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Implicit cooperation in distributed energy-efficient
networks

M. Le Treust, S. Lasaulce, and M. Debbah

Abstract—We consider the problem of cooperation in dis-
tributed wireless networks of selfish and free transmittersaiming
at maximizing their energy-efficiency. The strategy of each
transmitter consists in choosing his power control (PC) policy.
Two scenarios are considered: the case where transmitters can
update their power levels within time intervals less than the
channel coherence time (fast PC) and the case where it is updated
only once per time interval (slow PC). One of our objectives is
to show how cooperation can be stimulated without assuming
cooperation links between the transmitters but only by repeating
the corresponding PC game and by signals from the receiver. In
order to design efficient PC policies, standard and stochastic
repeated games are respectively exploited to analyze the fast
and slow PC problems. In the first case a cooperation plan
between transmitters, that is both efficient and relies on mild
information assumptions, is proposed. In the second case, the
region of equilibrium utilities is derived from very recent and
powerful results in game theory.

I. I NTRODUCTION

In the wireless literature, when it is referred to cooperative
networks, this generally means that some nodes in the network
act as relays in order to help other nodes (the sources or trans-
mitters) to better communicate with their respective destination
or receiver nodes. This idea has been formalized in information
theory in [1][2] for the relay channel, for the cooperative
multiple access channel (MAC) [3], and for other types of
cooperative channels during the last decade ([4][5] etc). The
vast majority of these papers address centralized networks
and cooperation between nodes is based on the existence of
physical links between some nodes. In the present paper we
consider the case of decentralized or distributed networkswith
implicit cooperation. By decentralized/distributed, we mean
that the nodes are assumed to be free decision makers who
decide by themselves what is good for them and can ignore
possible recommandations from central nodes (namely the
power control policy in our case). By implicit, we mean that
nodes cooperate without using dedicated cooperation channels
between nodes. To be more concrete, we consider multiple
access channels where no link between the transmitters is as-
sumed and transmitters are modeled by selfish players aiming
at maximizing the energy-efficiency of their communication.
A very simple and pragmatic way of knowing to what extent
a communication is energy-efficient has been proposed by
[6][7]. The authors of these articles define energy-efficiency
as the net number of information bits that are transmitted
without error per time unit (goodput) to the transmit power
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level. More specifically, the authors analyze the problem of
distributed power control (PC) in flat fading multiple access
channels. The problem is formulated as a non-cooperative
one-shot game where the players are the transmitters, the
strategy of a given player is his transmit power for a given
channel realization, and his payoff/reward/utility function is
energy-efficiency of his communication with the receiver.
Unfortunately, the Nash equilibrium (NE) resulting from this
game is generally inefficient.

In the papers on energy-efficient power control cited above
and related papers (e.g., [8][9]), the used game-theoretic
framework is the one of static or one-shot games for which
transmitters are assumed to interact once per block and from
block to block in an independent manner; the block duration
is assumed to be less than the channel coherence time. In
practice, there will be some scenarios where transmitters can
update their power level several times within a block or/andare
active over several and possibly many blocks. In game theory,
it is well known that this feature can change the behavior
of the players and incite them to cooperate while staying
selfish [10]. The corresponding game-theoretic framework is
then the one of dynamic games. In this paper we propose to
model the distributed energy-efficient power control problem
by exploiting two types of repeated games (RG), namely
the standard and stochastic RG, which are special cases of
dynamic games. In standard RG [11], the same game is
repeated a certain number of times. In stochastic RG [12],
players’ utilities depend on a certain state (or parameters)
which vary over time according to a stochastic process. We
use standard RG to analyze scenarios where transmitters can
update their powers several times within each block (the same
game is therefore repeated within a block) and stochastic RG
for scenarios where transmitters update their powers once per
block (the game is therefore parameterized by the channel state
and is repeated from block to block). We will respectively refer
to these scenarios as fast and slow power control (FPC, SPC).

