to get the reversible piezomagnetic behavior from anhysteretic magnetic measure-
ments carried out under static uniaxial stress (from -180 MPa to +180 MPa). Fig-
ure 4 shows the experimental set-up that has been used and the experimental pro-
cedure is explained in [11]. A sinusoidal stress waveform has been used for the
dynamic piezomagnetic measurements. Parameters are the mean stress σ̄ (-180
MPa to +180 MPa), the stress amplitude ∆σ (0 MPa to 180 MPa), the frequency
f (5 Hz to 50 Hz) and the static magnetic field level H (0 A/m to 10000 A/m).
The procedure is composed of following steps: 1-demagnetization; 2- application
of the mean stress σ̄; 3-application of the static magnetic field (anhysteretic pro-
cedure is applied); 4- cyclic mechanical loading of amplitude ∆σ; 5- averaging
over 100 cycles; 6- numerical integration of the emf ; 7- evaluation of the integra-
tion constant by comparisons to the anhysteretic behavior (the anhysteretic point
is kept as a reference point).

3. Experimental results and discussion

Anhysteretic M(H,σ = Cte) measurements lead to conventional results for
a low carbon steel: strongly non-linear magnetization curve; strong decrease of
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Figure 5: Anhysteretic and hysteretic piezomagnetic behavior of the material for three different
magnetic field levels (H = 0 A/m; H = 2000 A/m; H = 10000 A/m); f = 10 Hz

susceptibility due to compressive stress, weak improvement due to tensile stress
and so-called Villari reversal at intermediate fields. Thick black lines in Figure
5 give a piezomagnetic representation of these results (M(σ,H = Cte)). At zero
magnetic field, magnetization stays zero whatever stress level and sign. This point
is in accordance with the fact that stress has a quadratic influence on domain
distribution. In a weak to intermediate magnetic field, dM/dσ ratio is roughly
positive (positive magnetostriction). It reaches its highest value for H≈ 1000 A/m
and a low compressive level (σ≈-10 MPa). The Villari reversal is associated with
a change of dM/dσ sign. This mechanism occurs for a more or less high stress
level depending on the magnetic field strength [8].

It denotes the beginning of a magnetization rotation due to stress. High mag-
netic fields (≥ 8 kA/m) lead to a negative linear variation of M(σ) (with dM/dσ≈ −
250 A/m/MPa).

Figure 5 shows on the other hand the typical cyclic magnetic responses associ-
ated with the variation of stress (σ̄ = -10 MPa, ∆σ = 140 MPa, f = 10 Hz) for zero
applied field, H = 2000 A/m and H = 10000 A/m (Gray lines). The piezomag-
netic hysteresis betrays the existence of dissipative phenomena associated to two
usual mechanisms: the macroscopic and/or microscopic Eddy currents that brake
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the displacement of the domain wall (dynamic losses), and the pinning-unpinning
mechanism (hysteretic losses). This is in accordance with the progressive disap-
pearance of cycle at high magnetic field.

On the other hand, the piezomagnetic cycles are not symmetric: positive stress
leads to a quasi-reversible situation; negative stress does apparently increase the
dissipation; This result is clearly confirmed by the measurements plotted in Fig-
ures 6a, 6b and 6c. Increasing amplitudes always lead to an increase of dissipation.
Compression experiments are always more dissipative than tensile experiments.

Let consider an iron single crystal initially separated in 6 domain families,
associated to the 6 easy directions, in equal proportion. Figure 7 illustrates the
dissymmetry of change of the domain structure when the single crystal is submit-
ted to a traction or a compression. Iron is a positive magnetostriction material; a
traction is progressively simplifying the domain structure so that the quantity of
domain walls is decreasing. In this simplified example, only 180o domain walls
subsist. Because a varying stress does not move a 180o domain wall, it does not
lead to any dissipation. The domain structure associated with a negative stress is
more complicated. Density of domain walls stays high and their displacements
lead to a much higher dissipation.

4. Multiscale modeling of the anhysteretic piezomagnetic behavior

Multiscale approaches are of great interest when the phenomena are the result
of anisotropies at different scales [1]. Three scales are considered: polycrystal,
single crystal and magnetic domain scales.

