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Abstract. In the field of resonant NEMS design, it is a common misconception that large-amplitude 

motion, and thus large signal-to-noise ratio, can only be achieved at the risk of oscillator instability. In the 

present paper, we show that very simple closed-loop control schemes can be used to achieve stable large-

amplitude motion of a resonant structure, even when jump resonance (caused by electrostatic softening or 

Duffing hardening) is present in its frequency response. We focus on the case of a resonant accelerometer 

sensing cell, consisting in a nonlinear clamped-clamped beam with electrostatic actuation and detection, 

maintained in an oscillation state with pulses of electrostatic force that are delivered whenever the detected 

signal (the position of the beam) crosses zero. We show that the proposed feedback scheme ensures the 

stability of the motion of the beam much beyond the critical Duffing amplitude and that, if the parameters 

of the beam are correctly chosen, one can achieve almost full-gap travel range without incurring 

electrostatic pull-in. These results are illustrated and validated with transient simulations of the nonlinear 

closed-loop system. 
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1. Introduction 
Resonant sensing consists in measuring the frequency shift of a system subject to the variation of a given physical 

quantity. Because of its moderate complexity, this measurement technique is becoming commonplace in the 

context of MEMS and NEMS devices [1-3]. This paper focuses on closed-loop resonant sensors, where the 

micromechanical structure is brought to oscillate by being placed inside a feedback loop [4-6]. In the present 

work, the structure is a clamped-clamped beam, the motion of which is sensed capacitively. It is maintained in an 

oscillation state with pulses of electrostatic force that are delivered whenever the detected signal (the position of 

the beam) crosses zero [7-8]. In order to maximize the signal-to-noise ratio (SNR) and, thus, to relax the 

constraints on the electronic design, the detected signal must be as large as possible, which means that, for a given 

set of structural parameters and a given bias voltage, the oscillation amplitude of the resonant beam must also be 

as large as possible. This raises questions concerning what oscillation amplitude can be sustained without 

incurring mechanical [9-10] or electrostatic [11-12] instability.  

We show in this paper that, in spite of the nonlinearities, the proposed feedback scheme ensures the stability of 

the motion of the beam much beyond the critical Duffing amplitude. We also show that, if the parameters of the 

beam are correctly chosen, one can realistically achieve almost full-gap travel range without incurring 

electrostatic pull-in.  

In section 2, the sensing cell of the resonant accelerometer that is the basis of our work is briefly described. The 

focus is brought on the capacitive detection and actuation schemes. In section 3, a simplified one-degree-of-

freedom (1-DOF) model of the beam is derived. In particular, an approximate expression of the first modal 

component of the electrostatic force acting on the beam is determined. In section 4, the electrostatic instabilities 

that are inherent to the design are addressed. We show, using the model of section 3, that it is possible to achieve 

almost full-gap travel range without pull-in if the bias voltage is correctly chosen. In section 5, describing 

function analysis (DFA) is used to characterize the oscillations of the closed-loop system. We show that, when the 

electrostatic pulses are short with respect to the natural period of the system, there exists a unique oscillation 

regime and that it is stable, provided the condition for electrostatic stability established in section 3 is met. These 

results are illustrated in section 6 and validated with transient simulations of the closed-loop system.  

 

2. Framework 
 

2.1 Sensing principle 

The accelerometer consists in a suspended seismic mass, which is anchored to the substrate via a short beam 

acting as a flexure. A longer, more flexible beam, perpendicular to the flexure, acts as a sensing element (figure 

1). When the mass is subject to acceleration, the sensing beam undergoes compressive or tensile stress (depending 

on the direction of the acceleration), resulting in a variation of its stiffness. This variation can then be detected via 

a shift ω∆  of its natural pulsation 0ω .  

Two sensing principles may be used to monitor frequency shifts. In open-loop sensing, the structure is excited 

using a repeated chirp (a sine wave with slowly increasing or decreasing frequency). The frequency response of 

the structure can then be calculated and the value of the “open-loop resonance frequency” (the frequency for 

which the frequency response is maximal) can then be determined and monitored. In closed-loop sensing, the 

micromechanical structure is placed inside a feedback loop, without external input. If the feedback loop is 

correctly designed, the structure starts oscillating at a so-called “closed-loop resonance frequency”, which shifts 

along with the natural frequency of the structure. The practical advantage of closed-loop sensing compared to 

open-loop sensing is that it only requires frequency measurements, which can be performed by counting the rate 

of zero-crossings of the electrical signals in the feedback loop (this typically requires one comparator and a time 

reference). On the other hand, open-loop sensing requires measuring the amplitude of motion of the resonant 

element. In an application where the sensing cell is co-integrated with its electronics, open-loop sensing (which 

involves high-resolution A/D and D/A converters for signal generation and measurement) entails a greater cost 

than closed-loop sensing. From a mathematical point of view, closed-loop sensors are autonomous systems, 

whereas open-loop sensors are non-autonomous. The accelerometer sensing cell considered in the present paper is 

operated in closed-loop.  



