
HAL Id: hal-00448798
https://centralesupelec.hal.science/hal-00448798

Submitted on 20 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Game Theory for Dynamic Spectrum Access
Samir M. Perlaza, Merouane Debbah, Samson Lasaulce, Jean Marie Chaufray

To cite this version:
Samir M. Perlaza, Merouane Debbah, Samson Lasaulce, Jean Marie Chaufray. Game Theory for
Dynamic Spectrum Access. Cognitive Radio Networks: Architectures, Protocols and Standards, CRC
Press, pp.259-290, 2010. �hal-00448798�

https://centralesupelec.hal.science/hal-00448798
https://hal.archives-ouvertes.fr


Editors

November 5, 2008



ii



Contents

1 Game Theory for Dynamic Spectrum Access 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Formulation of the DSA Problem . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 DSA in Multiple Access Channels . . . . . . . . . . . . . . . . . . . . 5

1.2.2 DSA in Interference Channels . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 General Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Dynamic Spectrum Access as a Game . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 The Game Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Non-Cooperative and Cooperative Games . . . . . . . . . . . . . . . 9

1.3.3 The Nash Equilibrium Concept . . . . . . . . . . . . . . . . . . . . . 10

1.3.4 Optimality Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Open Spectrum Access Games . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Formulation of the Game . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.2 Single Stage Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

i



ii CONTENTS

1.4.3 Repeated Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.4 Bayesian Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.5 Coalitional Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Hierarchical Spectrum Access Games . . . . . . . . . . . . . . . . . . . . . . 27

1.5.1 Stackelberg Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



Chapter 1

Game Theory for Dynamic Spectrum

Access

Samir Medina Perlaza, France Telecom R&D - Orange Labs Paris, France.

Samson Lasaulce, Laboratoire des Signaux et Systèmes (LSS) - CNRS - SUPELEC, France.

Mérouane Debbah, Alcatel Lucent Chair in Flexible Radio, SUPELEC, France.

Jean-Marie Chaufray, France Telecom R&D - Orange Labs Paris, France.

In this chapter, the competitive interaction of radio devices dynamically accessing the

spectrum is studied using tools from game theory. Depending on the scenario under consid-

eration, the dynamic spectrum access (DSA) is modeled by different types of games following

both a non-cooperative and a cooperative approach. In the first case, each radio device aims

to selfishly maximize an individual performance metric (e.g., individual data rate), while

in the second case such maximization concerns global network parameters (e.g., network

sum-rate). In each case, we analyze network equilibria, which allow network designers, oper-

ators, or manufactures to predict the behavior and performance of cognitive networks and/or

terminals.
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2 CHAPTER 1. GAME THEORY FOR DYNAMIC SPECTRUM ACCESS

1.1 Introduction

For many years, management of the radio spectrum has been based on the classic property

right model. In this model, operators are granted licenses which allow them to exclusively use

a certain frequency band in a given area for a specific service [3]. However, results from recent

studies [1] show that this model often leads to an inefficient usage of the spectrum in terms

of spectral efficiency (bits/Hz) due to two main reasons. First, the spectrum remains unused

during the time that the licensed (primary) systems are idle, and second, the spectrum can

be congested in one area while it remains unused in another due to a low spatial density of

radio devices.

In this chapter, we consider the efficient use of the radio spectrum and analyze dynamic

spectrum access (DSA) as a paradigm to improve the spectral efficiency of multiple communi-

cations systems subject to mutual interference. Here, we consider DSA as either a dynamic

spectrum allocation in the case where a central controller exists or a spontaneous access

where cognitive radios (CR) [2] autonomously decide to access the spectrum in a scenario

where no central control is present. CRs are radio devices equipped with sensing systems

that allow them to be aware of the environment they are operating in. More specifically,

they are able to identify other active radios and estimate unused radio resources (frequency

bands, time slots, spreading sequences, spatial directions, etc.). Additionally, such devices

are able to self-adapt (in terms of coding-modulation scheme, power allocation, etc.) to

compete with other devices and use the radio spectrum more efficiently.

There are at least two scenarios of high practical interest for the study of DSA [4]: Hier-

archical spectrum access (HSA) and open spectrum access (OSA). In HSA, CRs coexist with

legacy systems if and only if the additional interference overcome by the pre-existing sys-

tems is below a specific threshold. Such thresholds can be predefined by network operators,

manufacturers or regulation entities to ensure certain quality of service (QoS) in the primary

systems. In this scenario, CRs only transmit using radio resources left unused by the pri-

mary systems. Hence, CRs are often called opportunistic or secondary radio devices. Such

unused radio resources are called spectrum access opportunities (SAO) or available channels.

Typically, an available channel consists of non-occupied time slots in time division multiple
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access (TDMA), frequency bands in frequency division multiple access (FDMA), spatial di-

rections in spatial division multiple access (SDMA), tones in orthogonal frequency division

multiple access (OFDMA), or spreading codes in code division multiple access (CDMA). In

HSA, once the SAOs have been identified each CR decides whether to transmit based on

their own performance criterion.

In OSA, the notion of primary and secondary systems does not exist, at least in its

conventional definition. In this scenario, each terminal has the same rights to access the

spectrum at any time. OSA typically includes the case of unlicensed bands (e.g., the in-

dustrial, scientific and medical (ISM) band [2.400, 2.500] GHz). Radio devices operating in

these bands include cordless telephones, wireless sensors, and devices operating under the

standards of Wi-Fi (IEEE 802.11), Zig-Bee (IEEE 802.15.4), and Bluetooth (IEEE 802.15.1).

Here, each technology implements different coding and modulation schemes, so there exists

neither a common multiple access (MA) technique nor a signaling system to harmonize the

use of these bands. Different governmental agencies, such as such as the European Ra-

dio Communications Office (ERO) in Europe and the Federal Communications Commission

(FCC) in the USA, have defined a set of few rules either in terms of power spectral density

masks or in terms of time duty cycles, depending on the application [6]. The power spectral

density mask define the limits on the peak-to-average power ratio (PAPR) as a function of

the frequency offset around the central frequency. The time duty cycle defines the longest

cumulative period a specific device is allowed to transmit within a time unit.

In this chapter, we assume that CRs can sense their environment in a sufficiently reliable

manner so that SAOs can be perfectly identified. Then, if SAOs are known by each CR, the

common problem with either HSA or OSA is that there is a group of terminals competing

for spectral resources. The rules the terminals must follow may differ, but in each case, it

is a problem of interactions between cognitive entities that must make decisions to optimize

their performance metrics. Hence, game theory, a branch of mathematics which studies

the interaction between several decision-makers, is the dominant paradigm to analyze such

problems [7]. Such analysis will be the focus of this chapter.

This chapter is organized as follows, in Sec. 1.2 we describe the problem of DSA and
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identify several scenarios depending on the network topology. More specifically, we analyze

the DSA problem in both the multiple access channel (MAC) and interference channel (IC).

In Sec. 1.3 we present fundamental concepts of game theory used to study DSA. Here,

we model the DSA problem as games following both cooperative and non-cooperative ap-

proaches. In Sec. 1.4 we focus on open spectrum access (OSA) games, which includes the

case of unlicensed bands. Here, we study how non-cooperative games often lead to subopti-

mal equilibrium points and present several techniques to improve the game outcomes. The

two approaches presented for including a certain degree of cooperation between the players,

and therefore improving the equilibrium efficiency are the repetition of the game (repeated

games) and coalitions between several terminals to jointly compete against other coalitions

(coalitional games). In Sec. 1.5 we discuss games modeling the co-existence between primary

systems and opportunistic systems (hierarchical spectrum access (HSA)). Here, another tech-

nique to improve the game outcome on non-cooperative games is studied. We introduce a

certain degree of hierarchy among the terminals (Stackelberg games) regarding for instance,

either their nature (primary or secondary radio devices) or their decoding order at the re-

ceiver. Finally, in Sec. 1.6 we present open issues related to both OSA and HSA problems

and state our conclusions.

