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Mathematical Foundations
of Cognitive Radios

Romain Couillet and Mérouane Debbah

Abstract — Recently, much interest has been directed towards
software defined radios and embedded intelligence in telecom-
munication devices. However, no fundamental basis for cog-
nitive radios has ever been proposed. In this paper, we intro-
duce a fundamental vision of cognitive radios from a physical
layer viewpoint. Specifically, our motivation in this work is
to embed human-like intelligence in mobile wireless devices,
following the three century-old work on Bayesian probability
theory, the maximum entropy principle and minimal probabil -
ity update. This allows us to partially answer such questions
as “what are the signal detection capabilities of a wirelessde-
vice?”, “when facing a situation in which most parameters are
missing, how to react?” and so on. As an introductory example,
we will present previous works from the same authors follow-
ing the cognitive framework, and especially the multi-antenna
channel modelling and signal sensing.

1. Introduction

In 1948, Claude Shannon introduced a mathematical theory
of communications [1], allowing two to three generations
of research to design increasingly sophisticated telecommu-
nication tools, whose purpose is to constantly increase the
achievable transmission rate over various communication
channels. One of the key conclusions of Shannon was to
show that a linear increase in the transmission bandwidths
is expected to provide linear growth in the channel trans-
mission capacity, while linear transmit power increase only
provide sub-linear capacity growth. As a consequence, the
last decades of research in telecommunications led to a situ-
ation in which the available transmission bandwidth became
dramatically scarce and can only be acquired by service
providers at extraordinarily high prices. Then, in the end of
the nineties, the conclusions of Foschini [2] and Telatar [3]
on their work on multiple antenna (MIMO) systems came
as a salvation: when increasing the number of embedded
antennas in both transmit and receive devices, a potential
linear growth (with the number of antennas) in capacity was
expected. Since the exploitation of the space dimension can
come virtually at a zero cost compared to the exploitation of
the frequency dimension, these stunning results rapidly gen-
erated lots of research work in the early years of the twenty-
first century. However, practical applications of multiplean-
tenna systems took a long time to be put in place, when it
was clearly realized that the exceptional predicted capacity
gain could only come at a very strong signal to noise ratio
(SNR) and for low correlated channels; for instance, line of
sight components in a transmission almost completely anni-
hilates the gain of multiple antenna systems. However, up to

this point in the evolution of wireless devices, the initialre-
sult from Shannon was still applicable to the most advanced
technologies.
After the MIMO delusion, Joseph Mitola [4] realized that
a new virtual dimension could be exploited to increase the
achievable transmission rate: making the radio smarter. The
basic insight of Mitola was to observe that most allocated
bandwidth is not efficiently used in the sense that, most
of the time, large pieces of bandwidth are left unoccupied.
Emabling the wireless devices to sense the frequency spec-
trum in a decentralized manner1 allows for a potentially high
increase ofspectral efficiency, which we define here as the
actual averaged transmission rate over the theoretical capac-
ity. These large-scope ideas from Mitola recently motivated
a wide range of research with common denominator the in-
troduction of intelligence in wireless devices. For instance,
Haykin [5] introduces the concept of interference temper-
ature, which allows to control the level of interference al-
lowed in a network, i.e. if a given user has a rate constraint
largely inferior to the effective channel capacity, the excess
unused rate could be used by another device, as long as this
device does not request more than the available excess rate.
This interference temperature brought the new idea of pri-
mary and secondary users in a wireless network: primary
users are those subscribers who are charged a high price to
communicate with high quality of service, while secondary
users pay a lower price to communicate over opportunistic
excess rates left unused by the primary users, e.g. [29, 30].
However, all these ideas, revolutionary as they may seem,
only scratch the surface of a larger entity that is the cognitive
radio. Indeed, if the cognitive radio is defined, as was sup-
posedly the prior idea of Mitola or even more certainly the
basic view of Haykin2, as a radio in which all entities are ca-
pable of cognition, then the limitations in the capabilities of
these radios is still unknown and not really explored. Con-
crete works on smart devices date back to Shannon’s time as
well. Claude Shannon was already interested in ideas such
as a robot capable of playing chess [6]; he provided an orig-
inal viewpoint of the cognitive abilities of future computers
back in 1953 [7] and even constructed a mind-reading ma-
chine, the circuitry of which is depicted in [8].
In this work, we propose to define a fundamental basis for
cognitive radios on a physical layer viewpoint, which en-
ables human-like intelligence in wireless devices. This work
comes as a rupture compared to previous telecommunication
work, as we will no longer rely on Shannon’s work, but will