The contributions of this paper are as follows: 1. The
framework of repeated games is applied for the first time to the
distributed energy-efficient power control problem; 2. In the
case of FPC, we derive equilibrium PC strategies which are
based on a cooperation plan between the transmitters, Pareto-
efficient, and only require individual channel state information
(CSI) at the transmitters and a public signal to be implemented;
3. In the case of SPC, which is much more difficult to treat
properly, only the set of possible equilibrium utilities ofthe
stochastic RG (which can be seen as a counterpart of a capacity
region of a distributed channel when Shannon transmission



rate is considered for the utilities) is derived by exploiting a
very recent result in game theory derived by Hörner et al. [13]
and Fudenberg and Yamamoto [14]. To achieve this utility
region, global CSI and a public signal are assumed at the
transmitters. The determination of the equilibrium strategies
is left as a non-trivial extension of this work.

II. SIGNAL MODEL

We consider a distributed MAC with a finite number of
users, which is denoted byK. The network is said to be
distributed in the sense that the receiver (e.g., a base station)
does not dictate to the transmitters (e.g., mobile stations)
their PC policy. Rather, all the transmitters chooses their
policy by themselves and want to selfishly maximize their
energy-efficiency; in particular they can ignore some specified
centralized policies. We assume that the users transmit their
data over block flat fading channels. The equivalent baseband
signal received by the base station can be written as

y =

K∑

i=1

gixi + z (1)

with i ∈ K, K = {1, ..., K}, E|xi|2 = pi, z ∼ CN (0, σ2).
Each channel gaingi varies over time following a Markov
chain and is assumed to be constant over each block. For
each transmitteri, the channel gaingi is assumed to lie in
a discrete set (e.g., because channel chains are quantized).
The notationηi = |gi|

2, with ηi ∈ Γi, |Γi| < +∞, will be
used. For the transmit power levelspi they will be assumed
to lie in a compact setPi = [0, Pmax

i ] in Sec. III and in a
discrete setPi =

{
P 1

i , ..., PM
i

}
, with PM

i = Pmax
i , in Sec.

IV. The discrete set assumption is suited to exploit the results
of [13][14] without introducing additional technicalities we
wanted to avoid in this (relatively short) paper. At last, the
receiver is assumed to implement single-user decoding.

III. FAST POWER CONTROL AND STANDARD REPEATED

GAMES

A. Review of the one-shot power conrol game

Here we review a few key results from [7] concerning the
static PC game. We denote byRi the transmission information
rate (in bps) for useri andf an efficiency function represent-
ing the block success rate, which is assumed to be sigmoidal
and identical for all the users. For a given block, the signal-to-
interference plus noise ratio (SINR) at receiveri ∈ {1, ..., K}
is denoted bySINRi and writes as:

SINRi =
piηi∑

j∈K\i pjηj + σ2
(2)

where pi ∈ [0, Pmax
i ]. With these notations, the static PC

game, denoted byG, is defined in its normal form as follows.
Definition 1 (Static PC game): The static PC game is a

triplet G = (K, {Pi}i∈K, {ui}i∈K) whereK = {1, ..., K} is
the set of players,P1, ...,PK are the corresponding discrete
sets of strategies,Pi = {0, . . . , Pmax

i }, Pmax
i is the maximum

transmit power for playeri, andu1, ..., uk are the utilities of
the different players which are defined by:

ui(p1, ..., pK) =
Rif(SINRi)

pi

[bit/J]. (3)

We suppose from now that the above description of the game
is common knowledge and the players are rational (every
player does the best for himself and knows the others do so
and so on). An important game solution concept is the Nash
equilibrium (i.e., a point from which no player has interestin
unilaterally deviating). When it exists, the non-saturated Nash
equilibrium of this game is given by

∀i ∈ {1, ..., K}, p∗i =
σ2

ηi

β∗

1 − (K − 1)β∗
(4)

where β∗ is the unique solution of the equationxf ′(x) −
f(x) = 0. By using the term “non-saturated NE” we mean that
the maximum transmit power for each user, denoted byPmax

i ,
is assumed to be sufficiently high for not being reached at the
equilibrium i.e., each user maximizes his energy-efficiency for
a value less thanPmax

i (see [9] for more technical details about
this assumption). An important property of the NE given by (4)
is that transmitters only need to know their individual channel
gain (i.e.,gi) to play their equilibrium strategy. One of the
interesting results we want to prove is that it is possible to
obtain a more efficient equilibrium point when transmitters
can update their powers several times per block while keeping
this key information property of individual CSI.