1.2 Formulation of the DSA Problem

Dynamic access to the radio spectrum suggests either a dynamic allocation of SAOs (if a

central controller exists) or a spontaneous access (if no central controller exists). However,

two or more radio devices transmitting on the same channel (using the same SAO) might

either degrade or break the communication off due to mutual interference. Hence, the for-

mulation of the DSA problem can be summarized by the question: How does one optimally

design the system to let each radio device (not necessarily a CR) use the available channels

while maximizing the spectral efficiency i.e., the number of successfully transmitted bits per

second over total available bandwidth?

In this chapter we constraint the study of DSA to the choice of the best channels (SAO)
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and the optimal transmit powers per channel. It should be noted that other degrees of

freedom such as modulation-coding schemes, constellation size, polarization, type of receiver,

etc. might also be considered to increase the spectral efficiency [58, 59].

Regarding the topology, we focus on both the multiple access channel (MAC) and the

interference channel (IC). In the former case, several radio devices transmit to a single

receiver. In the latter, each radio device transmits to a different receiver. This apparent

simple difference between IC and MAC immediately implies different constraints regarding

the channel state information (CSI), interference cancelation, and moreover, signaling among

the active users in the network.

1.2.1 DSA in Multiple Access Channels

The multiple access channel, also known as the many-to-one channel, consists of K trans-

mitters aiming to communicate with a single receiver using a common channel [39]. If N > 1

channels are available, then there exists N independent or parallel MACs, where transmit-

ters in different MACs do not interfere each other. For instance, this model corresponds to

the uplink channel in a single-cell multi-carrier cellular system.

Regarding notational aspects, the channel gain from transmitter i to the receiver over

the channel n is denoted by hn
i . We assume a block flat-fading channel model such that

channel realizations remain constant during the transmission of M consecutive symbols. All

the channel realizations, ∀i = {1, . . . , K} and ∀n = {1, . . . , N} are drawn from a Gaussian

distribution with zero mean and unit variance. The power allocated by transmitter i to

channel n is denoted by pn
i . Each transmitter is power-limited, i.e., for the ith transmitter,

its transmit power cannot exceed pi,max, i.e., ∀i ∈ {1, . . . , K} ,

N
∑

n=1

pn
i 6 pi,max.

The symbol sent by transmitter i over channel n is represented by xn
i . We consider that

transmitted symbols ∀i = {1, . . . , K} and ∀n = {1, . . . , N}, are random variables with zero

mean and unit variance. The noise at the receiver is denoted by w and corresponds to an

additive white Gaussian noise (AWGN) process with zero mean and variance σ2. In vector
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notation, the channel realizations are written as hi =
(

h1
i , . . . , h

N
i

)

. Using a similar notation,

the transmit powers, transmitted symbols, and noise are written as pi =
(

p1
i , . . . , p

N
i

)

, xi =
(

x1
i , . . . , x

N
i

)

, and w =
(

w1, . . . , wN
)

, respectively. Then, the received signal sampled at the

symbol rate can be expressed as:

∀t ∈ {1, . . . ,M} , ri(t) = hi ⊙
√

pi ⊙ xi(t) +
K

∑

j 6=i

hj ⊙√
pj ⊙ xj(t) + wi(t). (1.1)

The notation a⊙ b represents the Hadamard product of two vectors a and b. According to

this signal model, the received signal to interference plus noise ratio (SINR) on channel n

for transmitter i, denoted by γn
i for all i ∈ {1, . . . , K} and for all n ∈ {1, . . . , N}, is

γn
i =

pn
i |hn

i |2

σ2 +
K

∑

j 6=i

pn
j |hn

j |2
. (1.2)

In the MAC model the receiver knows the codebooks used by all the transmitters in the

network [39]. This allows the receiver to use techniques such as multi-user detection and

interference cancelation [38]. Additionally, the receiver is able to estimate the channel of

all the transmitters. Conversely, without any additional signaling, each transmitter is able

to estimate only its own channel. This fact implies that if the receiver is equipped with

enough processing capabilities, the network performance could be optimized at the receiver

and optimal transmission parameters (e.g., power allocation, modulation-coding scheme,

etc.) can be fed back to the transmitters by using a control signaling protocol. The same

procedure will be constrained at each transmitter due to the lack of knowledge about the

other transmitter’s channel gains. As described later, the availability of complete channel

state information plays a key role in the DSA problem.

1.2.2 DSA in Interference Channels

The interference channel, known also as the many-to-many channel, consists of a set of K

point-to-point links close enough to produce mutual interference due to the co-existence on
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the same channel. If N > 1 channels are available, then there exists N independent or

parallel ICs, where transmitters in different ICs do not interfere each other. This topology

typically appears in self-organized networks (adhoc networks) where nodes communicate in

pairs, possibly using the same set of carriers.

To describe the IC model we keep the same notation and assumptions presented in the

MAC case (Sec. 1.2.1). Only a slight modification is introduced to denote the channel

realization from transmitter i to receiver j on channel n. Here, it is denoted by hn
ij, with

n ∈ {1, . . . , N} and (i, j) ∈ {1, . . . , K}2. The noise at receiver i over channel n is denoted by

wn
i and wi =

(

w1
i , . . . , w

N
i

)

. The received signal sampled at the symbol rate at the receiver

i, denoted by rn
i (t) at sampling instant t, is written in a vector form as

∀t ∈ {1, . . . ,M} , ri(t) = hii ⊙
√

pi ⊙ xi(t) +
K

∑

j 6=i

hji ⊙√
pj ⊙ xj(t) + wi(t), (1.3)

where the N -dimensional vector hij, for all (i, j) ∈ {1, . . . , K}2 is hij =
{

h1
ij, . . . , h

N
ij

}

. The

expression of the SINR on channel n at the receiver i, denoted by γn
i for all i ∈ {1, . . . , K}

and for all n ∈ {1, . . . , N}, is

γn
i =

pn
i |hn

i,i|2

σ2 +
K

∑

j 6=i

pn
j |hn

j,i|2
. (1.4)

Often, in the IC model, each point-to-point link uses different codebooks which constraints

the usage of multi-user detection techniques, and interference cancelation [38]. Moreover,

each receiver is able to estimate only its own channel realization due to the usage of different

training sequences in each link. Thus, the DSA problem turns out to be more challenging

than in the MAC case due to the lack of knowledge about the channel gains of all the other

transmitters.
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1.2.3 General Assumptions

For both types of network topologies, we assume that all the transmitters have perfect

channel state information (CSI), i.e., each transmitter knows the channel realizations hi for

all i ∈ {1, . . . , K} in the MAC case, and hi,j for all (i, j) ∈ {1, . . . , K}2 in the IC case. For

ease of presentation but may be with loss of generality, we assume that all the radio devices

are limited by the same power constraint pmax, i.e., ∀i ∈ I, pi,max = pmax. Additionally, we

assume that all the transmitters are aware of such common maximum power threshold.

1.3 Dynamic Spectrum Access as a Game

In this section we present the fundamental concepts of game theory which will be used to

study the problem of DSA. First, we introduce the concept of strategic form games and

we present the cooperative and non-cooperative approaches. Afterwards, we introduce the

concept of Nash equilibrium in non-cooperative games and optimality measures such as

Pareto optimality and price of anarchy (PoA). Finally, a formulation of the DSA problem in

game-theoretic terms is provided.