1so to limit the needs for control signaling.
2remember that the title of his main contribution on cognitive radios [5]

refers to “brain-empowered” radios
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rather extend it. The reasons why we escape from Shan-
non’s framework will be explained and justified in the fol-
lowing sections. The additional mathematical tools needed
to extend Shannon’s theory of information are the theory
of Bayesian probabilities, the maximum entropy principle
[9] and the minimal cross-entropy principle [13, 14], among
others.
The remainder of this paper unfolds as follows: in Section
2., we present the key philosophical ideas which lead from
Shannon’s classical information theory to Jaynes’ more gen-
eral probability theory. In Section 3., we provide two ex-
amples of direct application of Jaynes’ maximum entropy
principle to the problems of channel modelling and signal
sensing. Then in Section 4., we discuss the present advan-
tages and limitations of cognitive radios, and provide our
conclusions in Section 5..
Notation: In the following, boldface lower-case symbols
represent vectors, capital boldface characters denote matri-
ces (IN is theN×N identity matrix). Xi j denotes the(i, j)
entry of X. The Hermitian transpose is denoted(·)H. The
operators trX and |X| represent the trace and determinant,
respectively. The symbol E[·] denotes expectation. The
operator vec(·) turns a matrixX into a vector of the con-
catenated columns ofX. Finally, the notationPx(y) denotes
the probability density function of the variablex in position
x = y.

2. From Shannon to Jaynes

We will first present a simple example to show the inherent
limitations of Shannon’s theory of information.

2.1. Channel Capacity Revisited

Let us consider the simplest communication scheme, mod-
elled as

y = x+n (1)

for some transmit signalx, additive background noisen and
receive signaly. The Shannon capacityC of such a system
reads

C = sup
px

I(x;y) (2)

with px the probability distribution of the variablex taken in
the set of single-variable probability distributions, andI de-
notes the mutual information [1]. The equality (2) can only
be computed if the distribution ofn is known. In practice,n
is often taken as Gaussian, both for simplicity reasons and
because this is somehowoftenclose to the reality. However,
there is no actual way to predict the distribution of the noise
before transmitting data, and in reality the expression (2)is
impossible to compute. This leads to the conclusion that
all capacity computations are in fact onlyapproximationsof
Equation (2).
Moreover, it is important to observe that what we call noise
is in effect the sum contribution of interfering waves with
different properties. If part of this noise can be analyzed by

the cognitive device3, then the capacity will increase. All
these primary observations lead to realize that the channel
capacity is largely dependent on the prior information avail-
able at the receiver. In particular, two identical receivers,
facing the same channel, may have different actual capaci-
ties depending on the individual channel state information.
Assuming the noise is known to be Gaussian with zero
mean, the receiver is left to estimate the noise variance. In
general, only approximative values of the SNR are available.
Therefore, the channel capacity might be better seen as a
rate vector, with entries indexed by every possible values of
the SNR and taking different degrees of probability. These
degrees of probability differ for each receiver, making the
capacity again information-dependent and user-dependent.
As a matter of fact, what one would call “real capacity”,
that would correspond to the capacity if the receiver knows
exactly the noise variance, does not carry in itself any actual
significance: as recalled by Jaynes [9] pp. 634, the channel
capacity is not an intrinsic value of the channel but an intrin-
sic value of the level of knowledge of the system designer4.

2.2. Limitations of Information Theory

Already in 1963, Leon Brillouin [22] realized the fundamen-
tal limitation of Shannon’s information theory. In his own
words, ‘The methods of [information] theory can be suc-
cessfully applied to all technical problems concerning infor-
mation: coding, telecommunication, mechanical computers,
etc. In all of these problems we are actually processing in-
formation or transmitting it from one place to another, and
the present theory is extremely useful in setting up rules and
stating exact limits for what can and cannot be done. But we
are in no position to investigate the process of thought, and
we cannot, for the moment, introduce into our theory any
element involving the human value of the information. This
elimination of the human element is a very serious limita-
tion, but this is the price we have so far had to pay for being
able to set up this body of scientific knowledge. The restric-
tions that we have introduced enable us to give a quanti-
tative definition of information and to treat information as
a physically measurable quantity. This definition cannot
distinguish between information of great importance and a
piece of news of no great value for the person who receives
it.” - Leon Brillouin, 1963.
Within the realm of cognitive devices, this situation in which
information carries relevance, which depends on whom re-
ceives it, typically arises. Let us go back to the channel
capacity example above. If the receiver is provided with
some additional information concerning the transmission
medium, like the typical channel delay spread, the channel
Doppler spread, the number of reflections, the presence of
buildings in the neighborhood,how much does this affect the
channel capacity is an open issue, which cannot be solved

3there is no reason why a cognitive device would not be able to infer on
what the noise is made of.