B. The discounted repeated power control game

In this section, we assume that the transmitters can update
their powers within time intervals less than the channel coher-
ence time. The instants at which the transmitters update their
powers are called game stages. Therefore, for each channel
realizationg = (g1, ..., gK) a given repeated game is played.
As mentioned in Sec. I, the fact that the PC game is repeated
induces new behaviors (namely cooperative behaviors) for
the transmitters. Because of repetition, selfish but efficient
agreements between transmitters are possible. In this work,
we propose an operating point (OP) of the one-shot PC game
which can serve as a part of a cooperation plan between the
transmitters. Before defining the repeated power control game,
let define the proposed OP.

By considering all the points(p1, ..., pK) such thatpi ∈
[0, Pmax

i ], i ∈ K, one obtains the feasible utility region. We
consider a subset of points of this region for which the power
profiles(p1, ..., pK) verify pi|gi|2 = pj|gj |2 for all (i, j) ∈ K2.
Such a subset is made of the following system of equations:

∀(i, j) ∈ K2,
∂ui

∂pi

(p) = 0 with pi|gi|
2 = pj |gj|

2. (5)

It turns out that, following the lines of the proof of SE
uniqueness in [9], it is easy to show that a sufficient condition
for ensuring both existence and uniqueness of the solution
to this system of equations is that there existsx0 ∈]0, 1

K−1 [

such that f ′′(x)
f ′(x) − 2(K−1)

1−(K−1)x is strictly positive on ]0, x0[



and strictly negative on]x0,
1

K−1 [. It is satisfied for the two
efficiency functions the authors are aware of, which are:
f(x) = (1−e−x)M [6] andf(x) = e−

c

x [15] with c = 2R−1
(R is the transmission rate). Under the aforementioned condi-
tion, the unique solution of (5) can be checked to be:

∀i ∈ K, pOP
i =

σ2

ηi

γ∗

1 − (K − 1)γ∗
(6)

whereγ∗ is the unique solution ofx[1 − (K − 1) · x]f ′(x) −
f(x) = 0. The proposed OP, given by (6), is thus fair in the
sense of the SINR since∀i ∈ K, SINRi = γ∗. We are going to
exploit this point of the one-shot PC game to build equilibrium
strategies of the DRG.
Let us define a strategy for the discounted repeated game.
The transmitters are assumed to receive a public signals(t)
after playing at game staget and keep this in memory. This
public signal is linked to the actions of the transmitters byan
observation functionφ : P1 × ... × PK −→ S.

Definition 2 (Players’ strategies in the RG): A pure strat-
egy for playeri ∈ K is a sequence of causal functions(τi,t)t≥1
with

τi,t :

∣∣∣∣
Ht → [0, Pmax

i ]
ht 7→ pi(t)

(7)

where t is the game stage index,ht = (s(1), ..., s(t − 1)) is
the game history vector andHt = St−1.
The strategy of playeri, which is a sequence of functions, will
be denoted byτi. The vector of strategiesτ = (τ1, ..., τK)
will be referred to a joint strategy. A joint strategyτ induces
in a natural way a unique action plan(p(t))t≥1. To each
profile of powersp(t) corresponds a certain instantaneous
utility ui(p(t)) for player i. In our setup, each player does
not care about what he gets at a given stage but what he
gets over the whole duration of the game. This is why we
consider a utility function resulting from averaging over the
instantaneous utility.