1.3.1 The Game Model

As mentioned above, game theory provides a natural mathematical framework to analyze

strategic interactions between several decision makers. The set of rules governing such in-

teraction is a game. The simplest representation of a game is the normal form. In normal

form, a game is defined as follows:

Definition 1.3.1 (Normal Form Game) A game in normal form is denoted by
{

K, S, {uk}∀k∈K

}

and is composed of three elements

• a set of players: K = {1, . . . , K};

• a set of strategy profiles: S = S1× . . .×SK, where Sk is the strategy set of the kth player;
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• a set of utility functions: The kth player’s utility function is uk : S → R+ and is denoted

by uk(sk, s−k) where sk ∈ Sk and s−k = (s1, . . . , sk−1, sk+1, . . . , sK) ∈ S1 × . . . × Sk−1 ×
Sk+1 × . . . SK.

The set of players is a finite set K ⊂ N of which each element represents a player.

The strategy set Sk contains the set of actions player k might take in the game. The utility

function uk(sk, s−k) allows a player to evaluate the convenience of its strategy sk with respect

to the other players’ strategies s−k.

Dynamic spectrum access can be modeled as a game (Sec. 1.4.1), when each transmitter

is a player, the choice of its transmitting parameters is its strategy, and its utility function

is described either in terms of its individual or network quality of service (QoS) parameters.

The choice of a utility function leads to two different kind of games: non-cooperative and

cooperative games.

1.3.2 Non-Cooperative and Cooperative Games

In a non-cooperative game, each player is selfish and unconcerned about all the other players’

performance. Each terminal chooses its strategy to optimize its own performance metric

under the assumption that all players are rational and adopt the same selfish behavior [24].

Thus, each player’s utility function is defined in terms of local QoS targets (e.g., individual

transmission rate). In a cooperative approach, each player aims at maximizing a common

benefit for the set of players assuming that all the other players have adopted the same

cooperative behavior. A common benefit could be interpreted for instance, as the sum of

individual benefits (social welfare problem).

Often, if the performance metric (utility function) is well chosen, non-cooperative games

might be played by each player using only local information (e.g., channel gains and power

constraints regarding only a given player). However, cooperative games often require in-

formation regarding all the players’ local information. Hence, cooperative games are often

used either when there exists a central controller (e.g., a base station) which has complete

information about all the players or when communications among all the players is possible
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(e.g., common signaling is available and affordable) [32, 33]. In the next sections, we study

some of the features of cooperative and non-cooperative games required for our discussions

on DSA in Sec. 1.4 and Sec. 1.5.

1.3.3 The Nash Equilibrium Concept

An important concept in non-cooperative game theory is the Nash equilibrium (NE) [54, 53].

An NE corresponds to a profile of strategies s∗ = (s∗1, . . . , s
∗
K , ) for which each player’s

strategy s∗k, ∀k ∈ K is the optimal response to all the other players’ strategies s∗
−k.

Definition 1.3.2 (Nash Equilibrium) In the game
{

K, S, (uk)∀k∈K

}

, a strategy profile

s∗ = (s∗1, . . . , s
∗
K) ∈ S is an NE if it satisfies,

∀k ∈ K and ∀sk ∈ Sk, uk

(

s∗k, s
∗
−k

)

> uk

(

sk, s
∗
−k

)

. (1.5)

That is, at the NE, any unilateral deviation from the strategy profile s∗ of player k,

∀k ∈ K will not increase its utility function uk. Hence, at the NE there does not exist any

motivation for a player to deviate from the NE strategy profile [54, 53, 17]. As players are

selfish and decide by themselves their strategy, one question arises: does an NE lead to an

efficient game outcome?

1.3.4 Optimality Measures

The NE outcome is a stable solution to unilaterally deviations, however it might not be

optimal [17, 31]. A formal measure of any game outcome’s optimality is the Pareto optimality.

A Pareto optimal strategy profile can be described as follows:

Definition 1.3.3 (Pareto Optimality) In the game
{

K, S, {uk}∀k∈K

}

, let s = (s1, . . . , sK)
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and s′
i = (s′1, . . . , s

′
K) be two different strategy profiles in S. Then, if

∀k ∈ K uk (sk, s−k) > uk

(

s′k, s
′
−k

)

, (1.6)

with strict inequality for at least one player, the strategy profile s is Pareto-superior to the

strategy profile s′
i. If there exists no strategy that is Pareto superior to si, then si is Pareto

optimal.

Often, the NE strategy profile is not Pareto optimal and the loss of performance observed

in a non-cooperative game due to the lack of cooperation is a common optimality measure

called the price of anarchy (PoA) [37].

Definition 1.3.4 (Price of Anarchy) Let the triplet
{

K, S, {uk}∀k∈K

}

be a non-cooperative

game and let s∗ = (s∗1, . . . , s
∗
K) be the NE strategy profile which minimizes (if several NEs)

K
∑

k=1

uk

(

s∗k, s
∗
−k

)

. Then, the ratio

PoA =

max
s∈S

K
∑

k=1

uk (sk, s−k)

K
∑

k=1

uk

(

s∗k, s
∗
−k

)

(1.7)

is the price of anarchy (PoA) of the game
{

K, S, {uk}∀k∈K

}

.

1.4 Open Spectrum Access Games

In this section we study the DSA problem following the OSA model described in Sec. 1.1. As

stated before, the OSA scenario is typical of non licensed bands where there exists neither

common signaling due to the use of different communications standards (Wi-Fi, Zigbee,

etc), nor uniform QoS requirements, due to the different applications (voice, video, data,

etc.) radio devices are used for. We present a simple game to model such interactions.
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Afterwards, we present existing results using this model, namely existence of NE points and

its optimality analysis.

1.4.1 Formulation of the Game

We model the interaction between K radio devices in the OSA model sharing N orthogonal

channels as a strategic game. We study the different variants of such a game considering

the topology of the network (MAC or IC), as well as the goals of each player (cooperative

or non-cooperative). This interaction can be defined as follows,

Definition 1.4.1 (OSA Game in Normal Form) In normal form, the OSA game is de-

noted by
{

K, S, {uk}∀k∈K

}

, where each of the elements of K = {1, . . . , K}, represents one

of the K transmitters. The strategy set is S = S1 × . . . × SN , where Si is the strategy set of

player i:

Si =

{

pi =
(

p1
i , . . . , p

N
i

)

: ∀n ∈ {1, . . . , N} , pn
i > 0 and

N
∑

n=1

pn
i 6 pmax

}

. (1.8)

The utility function for the ith player is ui(pi,p−i) and it is defined differently depending

on the topology of the network (e.g., MAC or IC) and the approach (cooperative or non-

cooperative) adopted by the players.

Later, we refine this definition by specifying the utility function for each particular case

of study (MAC/IC and cooperative/non-cooperative).

The Choice of the Utility Function

In the current literature, the utility functions are often defined as a function of either the

achieved data rate or as the ratio between the successfully transmitted bits per second

(goodput) and the total transmit power. In our discussion we call the former case rate-

efficient OSA and the latter energy-efficient OSA.
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The utility functions in the rate-efficient OSA game following a non-cooperative approach

can be defined as

∀k ∈ K, uk(p,h) =
N

∑

n=1

log (1 + γn
k ) . (1.9)

which corresponds to the sum data rate achieved by player k over all its available channels.