4the system designer can be seen as a virtual entity sharing the knowledge
of both transmitter and receiver.
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within Shannon’s framework. And if the receiver experi-
ences a poor decoding rate, what kind of information should
it request to the transmitter in order to increase its perfor-
mance is also an open question, e.g. should the receiver re-
quest more pilot symbols at the risk of a huge waste in spec-
tral efficiency, should the receiver request some determin-
istic information regarding a given parameter of the chan-
nel? All these problems do not have deterministic channel-
dependent answers but depend on the specific knowledge of
the transmitter/receiver pair to which some piece of addi-
tional information might or might not be valuable.
To partially answer those questions, we propose in the fol-
lowing to introduce first the notion ofdegrees of belief,
which turns every deterministic measurable entity, e.g. the
value of the channel capacity, the value of the SNR or the
value of the channel fading, into a random variable with an
assigned probability distribution: this probability distribu-
tion will translate the confidence of the cognitive devices
regarding the estimation of the measurable entity in ques-
tion. Then, we will introduce the notion ofrelevancewhich
enables to estimate the relative importance of information.
Finally, we will discuss our general view of the capabilities
of a cognitive radio.

2.3. The Bayesian Approach

As briefly stated in the previous section, we aim at extending
the classical Shannon’s information theory to enable cogni-
tive devices with the ability ofplausible reasoning. That is,
a cognitive radio should not rely on empirical (often erro-
neous) decisions, but rather should be able to express doubt
and to reason honestly when provided with limited knowl-
edge. A first step in this approach is to turn empirical deci-
sions into degrees of belief.

2.3..1 Degrees of Belief and the Maximum Entropy Prin-
ciple

In the Bayesian philosophy, contrary to the orthodox proba-
bility philosophy, deterministic parameters of a system, e.g.
a weight, a height, the channel delay spread, which a cog-
nitive entity needs to evaluate, must be characterized by the
degrees of belief attached to all possible values for this pa-
rameter. Therefore this gives a clear meaning for instance to
the probability that the height of the Eiffel Tower is 50 m.
As a consequence, assuming a cognitive telecommunication
device is not aware of the intensityσ2 of the background
noise, instead of expressing the achievable transmission rate
as the scalarC = log(1+ σ2), which is therefore irrelevant
to the communication device, it would be more adequate to
consider the “vector”C(x) = log(1+x), x≥ 0, attached to a
degrees of belief function, i.e. a probability density function,
p(x) for each potential noise variancex. Two fundamental
questions arise at this point: (i) how to use the vectorC(x)?,
and (ii) how to computep(x)?
Answering (i) is a matter ofdecision theory, in the sense that
different requirements might come into play to decide on the
actual transmission rate to use: if reliability is needed, one

will decide to transmit at a rate log(1+x) such that
∫ x

0 p(t)dt
is less than a given (small) value, while if performance with
low reliability is sought for, thenx will take a larger value.
This part of the cognitive radio spectrum will not be covered
in this contribution.
Question (ii), on the contrary, is the point of interest in the
present paper. Given the total amount of prior information at
the cognitive device, how to assign degrees of belief in a sys-
tematic way? The answer to this question partially appears
in the work of Shannon [1] but is better explained and devel-
oped by Jaynes [12] thanks to the introduction of the maxi-
mum entropy principle (MaxEnt) [11]. The key idea behind
MaxEnt is to find a density functionp, which fulfills the con-
straints imposed by the prior informationI while introduc-
ing no additional (unwanted) information. In other words,
this density function should maximize the ignorance about
unknown parameters of the cognitive device, while satisfy-
ing the constraints given inI . In Jaynes’ terms, this density
function is maximally non-committal regarding missing in-
formation. This function translating ignorance is proven by
Jaynes and more accurately later by Shore and Johnson [23]
to be the entropy functionH,

H(p) = −
∫

log(p(t))p(t)dt (3)

When the information contained inI is of statistical nature,
such as first or second order statistics, the functionp which
maximizes the entropy while satisfying the constraints inI
is unique and can be computed with Lagrangian multipliers.
An example will be given in Section 3.1..