 3 

 

2.2. Description of the accelerometer sensing cell 

In the ANR-funded M&NEMS project, which sets the framework of this paper [8], the sensing beam is placed 

between two equidistant electrodes, so as to be the midpoint of a capacitive half-bridge. The transmission line and 

contact pads between the structure and the control electronics give rise to a parasitic capacitance pC , typically on 

the order of several pF, which is much larger than the nominal capacitance of the structure (on the order of 1fF) 

and leads to poor SNR [13]. At the output of the charge amplifier, the voltage outV  can be written: 

offsete
fp

out VQ
CKC

K
V +

++
=

)1(
,  (1) 

where eQ  is the charge accumulated on the mobile beam, K  is the gain of the operational amplifier, fC  is the 

feedback capacitance and offsetV  is an integration constant that is removed with high-pass filtering. We may then 

assume throughout the rest of the paper that 0=offsetV  and that 0=eQ  when the beam is halfway between the 

electrodes, so that 0=outV  when the displacement of the beam w  is uniformly 0.  

In order to maximize the SNR, the detected signal must be as large as possible, which means that, for a given set 

of structural parameters and a given bias voltage, the oscillation amplitude of the resonant beam must also be as 

large as possible. We show in what follows that such large-amplitude motion may be sustained without incurring 

mechanical or electrostatic instability, if a proper feedback scheme is used to actuate the beam.  

 

2.3. Actuation and detection schemes 
Applying brief negative or positive pulses of electrostatic force to the beam whenever it passes through a certain 

reference position (typically 0== wVout ) can bring the system into a sustained self-oscillation state [7-8]. The 

voltage pulses (with amplitude pV±  and duration 02 ωπ<<pT ) can be delivered to the central electrode, as in 

[7], or through the biasing electrodes (figure 1). Both solutions are equivalent from a dynamical system point of 

view. In either case, provided the length L  and width b  of the beam are large with respect to G , the electrostatic 

gap, one may consider that every slice of area bdx of the beam is subject to an electrostatic force dxFe , where 

lineic density eF  is given by the plane capacitance approximation:  
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where 0ε  is the permittivity of vacuum, bV  is the bias voltage and cV  is the control voltage (i.e. the voltage 

applied to the mobile beam). Under the same assumptions, the lineic charge density accumulated on an 

elementary slice of the beam is: 
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When no pulse is being delivered to the beam, 0=cV  and (2) and (3) simplify to:  

( )222

2

0

2 wG

wbGV
FF b
softe

−
==

ε
, (4) 

which corresponds to the electrostatic softening of the system, and  

220
wG

w
bVbe

−
−= εσ .  (5) 

Note that (4) and (5) vanish when w  is uniformly 0 or, assuming that the deformation of the beam is unimodal, 

when 0=outV . 
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Since the pulses are very short, there is only a very small amount of crosstalk between the actuation and detection 

schemes. Assimilating these finite pulses to ideal Dirac pulses, one may then consider that (4) and (5) are always 

valid except at instants 0t  when outV  is exactly zero, in which case:  

ppb
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+

−→
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The fact that, in practice, the pulses have finite duration is not detrimental to the proper functioning of the system, 

because when the self-oscillation conditions are met, voltage pulses are delivered in such a way that they do not 

modify the sign of outV  [7]. In other words, the sign of outV  is always the exact opposite as the sign of the 

displacement of the beam, even during the voltage pulses. This makes the design of the electronic feedback loop 

very simple: basically, all it takes to generate voltage pulses when 0=w  is a comparator and a pair of monostable 

multivibrators.  