4.1. Microscopic modeling
The microscopic model of magneto-elastic behavior of single crystals pro-

posed first by [1] was recently modified to avoid any minimization procedure [3].
A grain is seen as an assembly of magnetic domains. A magnetic domain α is
defined by its magnetization vector ~Mα [3] (Ms is the saturation magnetization
of the material; γi are the direction cosines of the magnetization) and its mag-
netostriction tensor ε

µ
α [4] (λ100 et λ111 are the magnetostrictive constants of the

single crystal). The potential energy [5] of a magnetic domain is corresponding
to the sum of the magneto-crystalline [6], magnetostatic [7] and magneto-elastic
[8] energies. Because the magnetization is supposed homogeneous within each
domain, and domain walls contribution is neglected, the exchange energy is not
considered [4]. Moreover uniform strain and magnetic field hypotheses have been
used for the calculations.
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~Mα = Ms
t(γ1;γ2;γ3) (3)
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2
(σα : C−1

g : σα)≈−σg : ε
µ
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−→
H α, σα,

−→
H g and σg respectively correspond to the magnetic field and stress

in a domain α and in a grain g. Cg is the stiffness tensor of the single crystal, K1
and K2 are the anisotropy constants of the material. The volumetric fraction fα of
each domain α is seen as the probability of existence of this domain comparing to
the others. It is expressed thanks to a Boltzmann function written as function of
the potential energy of the domains :

fα =
exp(−As.Wα)∫

α

exp(−As.Wα)dα

(9)

fα is function of the unique adjustable parameter As. This parameter can be eas-
ily deduced from low field experimental magnetization curve. It is shown in [4]
that As = 3χ0/(µ0.M2

s ), where χ0 is the initial anhysteretic susceptibility of the
material. Assuming that the elastic behavior is homogeneous within a grain, the
magnetostriction strain of a single crystal is written as the mean magnetostriction
of each domain [10] (< .. > denotes an averaging operation). The magnetization
in a grain is defined as well [11].

ε
µ
g =< ε

µ
α >=

∫
α

fα ε
µ
αdα (10)

~Mg =< ~Mα >=
∫

α

fα
~Mαdα (11)
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This procedure does not require any minimization process since any orienta-
tion is supposed to be considered and its probability of existence correctly defined.
It requires nevertheless a large number of orientations to minimize numerical ap-
proximations. For this work, 10242 domain orientations regularly distributed in
the space have been used for each grain. The main advantage of this formulation
is that it does not require any preliminar definition of easy magnetization direction
and associated domain family. As a consequence the numerical difficulties asso-
ciated to the instability of some domain families submitted to a stress disappear.

4.2. Localization and homogenization
A polycrystalline ferromagnetic media can be considered as an aggregate of

single crystals assembled following the orientation data. The microscopic level
modeling is applied for each grain of the polycrystalline aggregate. The magne-
tization at polycrystalline scale is defined as the average value of magnetization
at grain scale [12]. A local demagnetizing field in each grain due to the magneti-
zation of the surrounding grains is introduced [4]: the magnetic field at the grain
scale ~Hg is defined as a function of the external field ~H, the mean secant equiv-
alent susceptibility of the material χm, (χm = M/H) and the difference between
the mean magnetization ~M and the magnetization at the grain scale ~Mg [13]. The
elastic behavior is obtained thanks to a self-consistent homogenization scheme.
The macroscopic magnetostriction strain [14] is estimated using the Eshelby’s so-
lution and considering the local magnetostriction as a free strain; B denotes the
fourth order stress concentration tensor [6].

~M =< ~Mg > (12)

~Hg = ~H +
1

3+2χm
(~M− ~Mg) (13)

The magnetostriction strain at grain scale is elastically incompatible and cre-
ates a stress that have to be added to the applied stress. The stress at grain scale
σg is so derived from the implicit Equation [15].