Definition 3 (Players’ utilities in the RG): Let
τ = (τ1, ..., τK) be a joint strategy. The utility for player
i ∈ K is defined by:

vλ
i (τ ) =

∞∑

t=1

λ(1 − λ)t−1ui(p(t)) (8)

wherep(t) is the power profile of the action plan induced by
the joint strategyτ and0 < λ < 1 is a parameter of the DRG
called the discount factor and is known to every player (since
the game is with complete information).
In the current available wireless literature on the problem
under investigation discounted repeated games (DRG) are used
as follows: in [16] the discount factor is used as a way of
accounting for the delay sensitivity of the network; in [17]the
discount factor is used to let the transmitters the possibility to
value short-term and long-term gains differently. Interestingly,
[11][12] offers another interpretation of this model. Indeed, the
author sees the DRG as a finite RG where the number of game
duration would be unknown to the players and considered as
an integer-valued random variable, finite almost surely, whose

law is known by the players. Otherwise said,λ can be seen
as the stopping probability at each game stage: the probability
that the game stops at staget is thusλ(1−λ)t−1. The function
vλ

i would correspond to an expected utility given the law of
the game duration. This shows that the discount factor is also
useful to study wireless games where a player enters/leaves
the game.

Theorem 4 (Equilibrium strategies in the DRG): Assume
that the following condition is met:

λ ≤
1 − (K − 1)γ∗

(K − 1)γ∗

f(γ∗)

f(β∗)
−

1 − (K − 1)β∗

(K − 1)β∗
. (9)

Then, for all i ∈ K, the following action plan is a subgame
perfect NE of the DRG for any distribution for the channel
gains:

∀t ≥ 1, τi,t =

∣∣∣∣
pOP

i if the other players plaỹp−i

p∗i otherwise
.

(10)
The proof of this theorem is not provided here; the main
idea of the proof is to derive a sufficient condition on the
discount factor such that the maximum gain induced by
a unilateral deviation is less than the loss induced by the
punishment procedure that the other transmitters apply by
playing at the one-shot game NE. The proposed cooperation
plan therefore consists in playing at the operating point ifno
transmitter deviates from this point. If one transmitter deviates
from the OP, then all the other transmitters play the action
corresponding to one-shot game NE. At this point it is possible
to see very clearly the information assumptions needed to
implement the proposed distributed power control policies.
To play at pOP

i or p∗i only the individual CSI (ηi = |gi|
2)

is needed by each transmitter. To detect the deviation of a
transmitter we propose the following mechanism: the receiver
broadcasts the public signals(t) = σ2 +

∑K
i=1 ηi(t)pi(t) ∈ S

(note that the knowledge of the individual SINR is a sufficient
condition to re-construct this public signal). At the OP, this
signal equals 2σ2

1−(K−1)γ∗
. Thus, if one transmitter deviates

all the other transmitters detect this unilateral deviation and
can therefore stop cooperating and start playing the one-shot
game NE. Interestingly, the proposed equilibrium strategies
have been found to be Pareto-optimal for all simulations we
have performed. As a result, the proposed PC policies are both
efficient and rely on reasonable information assumptions. For
comparison, the policies based on pricing [18] require global
CSI.

IV. SLOW POWER CONTROL AND STOCHASTIC

DISCOUNTED REPEATED GAMES

From now on, we consider a more general scenario in which
channel gainsη can vary from game stage to game stage.
The utility function at a given game stage therefore depends
not only on the profile of actionsp(t) played at staget but
also on the vector of channel gainsg(t) = (g1(t), ..., gK(t))
and more precisely onη(t) = (η1(t), ..., ηK(t)) ∈ Γ, with
Γ = Γ1 × ...× ΓK . The corresponding game-theoretic frame-
work is the one of stochastic repeated games. Our objective is



to characterize the set of equilibrium utilities of the repeated
game. This can be thought of as a counterpart of a capacity
region in information theory. The corresponding result is called
a Folk theorem. It turns out that no general Folk theorem
is available for stochastic RG. It is only very recently that
some authors [13][14] succeeded to derive a Folk theorem for
stochastic RG with public information. To be able to exploit
these very interesting results we assume that every transmitter
knows the public signals ∈ S as in the previous section and
has global CSIη at each game instance or stage. An important
condition which is assumed to be satisfied by the channel gain
process is the irreducibility property.