Assuming the electrodes have the same length and width as the beam, the system is governed by:  
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 (8), 

where E  is Young’s modulus, ρ  is the density, h  is the thickness of the beam, µ  is a linear damping 

coefficient,  T  is the axial force caused by the elongation of the beam:  

∫ ⎟
⎠

⎞
⎜
⎝

⎛

∂
∂=

L

dx
x

w

L

Ebh
T

0

2

2
.  (9) 

softepulse FFF −=   is the “pulsed” component of the electrostatic force and consists of Dirac pulses occurring 

when 0=outV , with amplitudes given by (6). In the next section, we define the pull-in voltage of the structure 

and its pull-in amplitude and show that, with proper design, one can use pulse-actuation to achieve almost full-gap 

travel range. 
 

3. Model derivation 
In the context of a resonant sensor application, it is a reasonable to assume that the deformation of the beam is 

unimodal. Let us then write ( ) ( ) ( )xwtatxw ~~~
,~~

0= , where 0w  is the first clamped-clamped beam eigenmode, with 

eigenvalue 
4

0β  ( 730.40 ≈β ) and where the following dimensionless quantities are used: Gww /~ = , Lxx /~ =  

and tt 0
~ ω= ,  

ρρ
βω E
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The value of ( )2/10w  is set to 1, so that 1±=a  corresponds to full-gap displacement of the midpoint of the beam. 

Projecting (8) on 0w , we obtain the following model of the beam dynamics: 

( )[ ] ( )aafa
Q

a
aIaa p

&&&
&

,1 2 ∆=++−+ δγ ,  (11) 

                                                           

1
 The terms involving 

2
cV  in (2) are cancelled out because the pulses are delivered when 0=w . Thus, the amplitude of the 

actuation is proportional to pV  , regardless of whether bp VV << .  
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where ( )aa &,∆  designates a Dirac pulse occurring when 0=a , with the same sign as a&  (giving the oscillator a 

kick in the direction of its motion),  
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where pp T0ωτ =  and Q  is the quality factor of the system. There exists no closed-form expression of ( )aI , 

however it is possible to approximate it with: 

( ) ( ) ( ) 2/321ˆ −
−=≈ aaIaI ,  (16) 

as is explained in Appendix A. The relative error between ( )aI  and ( )aÎ  is less than 5% across the whole gap - it 

can even be reduced to less than 1% by multiplying ( )aÎ  with ( )2041.01 a−  (see Appendix A). Because of its 

range of validity, this approach is better suited to large amplitude dynamics than Taylor series expansion, which is 
commonly used in MEMS/NEMS modeling. In particular, it allows us to capture the dynamic pull-in behavior of 

a pulse-actuated in a simple way, as is shown in section 4. 
 

4. Pull-in phenomena 
A fundamental limit to the displacement amplitude of electrostatically-actuated devices is set by the static pull-in 

phenomenon [11-12]. The pull-in amplitude is classically determined as the displacement amplitude for which the 
electrostatic softening force and the mechanical restoring force are balanced but the equilibrium is unstable. In the 
case of the clamped-clamped beam setup of figure 1, it is clear that, in the absence of (pulsed) actuation forces, 

0=w  is always an equilibrium point and that, provided bV  is small enough, this equilibrium point is stable.  

The threshold value of bV  beyond which this equilibrium becomes unstable is determined in sub-section 4.1. We 

then show in sub-section 4.2 that the electrostatic nonlinearity sets an upper bound to the oscillation amplitude of 

the structure and determine this limit.  
 

4.1. Determination of the static pull-in voltage 
The problem of the beam at rest subject to an increasing bias voltage is similar to the problem of a beam subject to 
increasing compressive stress: the beam is gradually softened until a critical point is reached for which it is 

pulled-in (or it buckles, in the mechanical analogy). As in classic Euler buckling problems [14], the equilibrium 

position ( 0=w ) becomes unstable when the first eigenvalue of the linearized spatial partial differential operator 

appearing in (8) equals zero. In other words, the beam is pulled-in from its central position when the linearized 

modal stiffness of the system equals zero. From (11), the modal stiffness is ( )aIa δγ −+ 21 . Linearizing this 

expression for 0=a  yields the following pull-in condition: 

1=δ , (17) 

i.e. pib VV ±=  . Working with 1<δ  ensures only that 0=w  is a stable equilibrium point around which the beam 

can oscillate. In the following sub-section, we show that there exists a maximal displacement amplitude beyond 

which the beam is pulled-in to one of the electrodes and that this amplitude depends on bV . 
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4.2. Determination of the maximal displacement amplitude 
The first term on the left-hand side of (11) corresponds to the restoring forces acting on the beam, including the 

linear elastic and nonlinear elastic and electrostatic components, which derive from a potential energy potE . 