εµ =< tB : ε
µ
g > (14)

σg = B : σ+Cacc : (εµ− ε
µ
g) (15)

with Cacc = ((Cg)
−1 +(C0 : ((SEsh)−1− I))−1)−1. C0 is the stiffness tensor of
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the effective media [6]. As a self-consistent scheme has been chosen, C0 refers
to the self-consistent stiffness tensor. σ is the macroscopic applied stress. SEsh

is the so-called Eshelby’s tensor. Since this model always refers to equilibrium,
modeling results are anhysteretic.

In this work, the orientation data file for the definition of the polycrystalline
media is issued from a regular spheric mapping of the space (546 orientations).
The mechanical and magnetic characteristics of iron are used for the calculations.
The modeling has been implemented in the same loading conditions than the ex-
perimental ones: constant applied magnetic field H (~H =H.~z) and uniaxial macro-
scopic stress σ (σ = t~z.σ.~z) defined by its mean value and amplitude. Figure 8
shows the results of anhysteretic piezomagnetic simulations M(σ) (~M = M.~z) for
various magnetic field levels (from 0 A/m to 10000 A/m) and σ ∈[-180;+180]
MPa. Since this calculation is anhysteretic, the mechanical loading path has no
importance. Results are qualitatively coherent with experimental results (espe-
cially the slope at saturation). Parameters used for the calcultation are listed in
Table 1.

Table 1: Physical constants used for the multiscale modeling

coefficient Ms K1 ; K2 λ100 ; λ111 As C11 ; C12 ; C44
unit A/m kJ.m−3 10−6 m3.J−1 GPa

value 1.71x106 42.7; 15 21 ; -21 2x10−2 238 ; 142 ; 232

5. Jiles-Atherton modeling of the piezomagnetic hysteresis

The anhysteretic behavior M(σ) is given by the multiscale modeling. This
expression must be enriched by a hysteretic component. We propose to model
the hysteretic part of the piezomagnetic behavior thanks to a formulation derived
from Jiles-Atherton modeling of magnetic hysteresis [10].

5.1. Jiles-Atherton modeling of the magnetic hysteresis
The model initialy proposed by Jiles et al. (1984) is a scalar modeling of the

magnetic hysteresis M(H). It uses on the one hand the anhysteretic magnetic be-
havior which is corresponding to the behavior of the ideal material and is written:

Man = Ms(cotan(He/a)−a/He) (16)
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with

He = H +β.M (17)

He is the effective magnetic field function of the applied field H and of the
anhysteretic magnetization2. β is a localization factor. In Equation [16], a is a
parameter associated to the initial slope of the anhysteretic curve.

Moreover, Jiles considered the magnetization M as the sum of a reversible and
an irreversible part. The reversible magnetization is linked to the movement of
domain walls close to their equilibrium position. The irreversible magnetization
is linked to the jumps of domain walls from one pinning site to another. The hys-
teretic part of the model is driven by a differential equation defining the rate of
irreversible magnetization as a function of the gap between the ideal magnetiza-
tion (anhysteretic) and the actual magnetization (irreversible). After a few calcu-
lations, one gets the following relation between M, Man and H without applied
stress.

dM
dH

=
(1− c).(Man−M)

(1− c).kδ−β.(Man−M)
+ c.

dMan

dH
(18)

c is a constant associated to the reversible bending of the domain walls. δ is a
directionnal parameter equal to 1 or -1 depending on the sign of dH/dt. k is the
damping factor strongly correlated to the quantity of dissipated energy.

5.2. Extension of the Jiles-Atherton model to the piezomagnetic hysteresis
Piezomagnetism means variation of magnetization due to a variation of stress.

The variation of magnetization dM can then be defined as the sum of two a priori
uncoupled contributions: contribution of magnetic field on the one hand and con-
tribution of stress on the other hand [19]. dM/dH is corresponding to the classical
Jiles-Atherton differential equation (see paragraph above). dM/dσ is the piezo-
magnetic term. Expressing the effect of stress on the magnetization at constant
magnetic field is possible using the multiscale modeling. It gives the anhysteretic
part of the behavior. Concerning the dissipative mechanisms, we observe that a
stress can act on the magnetic microstructure very similarly comparing to a mag-
netic field. Bending of domain walls or pinning/un-pinning are mechanisms that
could occur. The driving force is now the magnetoelastic energy term. A simple
re-writting of the Jiles-Atherton model leads to the expression [20].