Definition 5: Let η and η′ be two channel states and
π(η′|η), the probability that the next state will beη′ knowing
that the actual state isη. The transition probabilityπ is
irreducible if for any channel statesη and η′, we have
π(η′|η) > 0.
The mobility in wireless communication impose that for a
given channel realization, there is always a positive probability
for each channel gain to be drawn in the next stage. In order to
characterize the set of equilibrium payoff, we assume that the
transition probability is irreducible. As in the previous section,
we assume that the player does not observe perfectly the
actions played by the other player in the past stages (imperfect
monitoring) but have only access to the public signals(t) ∈ S.

A. The game course
The game starts at staget = 1 with an initial stateg(1)

which is known by the players. The transmitters simulta-
neously choose a power levelp(1) = (p1(1), . . . , pK(1))
and get a public signals(1) ∈ S from φ(p(1)). The stage
utility, denoted byui(p(1), η(1)) is not known by the player
i. After the staget − 1, the channel states are drawn from
the probability distributionπ(·|η(t − 1)) ∈ ∆(Γ) and the
realization is publicly announced :η(t) = (η1(t), . . . , ηK(t)).
Taking into account the past history of the game, the players
choose simultaneously their actionpi(t) and get a public signal
s(t) ∈ S from Φ(p(t)) and does not know their stage utility
ui(p(t), η(t)), and so on. We define the vector of privateh̃i(t)

and publich̃(t) history of playeri :

h
i
(t) = (pi(1), s(1), η(1), ..., pi(t − 1), s(t − 1), η(t − 1), η(t))

h(t) = (s(1), η(1), ..., s(t − 1), η(t − 1), η(t))

We define the public history of the game as the intersection
of all private histories. Note that the private history con-
tains the public one and the sequence of transmission power
(pi(t))T−1≥t≥1 of player i. The vectorh(t) lies in the set

H̃t = (S × Γ)t−1 × Γ (11)

where the notation(.)t−1 refer to the Cartesian product of
sets. This vector (11) that is assumed to be known by each
transmitters before playing for blockt. The private and public
histories are introduced in order to define the private and the
public strategies. In the sequel we will restrict ourself only to
the public strategies for which it is possible to characterize the
set of equilibrium utilities. Note that this restriction does not
affect the final result in terms of set of equilibrium utilities. In

fact, we show that, in our framework, the players should not
take into account their private history. A strategy is a sequence
of functions from the history of the game onto a probability
distribution over the set of power.

Definition 6 (Players’ strategies in the RG): A public
strategy for playeri ∈ K is a sequence of functions(τ̃i,t)t≥1
with

τ̃i,t :

∣∣∣∣
H̃t → ∆(Pi)

h̃t 7→ pi(t).
(12)

Where∆(Pi) denote the set of probability overPi.
The public strategy of playeri will therefore be denoted by
τ̃i while the vector of public strategies̃τ = (τ̃1, ..., τ̃K) will
be referred to a joint public strategy. A joint public strategy τ̃
induce in a natural way a unique probabilityPτ̃ ,π over the set
of action plans(p(t))t≥1 and sequence of signals(s(t))t≥1.
The averaged utility for playeri can then be defined as follows.

Definition 7 (Players’ utilities in the RG): Let
τ̃ = (τ̃1, ..., τ̃K) be a joint mixed strategy. The utility
for player i ∈ K if the initial channel state isη(1), is defined
by:

ṽi(τ̃ , g) =
∑

t≤1

λ(1 − λ)t−1
Eτ̃ ,π

[
ui(p(t), η(t))|η(1)

]
(13)

where(p(t))t≥1 is the sequence of power profile induced by
the joint strategỹτ .
We present now the proper definition of a stochastic repeated
game.

Definition 8 (Stochastic RG with Public Monitoring): A
stochastic repeated game with public monitoring is defined
as G = (K, (T̃i)i, (ṽi)i, (Γi)i, π,S, Φ), whereK is the set of
players,T̃i is the set of strategy of playeri, ṽi, her long-term
utility function, π is the transition probability over the set
of channels gains(ηi)i, Φ is the public observation function
andS is the set of public signals.
We suppose from now that the above description of the game is
common knowledge and the players are rational (every player
does the best for himself and knows the others do so and so
on).