Using (16), potE  can be expressed as: 

2

42

1

1

4

1

2

1

a
aaE pot

−
−+= δγ .  (18) 

potE  is represented in figure 2 for different values of δ  and γ .  

When 1<δ , the central position is stable, as shown in sub-section 4.1. potE  is maximal when: 

( ) 011
2/322 =−−+

−
aa δγ ,  (19) 

which has two solutions maxa±  ( 0max >a ), both of which correspond to unstable equilibria. Now, let us suppose 

that energy is injected into the system (initially at rest) whenever 0=a , in the form of short electrostatic pulses, 

so that an oscillation starts building up. If too much energy is injected into the system, it moves past the potential 

barrier in maxa±  and the beam is inevitably pulled-in to one of the electrodes. Otherwise, it eventually reaches a 

steady-state regime and stabilizes at an amplitude which is inferior to maxa . Thus maxa  is the maximal 

displacement amplitude that can be achieved by an oscillating pulse-actuated clamped-clamped beam without 
incurring pull-in.  

When 0=γ , the following analytical expression can be derived from (19):  

3/2
max 1 δ−=a .  (20) 

Accounting for stiffening results in a larger value of maxa  than predicted by (20) (figure 3), however no analytical 

expression of maxa  can be found. It is notable that very small values of δ  result in maxa  being very close to 1. 

1≥δ  corresponds to the case when the central position is unstable (figure 2). However, the fact that the beam is 

“pulled-in” does not mean it necessarily comes in contact with an electrode: it might instead get stuck in one of 

the potential wells that appear for large values of γ . In this configuration, it should also possible to use a pulse-

actuation scheme to achieve stable oscillations around 0=a  even though the central position is intrinsically 

unstable.  

In the following section, we assume that 1<δ . 

 

5. Analysis of the closed-loop system 
 

Describing function analysis, or equivalent linearization, is a method used (mostly) by engineers to determine 

certain properties of weakly nonlinear systems subject to various stimuli. When the only stimuli are sine waves, 
the method is also known as harmonic balance, in which case it yields the same results as those one would obtain 

through the method of averaging (or KBM method) [15] used to first order. In this context, the difference between 

the two methods is purely a matter of perspective, the describing function formalism being more oriented toward 

the design of control systems.   

5.1. Describing function analysis of the closed-loop system 
An equivalent block-diagram representation of (11) is shown in figure 4. One may consider the closed-loop 

system as a linear system with a triple feedback nonlinearity. If the “filter hypothesis” holds (i.e. if the linear part 

efficiently filters out the high-order harmonic content output by the nonlinearity), one may apply DFA to the 

system and expect good qualitative and quantitative results [15]. DFA is then particularly well-suited to the case 

of a resonant structure with a large quality factor oscillating with a pulsation close to 0ω . 

The existence of a periodic regime, and its characteristics (amplitude, pulsation and stability) can then be 

determined by:  

1. assuming ( )tAa ωsin= , 10 << A , 0>ω  
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2. finding the equivalent complex gain ( )ω,AN  of the nonlinear part ( )aaF &, , 

( ) ( ) ( )∫=
ωπ

ω
π
ωω

/2

0

exp,, dttjaaF
A

AN &  (21) 

3. checking for an oscillatory regime satisfying the Barkhausen condition, i.e. solving for the limit cycle 

amplitude oscA  and pulsation oscω   

( ) ( ) 01, =+ωω jHAN  (22) 

where ( )ωjH  is the transfer function of the linear part.  

(22) can be split in two equations and rewritten as 

( ) ( ) 0,Im,Re == ωω AA  (23) 

where Re  and Im  are the real and imaginary part of ( ) ( )ωω jHAN /1, + . 

Step 3 is equivalent to imposing that the total phase lag in the loop is equal to zero. An oscillatory regime defined 

by (22-23) is stable with respect to slight perturbations if the following inequality is satisfied: 

0
ReImImRe >

∂
∂

∂
∂−

∂
∂

∂
∂

ωω AA
,  (24) 

where the partial derivatives are taken at oscAA =  and oscωω = .  

 

4.2. Determination of ( )ω,AN  

The nonlinear feedback block consists in three nonlinearities in parallel. Their equivalent complex gain is then 

given by:  

( ) ( ) ( ) ( )ωω ,, ANANANAN pulsesoftDuff ++= ,  (25) 

where ( )ANDuff , ( )ANsoft  and ( )ω,AN pulse  are respectively the equivalent complex gains of the Duffing 

nonlinearity, of the electrostatic nonlinearity and of the actuation nonlinearity. Straightforward integration leads to 

the following expressions: 

( ) 2

4

3
AANDuff γ= ,  (26) 

and 

( ) ppulse f
A

jAN
π
ωω 2

, −= .  (27) 

One can directly compute an approximation of ( )ANsoft , without passing through the intermediate step of (16)
2
. 