2.3..2 Relevance

The problem of relevance of information is a second topic
in the establishment of foundations for cognitive radios. If
cognitive devices were to act like human beings, they should
be able to request additional information when they do not
have enough evidence to take decisions. For instance, to ob-
tain a more accurate estimate of the noise varianceσ2 in or-
der to have more confidence on the achievable transmission
rates, an intelligent device could require the transmitterto
stop transmitting so that it can estimateσ2. But this would
be an expensive waste in spectral efficiency, so it could al-
ternatively request deterministic information on a dedicated
channel from the transmitter. How accurate this information
must be is then another problem. To be able to decide on
whatquestionto ask to the transmitter, the cognitive device
needs to be able to judge therelevanceof every possible
question.
This notion of questions, or inquiries, is a philosophical
topic upon which little literature and very few concrete re-
sults exist. In 1978, Cox [26], who is also at the origin of the
immense work from Jaynes on Bayesian probability theory
[10], mathematically defined a question as the set of possi-
ble answers to this question. Therefore, a question will be
relevant if its answers carry valuable information. Assuming
the set of questions is seen as an ordered set, with the largest
questions being the most relevant (since their answers carry
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potentially more cogent information), a cognitive device can
decide which appropriate request to formulate to the trans-
mitter. The work on relevance and questions is however still
in its infancy, but we insist that those are fundamental needs
to the cognitive radio field; for instance, interesting contri-
butions are found in the works of Knuth [27], who uses lat-
tice theory to create partial orders of finite sets of questions,
which is seen as the dual (in the lattice theory terminology)
of the set of answers to those questions.

2.3..3 What is a Cognitive Radio?

In our viewpoint, a cognitive radio must ideally be able to
adapt to its environment, by gathering all cogent informa-
tion about the propagation channel, the transmitted signal
etc. while never producing undesirable empirical informa-
tion. This would therefore relieve the telecommunication
field from all ad-hocmethods, based on empirical decisions
concerning unknown parameters. This does not mean that
a cognitive device is not prone to making errors; however,
these potential errors will never originate from erroneous
system assumptions, but rather from lack of information,
which would generatebroad maximum entropy distribu-
tions5. If more cogent information is provided to a cognitive
device, it will integrate it and increase its decision capabili-
ties. In a way, the more signals a cognitive communication
device is fed with, the more efficient it is; this would mean
for instance that cognitive devices age wisely: the older the
cognitive device, the more efficient.
Regarding for instance signal sensing, the first steps of
which will be detailed in Section 3., we expect a cognitive
device to process the received signals as follows,

1. initialization: integrate all cogent information about
the communication channel, the properties of the sup-
posedly received informative signal etc. and compute
the degrees of belief associated to all relevant vari-
ables.

2. update loop: when the cognitive device is fed with
incoming signals, it shall update its degrees of belief
regarding all the previous variables and provide the
overall probability that the received signal originates
from a coherent data source.

3. decision: using some criterion from decision theory,
e.g. the evidence for the presence/absence of a co-
herent data source is more than a given threshold,
the cognitive device declares whether data originating
from a coherent source have been received.

This protocol does not necessarily provide the most efficient
sensing strategy in specific situations (sometimes it might
provide a quick response, sometimes traditional algorithms

5when little is known on a given parameter, the maximum entropy distri-
bution attached to this parameter will be broad in the sense that no specific
value is preferred to any other, while when more informationis available
on this parameter, the maximum entropy distribution will bevery peaky
around the exact value of the parameter.

might provide faster responses), but it provides the most
honestway to treat the signal sensing problem. It is impor-
tant to note that no signal detection strategy can be proven
superior to any other as long as too much information on the
communication environment is missing. If a given algorithm
could be proven better than the Bayesian strategy, this would
mean this algorithm has an information advantage; honesty
would then require that the Bayesian strategy be aware of
this additional piece of information. The significant advan-
tage of the Bayesian philosophy and the maximum entropy
principle over classical methods is that they do not to take
any empirical guess to solve a problem. Therefore, instead
of being either luckily very good, or unluckily very bad de-
pending on the accuracy of this “guess”, they perform as
best as their prior information allows them to.