B. Equilibrium concept

At this point, public Nash equilibrium strategies of the
stochastic repeated game starting with the channel stateg can
be defined.

Definition 9 (Public Equilibrium Strategies of the RG):
A public mixed strategỹτ supports an equilibrium of the
stochastic repeated game with initial channel stateη(1) if

∀i ∈ K, ∀τ̃ ′
i , ṽi(τ̃ , η(1)) ≥ ṽi(τ̃

′
i , τ̃−i, η(1)) (14)

where−i is the standard notation to refer to the setK\{i};
hereτ̃−i = (τ̃1, ..., τ̃i−1, τ̃i+1, ..., τ̃K).
The notion of Nash equilibrium in repeated game is refined by
the sub-game perfection property, introduced by Selten forex-
tensive games [19], [20]. For a sub-game perfect equilibrium,
the incentives hold along the duration of the game.

Definition 10 (Perfect Public Equilibrium Strat. of the RG):
A public strategy profilẽτ is a perfect public equilibrium if



for every ht ∈ H̃t, the continuation profilẽτ |ht is a Nash
equilibrium of the restricted stochastic repeated game starting
with the channel stateg(t). We denoteEλ(η(1)) the set
of Perfect public equilibrium of the game with initial state
η(1) ∈ Γ and discount factorλ.
An important issue is precisely to characterize the set of possi-
ble equilibrium payoff or public perfect equilibrium payoff in
the repeated game. This kind of result often appears as “Folk
Theorem” (see e.g.,[10][11]). A huge part of the literature
is dedicated to find the set of equilibria under different
assumptions, but a general characterization is still unavailable.
Our model is included in the framework of stochastic repeated
game with imperfect public monitoring.

C. Independence of the initial State

In classical models of stochastic repeated game, the initial
stateη(1) could be determinant for characterizing the solutions
of our problem. However, it is natural to think that the initial
state of channel gain will not influence the future sequence
of channel realization. We present some results of Dutta
(1995) [21] that formalize the above statement. Because of
the irreducibility property of the channel stochastic process,
the limit set of feasible utilities, the set of perfect public
equilibrium utilities and the minmax utilities are independent
of the initial state.

Theorem 11 (Independence of the Initial State):Suppose
that the stochastic repeated game is irreducible (5), it implies
that :

• The limit of the minmax is independent of the initial state
i.e. limλ−→0 minτ−i

maxτi
ṽi(τ̃i, τ̃−i, η(1)) = ṽi for all

η(1) and all i ∈ K.
• The limit set of feasible utilities is independent of the

initial state i.e.limλ−→0 Fλ(η(1)) = F for all η(1).
• The limit set of public perfect equilibrium utilities is in-

dependent of the initial state i.e.limλ−→0 Eλ(η(1)) = E
for all η(1).

The following definition is fundamental for characterize the
set of public perfect equilibrium payoff of our repeated game.

Definition 12: We define the set of asymptotic feasible and
individually rational payoff by:

F ∗ = {x ∈ F |xi ≥ ṽi, ∀i ∈ K} (15)

The setF ∗ is defined as the set of energy-efficiency utilities
the players can get such that each of them has more than his
minmax utility.

D. Main Result : Folk Theorem

The following theorem state that only a condition over the
discount factorλ is sufficient to have a sub-game perfect
equilibrium property for a utility vectoru in F ∗.

Theorem 13: For each utility vectoru ∈ F ∗, there exists a
λ0 such that for allλ < λ0, there exists is a perfect public
equilibrium strategy of our stochastic repeated power control
game, such that the long-term utility equalsu ∈ F ∗.
The proof is based on Hörner, Sugaya, Takahashi and Vieille
(2009), [13] ; Kandori and Matsushima (1998) [22].