This yields: 

( ) ( )( ) ( ) ( )
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1
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A

A
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+−≈−= ∫
κδωωω

π
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, (28) 

where 182.0≈κ  (cf. appendix A).  

The Barkhausen criterion (22) then becomes: 

Q
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A
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A p
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π
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−
+− 1

2

1

1

4

3 2

2

2
2 . (29) 

There exists one unique couple ( )oscoscA ω,  that cancels out the real part and the imaginary part of (29):  

                                                           
2
 There is little point in using ( )aÎ  to derive an analytical expression of ( )ANsoft : this approach leads to an expression 

involving elliptic integrals which can only be apprehended with difficulty (and should then be approximated, leading to a 

simpler but less accurate expression which would be an approximation of an approximation). 
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The values that may be taken by oscA  are theoretically limited by the second equation, i.e. there can be no 

oscillation regime such that maxAAosc > , where maxA  satisfies:  

0
1

1

4

3
1

2
max

2
max2

max =
−
+

−+
A

A
A

κδγ ,  (31) 

for which 0=oscω . However, one should not expect this limit to have a practical importance: first of all, in many 

practical cases maxmax Aa < : this is typically the case when 0>γ  (hardening Duffing behavior) and 10 << δ . 

Thus, the electrostatic instability discussed in section 3.2 sets a tighter limit on the oscillation amplitude than (31). 
Moreover, as we have already mentioned, DFA accurately predicts the behavior of systems that satisfy the filter 

hypothesis: it is clear that, if oscω  decreases sufficiently, the high-order harmonics generated by the different 

nonlinearities are no longer filtered out by the linear part and the filter hypothesis holds no more. Thus, the value 

of maxA  that can be inferred from (31) is out of the range of validity of DFA. This shows that one should be very 

careful when trying to determine the onset of electrostatic instability under sinusoidal motion assumptions [16-

17], because the two notions (instability and sinusoidal motion) are somehow contradictory. This is confirmed by 

a stability analysis based on DFA: the oscillatory regime defined by (30) is stable provided (24) is satisfied. We 

have:  

0
Im =

∂
∂

osc

oscA
ω

ω
, osc

A

osc

osc

ω
ω

ω

2
Re −=

∂
∂

 and 
QAA osc

osc

A

osc

osc

ω

ω

=
∂

∂ Im
,  (32) 

thus the stability condition boils down to: 

00 2
2

>⇔> osc

osc

osc

QA
ωω

,  (33) 

which is always satisfied. However, we have shown in section 3 that the amplitude of the oscillations of a pulse-

actuated structure cannot exceed  maxa . Thus the resonant stability condition is simply:  

maxaAosc ≤ .  (34) 

It is interesting to study the dependency of oscω  on oscA . It is notable that, depending on the system’s parameters, 

there may exist an optimal value of maxaAosc ≤  for which  

0=
osc

osc

dA

dω
.  (35) 

This value is “optimal” in the sense that small variations of the amplitude will not affect the value of oscω : thus, 

one may achieve large amplitude oscillations and good frequency stability, both of which would be very desirable 
features in MEMS/NEMS reference oscillator applications [18-19]. 
 

4.3. Describing function analysis of the open-loop system   

Before moving on to the comparison of these results with simulated data, we stress the fact that the existence and 

the uniqueness of a stable periodic regime for an electrostatic pulse-actuated clamped-clamped beam are only 

valid when the system is operated in closed-loop, and in particular when the pulses are triggered when the 

detected signal crosses zero.  
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A simplified model of the open-loop beam is represented in figure 5
3
. In this configuration, there may exist up to 

five oscillation states at a given excitation amplitude and pulsation: this can be inferred from the DFA of (11), 

where one assumes that ( )ϕω += tAa sin  (the fact that the loop is open no longer ensures that a  is in phase with 

the excitation) and the origin of time coincides with a positive pulse. Projecting this equation on ( )tjωexp  yields, 

after using (28): 

( )ϕϕ
π

ωωωκδγ cossin
2

1

1

4

3
1 2

2

2
2 jfA

Q
j

A

A
A +=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜
⎜
⎝

⎛
−

−
+−+ ,  (36) 

where f  is the amplitude of the Dirac pulses injected into the system.  