Also, a cognitive device ought to be capable of request-
ing information when it faces a situation where it crucially
lacks cogent information; for instance, a cognitive mobile
phone in a low network coverage situation, should be able
to request information (or even help) to the neighboring cell
phones which enjoy better coverage. The interest of this re-
quest would be measured by its relevance. Adding the pos-
sibilities of formulating inquiries might eventually leadto
enabling cognitive devices with the ability ofdiscussing, in-
stead of justtransmittingandreceiving. Bidirectional com-
munications used to be a point of deep interest when it was
realized that Shannon’s theory of communication is in fact
precisely a theory oftransmission, in which past transmit-
ted information is assumed uncorrelated with subsequent
transmitted information. In 1973, Marko proposed a gen-
eralization of Shannon’s information theory framework to
encompass bidirectional communications [24], in the objec-
tive to accurately model the social interactions among ani-
mals and especially human beings. The lead was then fol-
lowed by Massey [25] who extends information theory to
include feedback in the expression of Shannon’s mutual in-
formation.

3. Examples of Application

The most elementary requirement of a cognitive radio lies in
its sensing capabilities. When a waveform is received at the
cognitive device, it must be capable of deciding whether this
waveform originates from a coherent source of information
or if this waveform is pure background noise. When little
is known by the receiver concerning the surrounding envi-
ronment, this problem is very intricate and has led to lots
of differentad-hoctechniques. Our purpose in the follow-
ing is to provide a unique way of deciding on the presence
of a coherent data source given a specific amount of prior
information at the receiver. First, we will discuss channel
modelling, which is a necessary step to properly handle the
Bayesian signal detection method.
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3.1. MaxEnt Channel Modelling

3.1..1 Introduction

Channel modelling is an entire field of research in telecom-
munications, which produces every year lots of new contri-
butions. However, this huge amount of previous work on
channel models leads to the following paradoxical conclu-
sion: for a given total information gathered by a cognitive
device, there exist many different channel models proposed
in the literature. In such a situation, which of those chan-
nel models is the cognitive device supposed to trust? In
reality, the fundamental difference between all those mod-
els lies in the additional hypothesis each of them, explicitly
or implicitly, carries; some models might implicitly suggest
that channels usually have a short delay spread for a given
communication technology, or might suggest that it is very
likely to have a strong line of sight component etc. How-
ever, if the receiver is not aware of that implicit information,
this very information should honestlynot be taken into ac-
count. What we will provide in the following is a systematic
way to model channels, given some cogent informationI ,
which fulfill the constraints imposed byI while being non-
committal regarding unknown parameters. In brief, we will
provide the most elementary models compliant withI , with-
out introducing unwanted hypothesis.

3.1..2 Gaussian i.i.d. Channels

Surprisingly enough, we will realize that most of the clas-
sical channels in the basic literature fall into the maximum
entropy channel modelling methodology. This is the case
of Gaussian i.i.d. channels. Indeed, let us assume that the
informationI known to the cognitive device gathers the fol-
lowing,

1. the transmitter is equipped withnT transmit antennas

2. the receiver is equipped withnR receive antennas

3. the channel carries an energyE.

The transmission model is

y =

√

ρ
nT

Hx +n (4)

wherex ∈ CnT is the transmitted symbol vector,n ∈ CnR

the thermal or interfering noise,ρ the signal to noise ratio
(SNR) andH ∈ CnT×nR the channel we want to model.
In mathematical terms, based on the fact that
∫

dH
nR

∑
i=1

nT

∑
j=1

|hi j |
2PH(H) = nTnRE (Finite energy) (5)

∫

dPH(H) = 1 (PH(H) is a probability distribution) (6)

what distributionPH
6 should the modeler assign to the chan-

nel? The modeler would like to derive the most general

6it is important to note that we are concerned withPH|I whereI represents
the general background knowledge (here the variance) used to formulate the
problem. However, for the sake of readability,PH|I will be denotedPH .

model complying with those constraints, in other words the
one which maximizes our uncertainty while being consistent
with the energy constraint. This statement is mathematically
expressed by the maximization of the following expression
involving Lagrange multipliers with respect toPH

L(PH) = −

∫

dHPH(H)logPH(H)

+ γ
nR

∑
i=1

nT

∑
j=1

[E−

∫

dH|hi j |
2PH(H)]

+ β
[

1−
∫

dHPH(H)

]

(7)