V. NUMERICAL ILLUSTRATION OF OPTIMAL

EQUILIBRIUM UTILITIES

The above result implies that each Pareto-optimal utility
vector that is individually rational can be sustained by a public
perfect equilibrium strategy for a discount factor sufficiently
small. In practice, we have to focus on a particular Pareto-
optimal point which is individually rational. For example,
denote by p̃ the solution of the maximization problem :
maxp∈P s.t. ui≥vi∀i∈K

∑
i∈K αiui(p) andũ it’s corresponding

utility vector. The above theorem states thatũ is a public
perfect equilibrium utility of theλ−discounted repeated game
for a sufficiently small discount factor if̃u Pareto-dominates
the Minmax utilities. In the whole section we consider the
same type of scenarios as [8][9] namely random code division
multiple access systems with a spreading factor equal toN
and the efficiency functionf(x) = (1− e−x)M , M being the
block length.
� We consider a simple stochastic process with two channel
states:(η1, η2) ∈ {(7, 1), (1, 7)}. The transition probability
is constant over the channel states:π(·) = (1

2 , 1
2 ) and its

invariant measure isµ = (1
2 , 1

2 ). Consider the scenario
(K, M, N) = (2, 2, 2). Fig. 1 represents the achievable utility
region for the two different channel state and the long-term
expected utility region. The positive orthan denotes the set
of expected individually rational utilities. Its intersection
with the expected achievable utility region describes the
set of public perfect equilibrium utility. Three important
points are highlighted in the different scenario: the expected
Nash equilibrium of the one-shot game studied in [7], the
expected operating/cooperation point studied by Le Treust
and Lasaulce 2010 [23], and the point where the expected
social welfare (sum of utilities) is maximized (star). From
this figure it can be seen that: a significant gain can be
obtained by using a model of repeated games instead of the
one-shot model. Moreover, significant improvement in term
of expected utilities is a direct consequence of the full CSI
instead of individual CSI.
� As a second type of numerical results, the performance
gain brought by the stochastic discounted repeated game
(SDRG) formulation of the distributed PC problem is
assessed. Considering a simple stochastic process where
ηi = 2 and ηj = 1 for all j ∈ K\{i} and thei’s player
is drawn with uniform distribution over theK players. We
compute the expected social utility the players get at the
social optimumwSDRG. Denote bywNE (resp.wDRG and
wSDRG) the efficiency of the NE (resp. DRG and SDRG
equilibrium) in terms of social welfare i.e. the sum of utilities
of the players. Fig. 2 represents the quantitywSDRG−wNE

wNE

and wDRG−wNE

wNE
in percentage as a function of the spectral

efficiency α = K
N

with N = 128 and 2 ≤ K < N
β∗

+ 1.
The asymptotesαmax = 1

β∗
+ 1

N
are indicated by dotted

lines for different valuesM ∈ {10, 100}. The improvement
becomes very significant when the system load is close to
1
N

+ 1
β∗

, this is because the power at the one-shot game NE
becomes large when the system becomes more and more



loaded. As explained in [9] for the Stackelberg approach
these gains are in fact limited by the maximum transmit power.

VI. CONCLUSION

Repeating a power control game is a way of introducing
cooperation between selfish transmitters. In this paper, we
have shown that the corresponding cooperative power control
policies can be implemented without using explicit cooper-
ation channels between the transmitters. In the case of fast
PC, only individual CSI and a realistic public signal are
required to implement the proposed schemes. In the case of
slow power control, only the feasible utility region has been
derived, the equilibrium power control strategies to achieve the
corresponding points still need to be found. Both in the cases
of fast and slow power control, the cooperation gain induced
by the underlying cooperation plans is shown to be signifi-
cant. The repeated game formulation of the distributed power
control problem therefore shows a way of reaching interesting
trade-offs in terms of global network energy-efficiency and
signalling.
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Fig. 1. Utility regions for (K, M, N) = (2, 2, 2) considering different
channels configurations and their expected utilities. Our procedure lead to the
expected social optimum.
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Fig. 2. The gain brought by the repeated-game based cooperation in terms
of the sum of utilities (standard and stochastic repeated games) w.r.t. to the
purely non-cooperative scenario (Nash Equilibrium).