Taking the squared modulus of (36) results, after multiplication by ( )221 A− , in a fifth-order polynomial in 2A :  

( )( ) ( )

( ) ( )

( ) 0
418

221

2
4

3
1212

24

4

3
112

4

3
12

1

2

3
112

2

3

16

9

4

3
1

2

3

16

9

2

22
242

22

2
2

442

22

2

642

2

22

82102

=−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−+−+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ +−−−−+−⎟
⎠

⎞
⎜
⎝

⎛ +−−+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ +−−++++−−−+

⎟
⎠

⎞
⎜
⎝

⎛ −+−+

π
ωωω

π
δδ

ωωδκγδ
π

δκγδ

ωωδκγγδκκδγγ

ωδκγγγ

f
A

Q

f

A
Q

f

A
Q

AA

. (37) 

This polynomial may have multiple roots, meaning that the open-loop system may have up to five oscillation 

states
4
 and exhibit hysteretic behavior. The corresponding values of ϕ  are given by: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜
⎜
⎝

⎛

−
+−+= 2

2

2
2

1

1

4

3
1tan ωκδγ

ω
ϕ

A

A
A

Q
.  (38) 

Closing the loop simply ensures that ϕ  takes a specific value (in our case, 0=ϕ ) and, thus, results in a single 

possible oscillation state (figure 6).  
The case when the sensor is operated in closed-loop in the presence of phase-delay (consequent to the filtering of 

the detected signal) between the pulses and the triggering event is the subject of forthcoming work. The 

fundamental difference between these cases and the zero-phase delay case covered in the present work is that the 

amplitude of the pulses is modulated by the electrostatic nonlinearity: for large values of the phase-delay, this may 

result in multiple oscillation states, even though the loop is closed. 
 

6. Simulation and results 
The purpose of this section is to validate with simulations the theoretical results obtained in the previous sections. 

This validation is conducted in two steps: first, the validity of the describing function approach is demonstrated by 

simulating the one-degree-of-freedom model (11), in which ( )aI  is replaced by ( )aÎ  (16) and the pulses have 

finite duration. A more complex model, obtained by projecting (8) on three eigenmodes, is then simulated to 

verify the well-foundedness of the simpler model (11). The parameters of the resonator correspond to those of the 

accelerometer structure (figure 7) developed in the ANR-funded M&NEMS project: L=25µm, b =500nm, 

Gh = =250nm, Q =6000, ρ =2320kg.m
-3
, E =149GPa. For this set of parameters, 0ω ≈2.07×10

7
rad.s

-1
, 

                                                           
3
 It is simplified in the sense that, in the system represented in figure 1, the amplitude of the pulses of electrostatic force 

depends on the value of the phase-delay, as can be inferred from (2). 
4
 When 0=δ , up to three oscillation states may be observed. This corresponds to the well-known ‘critical amplitude’ 

phenomenon associated with the Duffing pendulum [9]. 
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piV ≈29.63V, γ ≈0.719. In the actual circuit, the duration of the impulses is set to pT =10ns ( 207.0=pτ ), so that 

they may be considered short with respect to the period of oscillation. The bias voltage that is applied to the 

structure is equal to the maximum supply voltage of the technology chosen for the circuit -in the present case, ST 

CMOS 130 nm- i.e. bV =1.2V, which corresponds to δ ≈1.64×10
-3
.  

Solving (19), we find that the pull-in amplitude is 995.0max ≈a . From (30) and (15), the beam should not be 

pulled-in, provided 41059.2 −×<pf , i.e. V 346.0<pV . 

 

6.1 Simulation of the 1-DOF model 
The transient simulation of (11) is conducted with Matlab/Simulink. In this environment, the pulsed force 

necessarily has a finite duration pτ , which introduces a small amount of phase delay into the feedback loop. To 

determine the influence of this non-ideality, two sets of simulations are run: one with 207.0=pτ , the other with 

0207.0=pτ . The oscillation amplitude and the oscillation pulsation are determined at the end of the simulation, 

when the steady-state regime has supposedly been reached. In theory, the amplitude and the pulsation should 

behave according to (30), as depicted in figure 8. The relative error between simulation and theory is represented 

in figure 9. As anticipated, the error increases with pτ . However, the agreement is very good, even for “long” 

pulses, with relative errors inferior to 4% for the amplitude and inferior to 2% for the pulsation, even when the 

oscillation amplitude is very close to 1. This validates the describing function approach of section 5. Moreover, 

we verify that the beam pulls-in when the oscillation amplitude becomes larger than 995.0max ≈a .  