2When a stress is considered, He can be written as function of stress too [12].
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dM =
dM
dH

.dH +
dM
dσ

.dσ (19)

dM
dσ

=
(1− cσ).(Man−M)

(1− cσ).kσδ−βσ.(Man−M)
+ cσ.

dMan

dσ
(20)

cσ is a constant associated to the reversible bending of the domain walls due
to stress. δ is a directionnal parameter equal to 1 or -1 depending on the sign
of dσ/dt. kσ is the damping factor correlated to the quantity of dissipated en-
ergy. Parameters cσ and kσ are a priori different from c and k considering the fact
that stress mainly acts on 90o domain walls, and magnetic field on 180o domain
walls. Another point is that we have to take into account that the domain structure
change is different for a traction or a compression (Figure 7). As already dis-
cussed, the difference of domain wall quantity observed for a same amplitude in
traction or compression explains the dissymetry in the experimental results. This
mechanism is associated to the parameter kσ which has to be different in traction
and compression. We decided to use the following relation for kσ:

kσ = k0 + ka.σ for σ < 0 and kσ = k0 for σ > 0 (21)

Parameter βσ is more difficult to interpret: it is associated to the effect of mag-
netization on stress heterogeneity (stress localization). We decided to consider
this parameter as zero neglecting the strain incompatibilities. Figure 9 shows an
example of calculation of the piezomagnetic hysteresis. Parameters used for the
calculation are indicated in Table 2. This Figure shows on the other hand the ef-
fect of parameter ka. Uniform stress and field hypotheses have been used for the
calculation of the anhysteretic behavior.

Finally Figures 10a and 10b show respectively the influence of the level of
applied magnetic field and the influence of the amplitude of stress on the piezo-
magnetic response. Results are in good agreement with the experimental observa-
tions. However, the modeling overestimates the magnetization at low and medium
magnetic field. The assumption of uniform stress and field partly explains this
disagreement because it neglects the effect of elastic incompatibilities and de-
magnetizing fields. The current model can take these phenomena into account but
becomes much more costly in terms of computational time. On the other hand, the
model does only represent the hysteretic losses. The width of cycles is therefore
lower than the experimental cycles. Figure 11 shows for example the experimental
piezomagnetic behavior for different frequencies. 10 Hz frequency clearly leads
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to dynamic losses: the cycle at 10 Hz is different from the cycle at 5 Hz. Low
frequency signal are nevertheless difficult to measure.

Table 2: Parameters used for piezomagnetic hysteresis modeling

Parameters cσ k0 ka βσ

unit - Pa - Pa.m.A−1

value 0.8 16x106 0.2 0

6. Conclusion

The construction of a sensor based on a so highly non-linear, non-monotonic
and hysteretic behavior such as the piezomagnetic behavior requires an accurate
modeling. The modeling presented herein is a first step. It will be improved by the
introduction of the effect of frequency to reflect the dynamic losses. This work is
in progress on the basis of Jiles model extended to the dynamic behavior [9]. The
long term objective is however to overcome the limitations of a phenomenologi-
cal model such as Jiles model. The central idea is to introduce in the multiscale
modeling a dissipative term based on the description of the physical mechanisms
responsible for the dissipation. For example, the calculation of the rate of volu-
metric fraction could provide indicators of dissipation linked to the movement of
domain walls [2].
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Figure 6: Hysteretic piezomagnetic behavior under cyclic stress conditions (H = 2000 A/m, f = 10
Hz)
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Figure 10: Results of the Jiles-Atherton modeling for the piezomagnetic behavior - effect of the
level of magnetic field a) and stress amplitude b)

17



−200 −150 −100 −50 0 50 100 150 200

4

5

6

7

8

9

10

Anhysteretic behaviour

Hysteretic behaviour

5 Hz
10 Hz
20 Hz
50 Hz

H = 1000 A/m

 σ (MPa)

M
 (

A
/m

)

x 10
5

Figure 11: Experimental results of the effect of stress frequency on piezomagnetic hysteretic be-
havior; H = 1000 A/m
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