Here, p is a NK-dimensional vector obtained by concatenating the vectors pi ∀i ∈ K. The

vector h is defined differently in the MAC and IC games. In the MAC game it is a NK-

dimensional vector obtained by concatenating K N -dimensional vectors hi ∀i ∈ K. In the

IC game, it corresponds to a NK2-dimensional vector obtained by concatenating the K2

N -dimensional vectors hi,j ∀(i, j) ∈ K
2. The SINR γn

i is either the expression (1.2) for the

MAC case or expression (1.4) for the IC case.

The utility function in the energy-efficient OSA games is defined as

uk(p,h) =

N
∑

n=1

Rn
kf(γn

k )

N
∑

n=1

pn
k

(1.10)

The data rate Rn
k is fixed by the particular modulation-coding scheme used by transmitter

k on channel n. In the sequel, we assume that all transmitters are subject to the same rate

R over all the channels. The function f(γn
i ) : R+ → [0, 1], known in the literature as the

efficiency function, is assumed to be sigmoidal function that approximates the fraction of

successfully transmitted bits per frame given the SINR γn
i over the channel n. A typical

approximation of the f(.) function is

f(γ) = (1 − eγ)M , (1.11)

where γ represents a given SINR and M is the framelength. The SINR γn
i in (Eq. 1.10)

might be either expression (1.2) for the MAC case or expression (1.4) for the IC case. Since

the rates Rn
k are constants and might be the same for all the transmitters, we ignore them
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and consider the utility function (Eq. 1.10) as the ratio

N
∑

n=1

f(γn
k )

N
∑

n=1

pn
k

in the sequel.

The utility function defined in (Eq. 1.10) is measured in bits/s per Joule. It describes

how many bits can be successfully transmitted per Joule drained from the battery. This is

why the model is known as an energy-efficient model. Extensive discussions on this utility

function are presented in [15].

In the cooperative game, more specifically in either the MAC or IC cooperative game, and

in either the rate-efficient or energy-efficient case, the cooperative utility function is defined

as

U(p,h) =
K

∑

k=1

uk(p,h), (1.12)

where uk(p,h) is the utility function of the player k in the non-cooperative game.

In the following sections we study the current results in OSA games using the general

OSA game described in Def. 1.4.1 with the utility functions (Eq. 1.10) and (Eq. 1.9). Other

utility functions are also studied in later sections.

1.4.2 Single Stage Games

In the current literature the OSA problem has been analyzed considering the game defined

in 1.4.1 for both MAC and IC channel. For the energy-efficient utility function, Meshkati

[15, 48] has extensively studied the MAC channel. The IC case has been investigated by

Etkin [35, 36] in the case of unlicensed bands inspired by previous results from Yu [50, 51]

and Chung [52] that discuss such games considering the rate-efficient utility function.
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MAC Single Stage Games

Consider the definition of the OSA game (Def. 1.4.1) with a utility function defined by (Eq.

1.10) for the MAC case. A special case of this utility is the single carrier CDMA scenario,

where N = 1. For such particular case, the utility function reduces to

∀k ∈ K, ui(pi,p−i) =
Rif(γi)

pi

. (1.13)

This utility function exhibits several properties which are carefully studied by Rodriguez in

[49]. Based on such study, it is known that an NE is observed if all the transmitters achieve

a SINR as close as possible to an optimal value denoted γ∗. Such optimal SINR is the unique

solution to the equation

γ∗f ′(γ∗) − f(γ∗) = 0, (1.14)

which corresponds to the unique maximum of the function f(.) (Eq. 1.13).

If all the players attempt to achieve the same SINR γ∗. The optimal power value is:

p∗i =
σ2

|hi|2
γ∗

1 − α(K − 1)γ∗
, (1.15)

where α is the inverse of the spreading length S, α = 1
S

in CDMA. For all i, if the transmit

power p∗i required to achieve γ∗ is higher than pmax, then transmitting at p∗i = pmax is also a

Nash Equilibrium. Thus, for the CDMA case (N = 1) the existence and uniqueness of the

NE is always ensured [48].

When other MA technique or multi-carrier CDMA is used (N > 1), even though the NE

always exists, it is not always unique [15, 48]. First, we use the result obtained by Meshkati

et al. [15] which states that

∀i ∈ K,
f (γ∗)
N

∑

n=1

pn
i

6
f (γ∗)

pL∗
i

, (1.16)
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where, L = arg min
n=1,...N

{pn∗
i } and pn∗

i is obtained with

pn∗
i =

1

|hn
i |2

(

γ∗σ2

1 − αΘ(n)γ∗

)

, (1.17)

where, Θ(n) represents the number of players simultaneously transmitting over channel n.

Again, in the case where pL∗
i > pmax, an NE is achieved by transmitting at pL∗

i = pmax.

The important remark here is that, at the NE each player uses only one of its available

channels [15]. Nonetheless, for certain conditions over the channels gains, the NE is not

always unique. To shed a light on the existence and uniqueness of the NE we consider the

following example.

Example 1.4.1 (Two-Player-Two-Channel MAC Game) Consider the particular case

of a 2-carrier MAC (N = 2) with only two active transmitters (K = 2). According to the

discussion above, the optimal OSA strategy for each player is to transmit only over the sub-

carrier which requires the lowest transmit power level. In this respect, we can model this

interaction as two players aiming at transmitting at the minimum power level required to

achieve a SINR γ∗ on any of the channels. Here, their strategy is transformed into the

choice to transmit over channel 1 (C1) or 2 (C2). Considering this new definition of the

game, four particular scenarios might arise. Scenario (1) and (4): both users transmit over

the first and second channel, respectively. Scenario (2): the player 1 transmits over the first

channel and the player 2 transmits over the second channel. For the scenario (3) the con-

verse applies. For the ease of presentation, we consider single user decoding (SUD) at the

receiver.

Under the assumption that each player only decodes its own signal and treats the other

player signal as noise, we calculate the required transmit power to achieve the optimal SINR

γ∗ depending to the channel each player decides to transmit on. In Table 1.1 we present the

possible transmit power levels in this game.

Based on the power levels shown in Tab. 1.1, we identify the best responses each of

the players might take with respect to the other player’s responses. Thus, an NE might be

observed on any of the four scenarios depending on the channel gains, e.g.,
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C1 C2

C1
p1,1 =

σ2γ∗

|h11|2(1−γ∗)
p1,2 = 0

p2,1 =
σ2γ∗

|h21|2(1−γ∗)
p2,2 = 0

p1,1 = 0 p1,2 =
σ2γ∗

|h12|2

p2,1 =
σ2γ∗

|h21|2
p2,2 = 0

C2
p1,1 =

σ2γ∗

|h11|2
p1,2 = 0

p2,1 = 0 p2,2 =
σ2γ∗

|h22|2

p1,1 = 0 p1,2 =
σ2γ∗

|h12|2(1−γ∗)

p2,1 = 0 p2,2 =
σ2γ∗

|h22|2(1−γ∗)

Table 1.1: Transmit Power levels at each possible equilibrium point for the two-player-two-
carrier game with single user decoding (SUD).

• Equilibrium 1: (C1, C1)

|h12|2

|h11|2
< 1 − γ∗ and |h22|2

|h21|2
< 1 − γ∗; (1.18)

• Equilibrium 2: (C1, C2)

|h12|2

|h11|2
< 1

1−γ∗
and |h22|2

|h21|2
> 1 − γ∗; (1.19)

• Equilibrium 3: (C2, C1)

|h12|2

|h11|2
> 1 − γ∗ and |h22|2

|h21|2
< 1

1−γ∗
; (1.20)

• Equilibrium 4: (C2, C2)

|h12|2

|h11|2
> 1

1−γ∗
and |h22|2

|h21|2
> 1

1−γ∗
. (1.21)

In Fig. 1.1 we plot such conditions and the regions where the different NE are observed.