 

6.2 Simulation of the 3-DOF model 
A less idealized model is simulated: (8) is decomposed and projected on the first three relevant eigenmodes of the 

beam. The projection integrals are evaluated at each integration step with a first-order Newton-Cotes quadrature 

scheme. pτ -long pulses are triggered when the total charge accumulated on the beam crosses zero. The charge is 

calculated at every time-step by integrating (5) along the length of the beam. The oscillation amplitude is defined 

as the maximal displacement amplitude of the midpoint of the beam and the oscillation period is calculated as the 

difference between two consecutive zero-crossings of the total charge. The errors have the same orders of 

magnitude as for the 1-DOF model and the same behaviour with respect to pτ . This validates the use of (30) to 

predict the behaviour of the actual system. However, some qualitative differences do exist between the 1-DOF 

case and the 3-DOF case, as illustrated in figure 10. Furthermore, the beam is pulled in at 982.0max ≈a  for 

207.0=pτ  and at 990.0max ≈a  for 0207.0=pτ . Thus, for large oscillation amplitudes, the second and third 

modes have a small (but finite) contribution to the elastic energy of the system: it is difficult to derive general 

results from these simulations without resorting to finer, more complex, models than those developed in section 5. 

For example, using DFA makes it impossible to predict sub-harmonic resonances that are likely to appear in low-

frequency open-loop excitation contexts (more appropriate methods are described in [20]). The case of inter-mode 

crosstalk may be addressed if simplifying assumptions are made (for example, if all the modes oscillate in phase).  
The system was simulated for several other sets of parameters, in closed-loop as well as in open-loop, resulting in 

very small errors between theory and simulation, as long as the hypotheses made in section 5 were respected.  

 

7. Conclusion 
In this paper, we have shown that very simple closed-loop control schemes can be used to achieve stable large-

amplitude motion of a resonant structure, even when jump resonance (caused by electrostatic softening or Duffing 

hardening) is present in its open-loop frequency response. The case of a capacitive pulse-actuated resonant 

accelerometer sensing cell was thoroughly investigated.  
The nonlinear softening term was approximated with simple expressions, valid across the whole gap. This helped 

us establish the maximal displacement amplitude maxa  that can be achieved by a closed-loop pulse-actuated 
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clamped-clamped beam without incurring electrostatic instability: it was shown that, depending on the structure’s 

design parameters γ  and δ , almost full-gap travel range is possible. The same approach may also be used for 

other beam-electrode configurations or for other actuation schemes. Using describing function analysis, we 

studied closed-loop and open-loop pulse-actuation and showed that the closed-loop approach ensures the stability 

of the motion of the beam even when the open-loop frequency response has a hysteretic characteristic. Some 

analytical expressions of the oscillation amplitude and of the oscillation pulsation were established and validated 

with transient simulations of the nonlinear closed-loop system, in the case of the sensing cell of the ANR-funded 

M&NEMS project. 
The most immediate practical consequence of the present work is that, with proper mechanical and feedback 

design, very large oscillation amplitudes and, thus, signal-to-noise ratios may be achieved, thereby relaxing the 

constraints on the design of the analog front-end of the electronic circuitry. Another practical consequence is that, 
as mentioned in section 5, the softening nonlinearity can be used to compensate for the hardening nonlinearity to 

achieve large oscillation amplitudes together with good frequency stability [18]. 
The analysis of the closed-loop system when phase-delay is present in the feedback loop is the subject of ongoing 

work. Furthermore, an ASIC implementing the electrostatic actuation and detection scheme described in this 

paper has been developed and should soon be tested. 
 

Appendix A 
Equation (16) is obtained by fitting the projection of the electrostatic force on the first eigenmode with a two 

parameter model parameterized by 0n̂  and 0κ̂ . Let us then define 

{ } ( ) ( )
( )

∫
−

⎥
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−
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+=
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so that, on [ ]ε−1,0 , the quadratic distance between ( )aI  and the model ( )anI ,ˆ,ˆˆ
εε κ  is minimal. Replacing the 

integrals appearing in the cost function with numerical approximations, it is possible to use the Gauss-Newton 

algorithm, for example, to find εn̂  and εκ̂  for different values of ε . The values of 0n̂  and 0κ̂  are then calculated 

with an extrapolation method as the limits of sequences εn̂  and εκ̂ . This leads to 500.1ˆ
0 ≈n  and 041.0ˆ

0 −≈κ : 

the corresponding relative error is smaller than 1% across the whole gap (figure A1) and close to 0% for 1≈a . 