If we deriveL(PH) with respect toPH, we get

dL(PH)

dPH
= −1− logPH(H)− γ

nr

∑
i=1

nt

∑
j=1

|hi j |
2−β = 0 (8)

which yields

PH(H) = e−(β+γ ∑
n
R

i=1 ∑
n
T

j=1|hi j |
2

= e−(β )
nR

∏
i=1

nT

∏
j=1

exp−(γ | hi j |
2)

=
nR

∏
i=1

nT

∏
j=1

Phi j (hi j )

with

Phi j (x) = e
−(γ|x|2+ β+1

nRnT
)

(9)

One of the most important conclusions of the maximum
entropy principle is that, while we have only assumed the
knowledge about the variance, this assumption naturally im-
plies independent entries since the joint probability distribu-
tion PH simplifies into products ofPhi j . Therefore, based
on the previous state of knowledge, the only solution to the
maximization of the entropy is the Gaussian i.i.d. channel.
This does not mean that we have supposed independence of
the channel fades in the model, nor does it mean that real
channels ought to be i.i.d. if those are known to be of en-
ergyE. However, in the generalizedL(PP) expression, there
exists no constraint on the dependence of the channel entries
and this leads to natural independence as an honest guess on
the behaviour of the channel entries. Another surprising re-
sult is that the distribution achieved is Gaussian. Once again,
Gaussianity is not an assumption but a consequence of the
fact that the channel has finite energy.

3.1..3 Other Channel Models

In [16], a more complete survey on MaxEnt channel models
is proposed. We will gather in the following the main results.
If the informationI at the receiver is the same as previously
but the receiver is not aware of the exact value of the chan-
nel energyE but knows that it is contained in the interval
[0,Emax], then

PH(H) =

∫

PH,E(H,E)dE (10)

=

∫

PH|E(H)PE(E)dE (11)

JOURNAL OF TELECOMMUNICATIONS
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If PE is assigned a uniform prior on the set[0,Emax], then we
obtain7

PH(H) =
1

EmaxπnRnT

∫ ∞

1
Emax

unRnT−2e−∑
nR
i=1 ∑

nT
j=1 |hi j |

2udu

(12)
Note that the distribution is invariant to unitary transforma-
tions, is not Gaussian and moreover the entries are not inde-
pendent when the modeler has no knowledge on the amount
of energy carried by the channel. This point is critical and
shows the effect of the lack of information on the exact en-
ergy.
If the channel covariance matrixQ = E(vec(H)vec(H)H)
is known to the receiver, and therefore is part of the
side informationI , then, denotingQ = VΛΛΛVH the spec-
tral decomposition ofQ, with V =

[

v1, ...,vnRnT

]

andΛΛΛ =
diag(λ1, ...,λnRnT

),

PH(H) =
1

∏nRnT

i=1 πλi
exp

{

nRnT

∑
i=1

| vH

i vec(H) |2

λi

}

(13)

3.2. Signal Detection

Now that channel modelling has been investigated, the mul-
tiple antenna signal sensing problem can be completely han-
dled.

3.2..1 Channel State Information

In this problem, the cogent information at the receiver is
divided into known parameters,

S-i) the receiver hasnR antennas.

S-ii) the receiver samples as many asL times the input from
the RF interface.

S-iii) the signal sent by the transmitter has a constant unit
mean power. It is quite important to note that this hy-
pothesis is very weak and should be made more accu-
rate for communications schemes that are known only
to use either QPSK, 16-QAM, 64-QAM modulations
for instance.

S-iv) the MIMO channel has a constant mean power.

We similarly define additional information the receiver may
be aware of

V-i) the transmitter possesses (and uses)nT antennas.

V-ii) the noise varianceσ2 is known.

7the assignment of uniform priors on variables defined on a continuous
space is a very controversial point of the maximum entropy theory, which
is longly discussed in [9]. Another classically used prior,which solves the
problem of invariance to variable change is the so-called Jeffreys’ uninfor-
mative prior [15].

3.2..2 Signal Model

Given a certain amount of sampled signals, the objective of
the signal detection methods is to be able to optimally infer
on the following hypothesis:

• H0. Only background noise is received.

• H1. Informative data added to background noise is
received.