Therein, it is evident that the existence of the NE is always ensured. Nonetheless, it might

not be unique. Indeed, in the region where channel gains simultaneously satisfy 1 − γ∗ 6

|h12|2

|h11|2
6

1
1−γ∗

and 1 − γ∗ 6
|h22|2

|h21|2
6

1
1−γ∗

the Nash equilibrium is not unique. In such region,

both scenarios 3 and 2 are Nash equilibria.

Regarding this example (Eg. 1.4.2), an algorithm for achieving an NE was presented in

[15]. However, such algorithm was unable to always converge to at least one NE, even though

the existence of at least one NE is always ensured. A unique NE is observed if the receiver

implements interference cancelation assuming that the same decoding order is adopted on all
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|h12|2

|h11|2

|h22|2

|h21|2
1 − γ∗

1
1−γ∗

1

1 − γ∗

1
1−γ∗

1

3
(C2, C1)

4
(C2, C2)

1
(C1, C1)

2
(C1, C2)

Figure 1.1: Regions of the possible Nash equilibria for the two-players two-carriers game
with single user detection (SUD).

the available channels. Nonetheless, this new game requires the knowledge of the decoding

order of all the players, which is necessarily a demanding task due to the required additional

signalling.

IC Single Stage Games

In a cooperative context, if the utility function is the sum data rate of all the players as

suggested in [35], Pareto optimal strategies coincide with the border of the capacity region.

Unfortunately, the capacity region for the IC is still undetermined and is a subject of intensive

research [39]. For simple cases, such as the high interference regime, i.e.,

∀n ∈ {1, . . . , N} and ∀(i, j) ∈ K
2, |hn

i,j|2|hn
j,i|2 > |hn

i,i|2|hn
j,j|2 (1.22)

it is known that Pareto optimal sum data rates are achieved by using orthogonal channels,

i.e., < pi,pj >= 0, ∀(i, j) ∈ K
2. For instance, such optimal power profiles are obtained with

frequency division multiplexing (FDM). This result is due to the fact that the condition in

expression (1.22) leads to a concave optimization problem whose solution is easy to identify.

If the high interference regime is not met (Eq. 1.22) then the Pareto optimal strategies

require more complex calculations [35].
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In the non-cooperative context, the utility functions correspond to the individual data

rate achieved by each player over all its channels (Eq. 1.9). In this case, due to the selfish

behavior of each player, we are interested on NE points. In [35], it has been shown that

uniform power spreading among all the channels corresponds to an NE point. We denote

such optimal strategy profile as p∗
k, for the player k. Thus,

∀k ∈ K, p∗
k =

pmax

N
1N (1.23)

where 1N is a N -dimensional vector whose entries are all ones. This result comes from the

fact that an optimal response for a given player given the strategies of all the other players

is to waterfill [41] over the noise plus interference observed on its channels. This interaction

leads to stable point which corresponds to spreading the total transmit power uniformly.

However, the uniqueness of such NE point is not ensured. In [35] a sufficient condition for

the uniqueness of such equilibrium is provided,

∀n ∈ {1, . . . , N} ,

K
∑

j=1

|hn
ji|2

|hn
ii|2

6 1. (1.24)

This result comes from the Karush-Kuhn-Tucker conditions of the optimization problem of

the set of data rates. Less restrictive sufficient conditions for the uniqueness of the NE are

provided in [41].

1.4.3 Repeated Games

When the interaction between the decision makers is modeled as a strategic game, as dis-

cussed in Sec. 1.3.1, it is assumed that players make their decisions simultaneously and once

during the whole game. In DSA, this approach is suited to one of the following situations:

1. networks with low mobility and fixed topology; 2. study of a network over a short period

of time; 3. the users’ decisions over time are taken independently e.g., if the users’s utility is

chosen to be its instantaneous data rate or energy efficiency (over a block). However, radio

devices interact for long periods in a constantly changing environment. To take into account

such practical features, we can consider a sequence of strategic games related each other in
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time. This model is known in game theory as repeated games.

A repeated game is a special case of dynamic game [55]. It can be seen as a strategic

game which is played consecutively a finite or infinite number of times. These games are

respectively referred to as infinitely repeated and finite horizon repeated games [17]. At each

time or stage, the same game is played. In this Section, we focus on infinitely repeated

games. For such case, the utility for each player is chosen to be a weighted sum of its own

instantaneous utility (e.g., Eq. (1.10) or (Eq. 1.9)) at stage m, uk(m) i.e.,

rk = (1 − δ)
∞

∑

m=0

δmuk(m) (1.25)

where δ is a normalization factor such that 0 < δ 6 1, and rk = 1 if uk = 1. The factor δ

defines if the player is more interested either on the utility obtained at the initial stages of

the game or the utility obtained in later stages.

At the end of each stage all the players observe the outcome of the game. For a transmitter

to be able to directly observe the actions of the other transmitters, additional assumptions

have to be made. For example, in a two-player game, if player 1 wants to evaluate the trans-

mit power of player 2 from the signal received from the first player, some source separation

algorithm and sufficiently accurate path loss model need to be assumed. In what follows, we

assume that players can observe each other player’s actions.

The OSA non-cooperative game described in Sec. 1.4.1 is modeled by an infinitely re-

peated game considering the utility function rk described in Eq. 1.25 where each uk(m),

∀k ∈ K and ∀m ∈ N corresponds to the individual data rate as defined in Eq. 1.9. In such

a game, at each stage the same analysis presented in Sec. 1.4.2 applies. To extend such

analysis to a repeated game, we resort the following definition.

Definition 1.4.2 (Perfect Sub-Game Nash Equilibrium) A set of strategies

s∗ = (s(t + 1)∗, . . . , s(t + T )∗) ,

with s(t) = (s1(t), . . . , sK(t)) is a perfect sub-game (game from stage t to state t + T ) Nash
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Equilibrium if at every stage t of the sub-game, the strategy s∗(t) is a Nash equilibrium.

In the single stage game discussed in Sec. 1.4.2 for the IC case with utility function (Eq.

1.9) an NE was obtained by uniformly spreading the transmit power among all the available

channels. Then, in the repeated game, uniformly spreading the total power at each stage

forms a perfect sub-game NE ∀m ∈ N [35]. Exploiting the fact that the game is infinitely

repeated, an improvement based on the assumption that if a Pareto optimal strategy p
′

(e.g., transmitting over orthogonal channels in the high interference regime) is achieved due

to an initial coordination of the network, by means of a punishment policy, each transmitter

is encouraged to keep the strategy p
′

k at each iteration m. If a player deviates from the

strategy p
′

, the other players punish him by spreading the power over all the channels. A

punishment will necessarily decrease the utility function of all the active players in the next

stage [35]. Thus, no player is motivated to deviate from the initial agreement.

The strategy of punishments significantly improves the performance obtained with single-

stage repeated games. In the repeated game, radio devices obtain Pareto optimal outcomes

at each stage of the game. Playing a different strategy leads to a punishment which represents

a lower utility function. This punishment policy can be seen as certain coordination between

the players to improve the global performance (cooperative approach). It should be noted

that no additional signaling is required once the players have set up their agreement.