However, using 5.1ˆ
0 =n  and 0ˆ

0 =κ  also yields good results and leads to simpler analytical developments.  

The same approach can be used to determine an approximation of ( )ANsoft  except one must now minimize:  

( ) ( )
( )

∫
−

⎥
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⎢
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−

−

+ε κ1
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2

2

1

1
daaJ

a

a
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,  (A-3) 

where  

( ) ( )( ) ( )∫=
π

π

2

0

2sinsin
1

dtttAIaJ .  (A-4) 

We find 004.1ˆ
0 ≈n  and 182.0ˆ

0 ≈κ . One may round 0n̂  to 1 and 0κ̂  to 0.182 without deteriorating the results (a 

relative error of less than 2% for 99.0=a , figure A1). Choosing a slightly smaller value of 0κ̂  (say, 160.0ˆ
0 =κ ) 

yields a better approximation for moderate values of a , whereas a larger value of 0κ̂  ( 221.0ˆ
0 =κ ) improves the 

accuracy at very large amplitudes but reduces it for moderate a  (figure A2). Any value of 0κ̂  in the range 

]221.0 , 160.0[  ensures that the relative error is smaller than 5% across the whole gap.  
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The fact that 221.0ˆ
0 =κ  yields the best results for 1≈a  can be explained analytically. Starting from 

( )aI ,041.0,5.1ˆ − , which minimizes (A-1), one may find a closed-form expression (involving complete elliptic 

integrals, as mentioned in section 4) of the corresponding describing function gain. In the neighborhood of 1=a , 

this gain behaves as: 

21 a

K

−
, ( ) 221.1041.01

4 ≈−=
π

K .  (A-5) 

Since ( )aI ,041.0,5.1ˆ −  is a good approximation of ( )aI  in the neighborhood of 1=a  (figure A1), one may then 

expect 
2

2

1

221.01

a

a

−
+

 to be a good approximation of ( )aJ  in the same region, as is indeed the case (figure A2). 

It should be mentioned that the same approach can be used when the length of the electrode is smaller than L . 

However, the resulting values of 0n̂  are no longer integers or half-integers (except when the length of the 

electrode goes to zero) and, as a consequence, determining the pull-in voltage or the open-loop response of the 

system does not boil down to finding the roots of low-order polynomials.  
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Figure captions 
 

Figure 1. Top-view of the mechanical structure (a) (not to scale) and diagram of the closed-loop actuation and 

detection scheme (b).  

 

 

Figure 2. Typical aspect of ( )aE pot  when 1<δ  (left) and when 1≥δ  (right). 

 

 

Figure 3. maxa  vs. δ , for different values of γ . The plain black curve corresponds to (20). 

 

 
Figure 4. Block-diagram representation of the capacitive pulse-actuated clamped-clamped beam, operated in 

closed-loop. 

 

 

Figure 5. Block-diagram representation of the capacitive pulse-actuated clamped-clamped beam, operated in 

open-loop. 

 

 

Figure 6. Amplitude (top) and phase (bottom) frequency response of the open-loop system, with 5.0=γ , 

1.0=δ , 100=Q  and 3102 −×=f  (a), 3104 −×=f  (b), 3108 −×=f  (c), 31012 −×=f  (d). The continuous line 

represents maxa  and the black circle corresponds to the system’s self oscillation regime, defined by 0=ϕ . As the 

force increases, the system goes from linear to doubly-hysteretic. 

 

 
Figure 7. SEM of one of the accelerometer structures developed in the M&NEMS project. 

 

 

Figure 8. oscω  vs. oscA , as predicted by (30). The relationship between oscA  and f  is linear. 

 

 

Figure 9. Relative error on the values of oscA  and oscω  predicted by (30) and obtained by simulation of the 1-

DOF model.  

 

 

Figure 10. Relative error on the values of oscA  and oscω  predicted by (30) and obtained by simulation of the 3-

DOF model. 

 

 

Figure A1. ( )aI  (top left), ( )aJ  (top right) and relative errors (bottom) vs. amplitude. 

 

 

Figure A2. Relative error between ( )aJ  and ( )anJ ,,ˆ
00 κ , for different values of 0κ̂ . 
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Optimization results

n0 = 1.5, κ0 = 0 
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Optimization results

n0 = 1, κ0 = 0.182 
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