Given hypothesis S-iii), the only information on the trans-
mitted signal (underH1) is its unit variance. The maxi-
mum entropy principle claims that, under this limited state
of knowledge, the transmitted data must be modelled as i.i.d.
Gaussian [9]. The data vector, at timel ∈ {1, . . . ,L}, is

denoteds(l) = (s(l)
1 , . . . ,s(l)

nT
)T ∈ CnT . The data vectors are

stacked into the receive matrixS= [s(1), . . . ,s(L)].
If the noise levelσ2 is known, then either underH0 or H1,
the background noise must be represented, due to the same
maximum entropy argument as before, by acomplex stan-
dard Gaussian matrixΘΘΘ ∈ CnR×L (i.e. a matrix with i.i.d.
standard complex Gaussian entriesθi j ) [28]. UnderH1, the
channel matrix is denotedH ∈ CnR×nT with entry hi j be-
ing the link between thej th transmitting antenna and the
ith receiving antenna. The model forH follows the Max-
Ent channel modelling rules. In the present situation, only
the constant mean power (or equivalently, the energy) of the
channel is known. ThereforeH will be modelled as i.i.d.
Gaussian, following the reasoning in the previous section.
The received data at sampling timel are given by thenT×1
vectory(l) that we stack, over theL sampling periods, into
the matrixY = [y(1), . . . ,y(L)] ∈ CnR×L.
This leads forH0 to the model,

Y = σΘΘΘ (14)

And for H1 to

Y = [H , σ IN]

[

S
ΘΘΘ

]

(15)

We also denote byΣΣΣ the covariance matrix

ΣΣΣ = E[YYH] (16)

= L
(

HHH + σ2InR

)

(17)

= U(LΛΛΛ)UH (18)

where ΛΛΛ = diag
(

ν1 + σ2, . . . ,νnR
+ σ2

)

, with
{νi , i ∈ {1, . . . ,nR}} the eigenvalues ofHHH and U a
certain unitary matrix.
Our intention is to make a decision on whether, given the
received data matrixY, the probability forH1 is greater than
the probability forH0. This problem is usually referred to
ashypothesis testing[9]. The decision criterion is based on
the ratio

C(Y) =
PH1|Y(Y)

PH0|Y(Y)
(19)

which we need to decide is whether lesser or greater than 1.
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3.2..3 Results and Experiments

At this point in the derivation, computingC resorts to mere
mathematical integration. The details of the calculus are
given in [17]. We only provide here the results. First, as-
sumeσ2 andnT are known, then, denotingx1, . . . ,xnR

the
eigenvalues ofYYH,

PY|H0
(Y) =

1
(πσ2)nRL e

− 1
σ2 trYYH

(20)

=
1

(πσ2)nRL e
− 1

σ2 ∑
nR
i=1 xi (21)

and

PY|H1
(Y)

=

∫

ΣΣΣ
PY|ΣΣΣH1

(Y,ΣΣΣ)PΣΣΣ(ΣΣΣ)dΣΣΣ (22)

=

∫

U(nR)×(R+)n
R

PY|ΣΣΣ,H1
(Y,UΛΛΛUH)PΛΛΛ(ΛΛΛ)dUdΛΛΛ (23)

which, after complete derivation, using in particular the
Harish-Chandra identity [18], gives

PY|H1
(Y) = α ∑

a⊂[1,nR]

e
∑

nT
i=1xai

σ2

∏
ai

∏
j 6=a1
...

j 6=ai

(xai −x j)

× ∑
b∈P(nT)

(−1)sgn(b)+1
nT

∏
l=1

JnR−L−2+bl (nTσ2,nTxai ) (24)

with P(k) the ensemble of permutations ofk, sgn(b) the sign
of the permutationb,

Jk(x,y) =

∫ +∞

x
tke−t− y

t dt (25)

and

α =
(nR−nT)!nT

(2L−nT+1)nT/2e
nT

2σ2−
∑

nR
i=1xi
σ2

nR!πnRLσ2(nR−nT)(L−nT) ∏nT−1
j=1 j!

(26)

These expressions are rather complex but show that the
Bayesian signal detection, within the state of knowledgeI ,
only depends on the eigenvaluesx1, . . . ,xnR

of the Gram ma-
trix YYH of the received dataY.
A comparison with the classical power detector, e.g. [19,
20, 21], which consists in summing all individual powers
received on the antenna array is provided in Figure 1. In the
latter,nT = 1 and the comparison is made between the dif-
ference “correct detection rate minus false alarm rate” com-
puted from Monte Carlo simulations for both Bayesian and
classical signal detectors.
We observe a slight gain in performance due to the novel
Bayesian detector. Especially, for a low false alarm rate
(which is often demanded in practice), we observe a large
gain in correct detection rate provided by the Bayesian de-
tector. This statement is however only valid fornT = 1.
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Fig. 1. Detection amplitude comparison in SIMO -M = 1, N = 8,
L = 20,SNR = −10 dB
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Fig. 2. Detection amplitude comparison in MIMO -M = 2,N = 8,
L = 10,SNR= −10dB
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WhennT is larger, then the channel hardening effect reduces
the gain of the Bayesian detector. This is shown in Figure 2
in whichnT = 2.
Now, if the noise powerσ2 is not perfectly known (this is
classically the situation since knowledge of the noise power
implies prior identification of the background noise), the
probability distribution must be updated by marginalizing
over σ2, from the lower boundσ2