Other application of repeated games to OSA is presented by Wendorf et al. in [25,

27]. Therein, the problem of dynamic frequency selection (DFS), typical from IEEE 802.11

networks is studied. The DFS problem can be defined as in Def. 1.4.1, where the set of

strategies of each player is redefined as

∀i ∈ K, Si = {pmaxe1, . . . , pmaxeN} , (1.26)

where the N -dimensional vector ei, ∀i ∈ K is such that all its entries are zeros except the ith

entry which is a one. In DFS each radio transmits only over a single channel and always at the

maximum power. The analysis in [25, 27] considers only two players under the assumption

that co-existence of both radio devices on the same channel leads to an outage condition due
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to mutual interference. This problem is modeled as a repeated game considering that at the

starting point both players are using the same channel. Hence, a simplification is proposed

and the strategy set for each player is reduced to the actions of either changing its channel

(C) or staying (S) on the same channel. Thus ∀k ∈ K, Sk = {S,C}. The utility function,

which is in reality a cost function (players aim to minimize it), is defined as the sum of the

delay (denoted by v) induced by switching from the current channel to a new one and the

delay (denoted by u) due to the multiple access interference (which increases the probability

of retransmission). In Tab. 1.4.3 the game under investigation is represented in its matrix

form [17, 31]. The first (resp. second) entry of the pair (x, y) corresponds to the cost for

user 1 (resp. 2).

1/2 C S
C (v, v) (v, 0)
S (0, v) (1 + u, 1 + u)

Table 1.2: Game matrix for the DFS game [25]

The authors of [25, 27] do not link the strategies S and C to the channel being used

and the channel to be used. Therefore, players randomly change to another channel. When

the number of channels is large, the probability of overlapping is relatively small. Thus,

the case of two players with two channels is the worse scenario in terms of probability of

overlapping. Assuming a game with two channels and a certain probability (say ρ) that a

user changes its channel, the authors of [25, 27] derived the solution of the game in terms

of such probability. They provide the optimal probability ρ∗ a user should adopt during the

stages of the game. The authors show that ρ∗ corresponds to a unique Nash equilibrium.

The result is compared with a cooperative approach where the utility function is defined as

the sum of the channel acquisition cost (delay) for each player. The comparison shows a

significant loss in performance in terms of delay due to the lack of cooperation. This work

has been extended to the case of several players in [26].

This work is important in the sense that it does not consider a set of actions as the

strategy of each player. It rather defines the actions and assumes the strategy set as the

probability with which each user will play each action in the repeated game. In game theory,

this strategy definition is known as mixed-strategies [17].
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1.4.4 Bayesian Games

So far, we have considered that each player has complete information about all the other

players, i.e., each player knows all the other players’ utilities. Regarding the DSA problem,

this mean that each radio has perfect CSI and perfectly knows the power limitations of all the

other radio devices. However, this assumption is quite far from the situation encountered in

practice. In the open spectrum access model for example, it is more realistic to assume that

a given radio transmitter only knows its own channel gains, QoS requirements and power

limitations. In this Section, unless otherwise stated, each radio device only knows its own

channel gain, power limitations and QoS requirements. Game theory provides a complete

framework to analyze the interaction between decision makers with incomplete information.

Bayesian Games are either static or dynamic games where at least one player does not know

the utility function of one or more of its opponents. Thus, each user plays the game based

on a probabilistic analysis. Therefore, these games are known as Bayesian games due to the

Bayesian inference required to play.

Following the approach proposed by Harsanyi [42], a Bayesian game could be obtained

by introducing some randomness in a strategic game. Suppose that there exists a set K =

{1, . . . , K} of players with a set of actions Sk, ∀k ∈ K and that each player does not know

the utility function of all the other players. However, each player knows that there exists

a finite set of possible types Ti for each player k ∈ K. The corresponding type for each

player is a random variable which follows a probability distribution known by all the players.

Each type of player has a specific utility function and strategy set, denoted ut and St, ∀t inT,

respectively. Thus, the incomplete information game is transformed in a game where at least

the probability distributions of the unknown parameters (e.g., utility functions and strategy

sets) are known.

Definition 1.4.3 (Bayesian Game) A Bayesian game is completely described by the fol-

lowing set of parameters

• A set of K players, K = {1, . . . , K}.

• A finite set of T types of players T = {t1, . . . , tT}.
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• A probability density function of the different types of players: {f(t) ∈ [0, 1] |∀t ∈ T}.

• A set of T finite sets of strategies: S1, S2, . . . , ST each one for each type of player.

• A set of T utility function uk : T × S → R+, for each type of player.

The DSA problem presented in Sec. 1.2 can be modeled as a Bayesian game. Here, it

could be stated that radio devices do not know the exact channel realizations of all the other

players in the network and therefore, their utility function cannot be determined. Under

a Bayesian formulation of the problem we can assume that players do not know the exact

channel realization but it is known that it belongs to a known probability distribution. Under

these assumptions we can now formulate the OSA problem following the definition Def. 1.4.1

considering that the set of types T corresponds to all the possible probability distributions

which can model the channel realization of each player. For simplicity, we assume that all

the channel gains follow the same distribution fh.

A more realistic model would be to consider different probability distributions for each

player. This is the case for example if some transmitters are in line of sight with their

corresponding receivers (Rice channel distribution) while the other transmitters are linked

with their receivers by Raleigh distributed channels.

The non-cooperative DSA problem in the IC case is studied in [43]. The underlying

assumption is that radio devices do not know any of the parameters to play the game. More

specifically, CSI is not available neither at the transmitter nor the receivers. Nonetheless, it

is assumed that all the channel realizations are drawn from a known probability distribution

fh. The utility function for each player is chosen to be the expected value of the utility

function defined in (1.9),

∀k ∈ K, ûk(pk,p−k) = E
[

uk(pk,p−k)
]

, (1.27)

where, the expectation is taken over the distribution fh.

The authors in [43] analyze the problem from a non-cooperative point of view i.e., the

goal of each user is to selfishly maximize its own utility function. Here, a highly desired
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outcome corresponds to a Nash equilibrium. When it exists, the optimal strategy profile

p∗
k =

{

p1∗
k , . . . , pN∗

k

}

is a solution to the following optimization problem

∀k ∈ K, p∗
k = max

pk

∫ ∞

0

ûk(pk,p−k)fh(h)dh, (1.28)

The NE for this case is the transmit power vectors p∗ = {p∗
1, . . . ,p

∗
N}, where

∀k ∈ K, p∗
k =

pmax

N
1N . (1.29)

Thus, under the assumption of incomplete information, there is a unique NE at which all

the transmitters uniformly spreading all the transmittable power between all the available

channels. In a further step, the authors in [43] keep limited the number of players to K = 2

and additionally restrict set of actions for each player such that in this new formulation,

each player might assign either all the transmittable power to a unique channel or uniformly

spread it over all the N available channels. Therefore, the set Sk is made of N + 1 vectors

such that

∀k ∈ K, Sk = {pmaxe1, . . . , pmaxeN , pmax1N} . (1.30)

Moreover, it is assumed that the ith player perfectly knows the set of channels hi =

(hi,i, h−i,i), i.e., its own channel and its interfering channels. As discussed before, the NE

solution corresponds to the solution of the optimization problem,

∀k ∈ K, pk = arg max
pk

E
[

uk(pk,p−k)|hk

]

, (1.31)

where the expectation is taken over the unknown channels hj = (hj,j, hi,j), for all j 6= i.

The authors showed again that although each player have more information (its own

channel hi,i and its interfering channel h−i,i) the NE is again obtained by uniformly spreading

the total power over all the available channels. Moreover, the corresponding NE is not Pareto

optimal.
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1.4.5 Coalitional Games

In economics for instance, rational players (e.g., companies or manufacturers) tend to create

coalitions to maximize their individual or common benefits. This kind of games is called

coalitional games [17, 31]. In this scenario, a set of actions Sc is associated to each of the C

coalitions or groups Kc, ∀c ∈ {1, . . . , C}. The set of actions of the kth player, ∀k ∈ Kc is then

Sc. Each coalition obtains a benefit called value, denoted vc for the cth coalition, as a result

of the actions of all the players k ∈ Kc. The total benefit of the coalition is shared between

all the members of the coalition. Each coalition can have a different policy uc (Kc, vc) for

sharing the common benefit. Hence, the goal of each player k, ∀k ∈ K is to choose the best

coalition to join. In fact, rational players will join the coalition where the highest individual

benefit is obtained.

Definition 1.4.4 (Coalitional Game) A coalitional game is completely described by the

following parameters:

• A finite set of K players, K = {1, . . . , K}.

• A finite set of C coalitions C = {1, . . . , C} such that ∀k ∈ C, Kk ⊆ K and ∀i 6= j,

Ki ∩ Kj = {}.

• C finite sets of actions S1, . . . , SC, with S = S1 × . . . × SC.

• A finite set of C values, {vc : K × S → R : ∀c ∈ C}.

• A finite set of C policies, uc(vc), ∀c ∈ C.

A stable outcome or equilibrium of coalitional games consists of a distribution of the

players among the different coalitions where no player is interested in choosing another

coalition. A common equilibrium is called the grand coalition. Here, there is only one

coalition and all the players belong to it. Thus, none of the players can obtain a higher benefit

by leaving the grand coalition. Coalitional games are of high importance in the DSA problem.

In the OSA model for example, terminals of the same physical layer technology i.e., which can

“understand” each other, can ally in order to improve its individual or common performance.
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Similarly, radio devices with similar power constraints or even QoS requirements might be

interested in forming/joining a coalition. Nonetheless, this assumption requires radio devices

to coordinate themselves in order to establish the available set of actions for a possible

coalition. Often, coordination requires signaling among the terminals, which is not always

practically appealing.

In the literature, the DSA problem has been modeled as a coalitional game in [21, 22, 23].

The idea of a coalition in the DSA problem for a unique channel N = 1, and a finite number

of radio devices, is that receivers which belong to the same coalition jointly decode their

received signals and perform interference cancelation [38]. Indeed, all the other signals from

the transmitter belonging to other coalitions are treated as an AWGN. This configuration

corresponds to a set of single input multiple output - multiple access channels (SIMO-MAC).

Similarly, transmitters can also form coalitions, which will lead us to virtual MISO systems.

If both transmitters and receivers form coalitions the network is equivalent to a set of virtual

MIMO channels.

The value vc, ∀c ∈ {1, . . . , C} in both cases, transmitter or receiver cooperation, is then

chosen as the sum of individual data rates Rk achieved by all the players k ∈ Kc, i.e.,

vk =
∑

i∈Kk

Ri. (1.32)

Depending on its achieved individual data rate Rk, each player k decides which coalition to

joint. For instance, in the receiver cooperation case, depending on the coalition a receiver

belongs to, it will decode a different set of interferers. The authors in [21] showed that

the grand coalition maximizes the spectrum utilization. This is equivalent to the fact that

terminals should jointly decode all the surrounding terminals’ signals [38].

1.5 Hierarchical Spectrum Access Games

The hierarchical spectrum access model considers two different approaches, the underlaying

and the overlaying approaches [3, 4]. On the one hand the opportunistic devices have to
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meet a certain power constraint in order to keep the interference level they generate on

the primary systems always below their noise floor. This is the case of ultra wide band or

interference alignment systems for example [4, 44, 45]. Here, the opportunistic and primary

transmitters can simultaneously transmit without generating harmful interference on the

primary receivers.

On the other hand, the overlaying approach which targets the spectral white spaces i.e.,

spectrum access opportunities, does not impose any limit on the transmit power. It only

requires opportunistic radio devices to identify radio resources left unused by the primary

network and exploit them subject to the constraint that it can be required by the primary

system at any time. In this approach, the opportunistic and primary players do not transmit

simultaneously. If the current power constraints and the available channels are perfectly

identified, in both the overlaying and underlaying models, the influence on the primary

systems can be neglected and the problem can be modeled as in Sec. 1.2. Hence, all

the game theoretical machinery we have developed so far directly applies to this particular

dynamic spectrum access scheme.

A special case of hierarchical spectrum access arises when interaction between the primary

system and the opportunistic devices is allowed. Here, any action of the primary devices

affects the benefit obtained by the opportunistic radio devices. For example, a primary

system might offer a set of channels to the opportunistic terminals in exchange of cooperation

in the form of distributed space-time coding (DSTC) [16]. This kind of interactions cannot

be modeled with the tools presented above. Here, there are two different types of players

(primary and secondary) whose priority is different when they access the radio resources. The

framework provided by game theory to study this interaction is called Stackelberg games.

1.5.1 Stackelberg Games

Here we investigate situations where there is a hierarchy between players. A useful case of

this kind of games are Stackelberg games, which were initially introduced by Stackelberg in

1934 [17]. In this game there is an implicit concept of hierarchy upon the set of players.
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Such hierarchy naturally occurs when users are playing sequentially. For example, in a 2-

level Stackelberg game, the game leader moves first and the other players follow and play

simultaneously. The game leader perfectly knows the set of strategies and the utilities of

the followers. Similarly, it is guaranteed that the followers can observe the actions of their

leader(s).

Definition 1.5.1 (Stackelberg Games) A Stackelberg game is a two-stage game at which

one player (leader) moves at the first stage and all the other players (followers) react simul-

taneously at the second stage.

A Stackelberg game can be easily solved through the concept of sub-game perfect Nash

equilibrium. In the first stage the leader, which perfectly knows all the followers set of

actions and utility functions, chooses the action that maximizes its benefit considering that

each follower will react with the action which maximizes its own benefit as well. Thus, the

game leader analyzes all the possible outcomes and picks up the action which maximizes its

benefit considering the optimal moves for each player. In the recent literature, an interesting

application of Stackelberg games in dynamic spectrum access was presented by Simeone et

al.. The problem is modeled as follows. There exists a unidirectional primary link from

transmitter TxP to receiver RxP and an ad hoc network with a set I of K point-to-point

links as described in Sec. 1.2. The primary system divides its transmission (L bit durations)

into two parts of αL bit durations and (1 − α)L bit durations, with 0 6 α 6 1. The first

(1 − α)L bits are dedicated to a direct transmission from TxP to RxP . The second αL bits

are again divided in two. One part βαL,with 0 6 β 6 1, is dedicated to send information

from TxP to RxP using the ad hoc network as a mean to perform distributed space time

coding (DSTC). The remaining α(1 − β)L bits are then granted to the ad hoc network to

transmit its own data. The performance of the ad hoc network follows the one described in

Sec. 1.2. The aim of the primary link is described depending on its available information.

For the case where instantaneous CSI is available i.e., the primary system perfectly knows all

the channel gains, its utility function, uleader, is described in terms of the achieved data rate.

A complete discussion is presented in [16]. If only the statistics of the channel realizations

are available the utility function is described in terms of the outage probability. In both
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cases, the goal of the leader is to maximize its own utility by deciding on the amount of bits

to be coded using DSTC, the amount of bits to grant to the ad hoc network, i.e., α and β,

and the most convenient set of links to use in the DSTC, denoted Ks ⊆ K. Hence, the set

of actions of the leader is

Sleader = {α, β,Ks : 0 6 α 6 1, 0 6 β 6 1,Ks ⊆ K} . (1.33)

The primary network is considered to be the leader of the game and decides the optimal pa-

rameters α∗, β∗ and K
∗
s at the first instant of the game. The optimal values then, correspond

to the solution to

max
α,β,Ks

uleader(α, β,Ks) s.t. Ks ⊆ K, 0 6 α, β 6 1, (1.34)

Later, the ad hoc network reacts by exploiting the α(1− β)L bit periods it has to transmit.