− to the upper boundσ2
+

on σ2. Therefore,

PY|I =
1

σ2
+−σ2

−

∫ σ2
+

σ2
−

PY|σ2,I (Y,σ2)dσ2 (27)

which is too involved to compute, but can be numerically
estimated. An example is provided in Figure 3 in which
the intervals[σ2

−,σ2
+] are taken increasingly large. In the

latter, correct detection rate against false alarm rate is de-
picted for different values ofσ2

− and σ2
+. It is observed

that the range of ensured correct detection gets increasingly
narrower when[σ2

−,σ2
+] is large. Note that this situation

cannot be compared against classical power detection meth-
ods which do not provide solutions whenσ2 is not perfectly
known.

4. Discussion

In addition to these first two studies on maximum entropy
considerations for cognitive radios, the authors proposed
more practical studies on maximum entropy OFDM channel
estimation [32], maximum entropy carrier frequency offset
estimation [33], minimal update channel estimation [34] etc.
From all those studies, we draw the following conclusions,

• quite often, classical techniques, in particular in the
channel estimation field, are rediscovered using Max-
Ent. However, it is important to note that, even if
the final formulas are the same in the classical and

Bayesian MaxEnt approach, the philosophical con-
clusions are very different. Usually classical meth-
ods derive from empirical parameter settings, which
could have been chosen differently, while Bayesian
approaches give unique deterministic solutions, which
stem from honesty in the treatment of prior informa-
tion.

• the MaxEnt principle allows one to marginalize over
all parameters when those are not perfectly known.
As a consequence, while classical solutions are found
anew, those methods can usually be extended to cope
with the lack of information on some key variables.
For instance, in the signal sensing proposed in Section
3. and completed in [17], the situations where noise
variance and number of transmit antennas are not per-
fectly known can be easily handled, whereas classical
methods stumble on these problems and solve them by
empirical (possibly largely erroneous) parametriza-
tions.

On the other hand, MaxEnt calculus and final solutions can
turn very rapidly extremely mathematically involved, as ex-
emplified by the final signal sensing formula in Section 3..
This is a major problem, and the subject of most criticism
towards Bayesian approaches. A missing part in these Max-
Ent approach would be a systematic method which, from
the general (very involved) solution, would provide approx-
imate solutions. Quite remarkably, Caticha provides a vi-
sion of the maximum entropy principle, or more precisely
the minimum cross entropy principle, which might help de-
cide on the optimal approximation taken from a set of pos-
sible approximations [31]. These considerations might lead
to such systematic approximation methods.
Another point of concern in the MaxEnt framework lies in
the many integrals that may need to be computed when little
is known on the surrounding environment. With the increas-
ing capabilities of modern computers, numerical approxi-
mations might help to compute those integrals, but these ap-
proximations would only be valid if not so many integrals
are considered; two reasons explain this fact: first, the com-
plexity increase due to additional integrals is exponential in
the number of integrals and second, small errors in inner
integrals tend to lead to large errors when integrated many
times (this is often referred to as the curse of dimensional-
ity).
As a consequence, while the first MaxEnt results provided
by the authors show significant performance increase, many
problems remain to be solved for cognitive radios to be
fully intelligent, both on fundamental philosophical consid-
erations (many questions raised in the introduction of the
present paper are left unanswered) and on practical applica-
tions.

5. Conclusion

In this paper, we introduced the fundamentals of cognitive
radios under a physical layer viewpoint. These fundamen-
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tals are based on the extension of Shannon’s information
theory to the Bayesian probability theory and the maximum
entropy principle, which enables the cognitive devices with
plausible (human-like) reasoning. Through the first-step
studies of maximum entropy channel modelling and signal
sensing, we paved the path to the establishment of strong
theoretical grounds to the realm of cognitive radios.
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