Each transmitter in the ad hoc network plays the game described in Sec. 1.2. The primary

player always obtains the best outcome from the game since it is privileged to play at the

first moment. The followers, which follow the configuration discussed in Sec. 1.2 obtain a

stable non-Pareto NE outcome. This NE has been already studied in Sec. 1.4.

Other Stackelberg formulation is presented in [56, 57] for the case of MAC with N = 1

and the energy-efficient utility function (Eq. 1.10). Therein, the interactions among the

transmitters are modeled as in Def. 1.3.1 and a certain degree of hierarchy is introduced in

two different ways: 1. Assuming single-user decoding at the receiver, one player (e.g., one

primary transmitter) plays first whereas the other players (e.g., secondary transmitters) are

assumed to react to the leader’s decisions; 2. Assuming neither leader nor followers among

the players, hierarchy is introduced by assuming successive interference cancelation at the

receiver. It is shown that these two hierarchical models not only improve the individual

energy efficiency of all the users but can also be a way of ensuring the existence of an

equilibrium and reaching a desired trade-off between the global network performance at the

equilibrium and the requested amount of signaling.

In the first case, the authors consider without loss of generality (but possibly with loss

of optimality) that user i is the leader of the game (and plays first). Each follower j 6=
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i therefore plays a non-cooperative game with the other followers, given what the leader

plays. Interestingly, it is possible to show that, under realistic conditions, there is a unique

equilibrium in this hierarchical game, which is called a Stackelberg Equilibrium (SE). To

define an SE, let U ∗(pi) be the set of NE for the group of followers when the leader plays

strategy pi. In other words, the leader maximizes its utility function which depends on the

NE u∗ ∈ U ∗(pi) of the followers. By denoting (pSE
i ,pSE

−i ) the power profile at the SE, this

definition translates mathematically by

pSE
i = arg max

pi

ui

(

pSE
1 (pi), . . . , p

SE
i−1(pi), pi, p

SE
i+1(pi), . . . , p

SE
K (pi)

)

, (1.35)

where pSE
j (pi), j 6= i, is the power at the NE of the follower j (which depends on pi, the

leader’s action).

Under this formulation the existence and uniqueness of the SE is always ensured [57].

When player i is assumed to be the leader, its optimal power allocation is

pSE
i =

σ2

|hi|2
γ∗(1 + β∗)

1 − (K − 1)γ∗β∗ − (K − 2)β∗
(1.36)

and for each follower j 6= i,

pSE
j =

σ2

|hj|2
β∗(1 + γ∗)

1 − (K − 1)γ∗β∗ − (K − 2)β∗
, (1.37)

if the following (sufficient) conditions hold: f ′′(0)
f ′(0)

≥ 2 (K−1)β∗

1−(K−2)β∗
and

φ(x) = x

[

1 − (K − 1)β∗

1 − (K − 2)β∗
x

]

f ′(x) − f(x)

has a single stationary point in ]0, γ∗[, where γ∗ is the positive solution of the equation

φ(x) = 0 and β∗ is the solution to (Eq. 1.14).

In the second case, the receiver is assumed to implement successive interference cance-

lation (SIC). Under the assumption that players are perfectly decoded, the optimal power
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allocation at the NE is

∀i ∈ {1, ..., K}, pSIC
i =

σ2

|hi|2
β∗(1 + β∗)i−1 (1.38)

where player denoted by i is decoded with rank K−i+1 in the successive decoding procedure

at the receiver. In [57], it is shown that this NE always exists and is unique.

In order to compare both approaches, SUD and SIC, assume a random CDMA system

with Ri = 100 kbps for all i ∈ {1, ..., K}. An efficiency-function f(x) = (1 − e−x)M with

M ∈ {2, 5, 10, 20, 50, 100}. The corresponding values for γ∗(M) are respectively 1.25, 2.66,

3.61, 4.51, 5.65, 6.47. Fig. 1.2 represents the quantity wSIC

wSUD − 1 in percentage as a function

of the spectral efficiency α = K
S

for SNR[dB] = 6 and random decoding order. Here, wSIC

and wSUD represent the obtained utility function in the game when SIC is implemented and

the game when leader and followers exist, respectively. The asymptotes αmax = 1
β∗(M)

+ 1
S

are indicated by (red) dotted lines and S is the spreading length. The gains are particularly

significant when the system load is relatively high i.e., when there is a significant amount of

interference to be removed after despreading. In fact, when K−1
S

γ∗ → 1+ the non-cooperative

game becomes dramatically inefficient since the transmit powers at the equilibrium diverge;

here, once again we recall that we assume a non-trivial NE at which the users do not exploit

all their power. Otherwise, a user who would saturate his power constraint would maximize

his utility by transmitting at Pmax
i .

1.6 Concluding Remarks

We have seen that game theory is a natural paradigm to study a network where terminals

are competing with each other for a common resource namely the spectrum. We have essen-

tially distinguished between two kind of games: 1. The open spectrum access game where

all the transmitter-receiver pairs are equal; 2. The hierarchical spectrum access game where

some transmitters are leaders of the game (primary transmitters) or follower (secondary

transmitters). Depending on the context each of these games can be non-cooperative or

cooperative. In the first case, the network is totally decentralized and the terminals self-
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Figure 1.2: Influence of the decoding scheme (SIC/SUD) for different system loads and
packet lengths.

ishly optimize their individual performance criteria, which can lead to an equilibrium of the

network. The existence and uniqueness of a Nash equilibrium is an attractive feature of a

decentralized network since the system owner(s) can predict the performance of the users

and therefore guarantee for example a minimum QoS. In the case of cooperative games, the

global performance of the network becomes the main target. We have presented several ways

of introducing cooperation in a game: repeating the game, forming coalition or by introduc-

ing certain degree of hierarchy. The global network efficiency can be measured in terms of

price of anarchy or by considering Pareto optimality. Another way to measure it when trans-

mission rates are considered for the users’ utilities is the ratio of the network sum-rate at the

equilibrium to that obtained by the equivalent virtual MIMO system. Clearly, the assumed

spectrum sensing technique will play an important role in selecting the way of cooperating.

Also, depending on the a priori information available to the transmitters or/and the used

spectrum sensing technique, the game can be with or without complete information. In this

case we have seen that the Bayesian approach is a possible candidate to deal with this kind

of (practical) situations.

We will conclude this chapter by mentioning a few open issues related to the open spec-

trum access problem. It is a fact that there are more and more devices using unlicensed

bands. Each actor e.g., a telecom operator or an manufacturer generally designs its system

independently of the other actors. But this assumption is likely to become less and less valid
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as the number of devices operating in these bands grows. The problem of system interfer-

ence naturally appears, which creates interaction between the different transmitter-receiver

pairs. Obviously there is going to be a game between many players (operators, manufac-

turers, etc.) who will have to design their terminals in a smart way to take into account

this interaction. The problem is particularly challenging since networks will be by nature

heterogeneous. Many questions arise. Will the different players continue to deploy their sys-

tems independently or will them try to cooperate to mitigate the interference? What kind

of information can be reasonable to be assumed at a given terminal in a context where the

system owners do not disclose their strategies? Is it possible to classify the different devices

in order to apply a Bayesian approach that is robust to the uncertainty on the environment?

This chapter gathers a few basic elements released in the recent literature on spectrum ac-

cess games to start solving these issues but more and more contributions will be needed to

provide reliable answers.
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