N
N

N

HAL

open science

Implicit cooperation in distributed energy-efficient
networks

Mael Le Treust, Samson Lasaulce, Mérouane Debbah

» To cite this version:

Mael Le Treust, Samson Lasaulce, Mérouane Debbah. Implicit cooperation in distributed energy-
efficient networks. International Symposium on Communications, Control and Signal Processing, Mar

2010, Cyprus. pp.32-38. hal-00462543

HAL Id: hal-00462543
https://centralesupelec.hal.science/hal-00462543
Submitted on 10 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://centralesupelec.hal.science/hal-00462543
https://hal.archives-ouvertes.fr

Implicit cooperation in distributed energy-efficient
networks

M. Le Treust, S. Lasaulce, and M. Debbah

Abstract—We consider the problem of cooperation in dis- level. More specifically, the authors analyze the problem of
tributed wireless networks of selfish and free transmittersaiming  distributed power control (PC) in flat fading multiple acses
at maximizing their energy-efficiency. The strategy of each ;hannels. The problem is formulated as a non-cooperative

transmitter consists in choosing his power control (PC) paty. hot h th | the t itt th
Two scenarios are considered: the case where transmittersan  ON€-SNOt game where the players are the transmitters, the

update their power levels within time intervals less than te Strategy of a given player is his transmit power for a given
channel coherence time (fast PC) and the case where itis up@gal channel realization, and his payoff/reward/utility fuioct is

only once per time interval (slow PC). One of our objectivess  energy-efficiency of his communication with the receiver.

to show how cooperation can be stimulated without assuming \jntotynately, the Nash equilibrium (NE) resulting fromisth
cooperation links between the transmitters but only by repating . ’ . -
game is generally inefficient.

the corresponding PC game and by signals from the receivernl - .
order to design efficient PC policies, standard and stochaist [N the papers on energy-efficient power control cited above
repeated games are respectively exploited to analyze thesta and related papers (e.g., [8][9]), the used game-theoretic
and slow PC problems. In the first case a cooperation plan framework is the one of static or one-shot games for which
between transmitters, that is both efficient and relies on md 5 ngmitters are assumed to interact once per block and from
information assumptions, is proposed. In the second casen block to block in an independent manner; the block duration
region of equilibrium utilities is derived from very recent and | ’ .
powerful results in game theory. is assumed to be less than the channel coherence time. In
practice, there will be some scenarios where transmitians c
update their power level several times within a block or/ared

In the wireless literature, when it is referred to coopemti active over several and possibly many blocks. In game theory
networks, this generally means that some nodes in the nletwiiris well known that this feature can change the behavior
act as relays in order to help other nodes (the sources @-tragf the players and incite them to cooperate while staying
mitters) to better communicate with their respective aedidbn  selfish [10]. The corresponding game-theoretic framewsrk i
or receiver nodes. This idea has been formalized in infdonat then the one of dynamic games. In this paper we propose to
theory in [1][2] for the relay channel, for the cooperativenodel the distributed energy-efficient power control peobl
multiple access channel (MAC) [3], and for other types diy exploiting two types of repeated games (RG), namely
cooperative channels during the last decade ([4][5] etbe Tthe standard and stochastic RG, which are special cases of
vast majority of these papers address centralized netwotkgamic games. In standard RG [11], the same game is
and cooperation between nodes is based on the existenceepkated a certain number of times. In stochastic RG [12],
physical links between some nodes. In the present paper players’ utilities depend on a certain state (or paramgters
consider the case of decentralized or distributed netweits  which vary over time according to a stochastic process. We
implicit cooperation. By decentralized/distributed, weean use standard RG to analyze scenarios where transmitters can
that the nodes are assumed to be free decision makers wpdate their powers several times within each block (theesam
decide by themselves what is good for them and can ignageme is therefore repeated within a block) and stochastic RG
possible recommandations from central nodes (namely tug scenarios where transmitters update their powers oace p
power control policy in our case). By implicit, we mean thablock (the game is therefore parameterized by the charatel st
nodes cooperate without using dedicated cooperation efnrand is repeated from block to block). We will respectiveligre
between nodes. To be more concrete, we consider multipbethese scenarios as fast and slow power control (FPC, SPC).
access channels where no link between the transmitters is asThe contributions of this paper are as follows: 1. The
sumed and transmitters are modeled by selfish players aimirgmework of repeated games is applied for the first time ¢o th
at maximizing the energy-efficiency of their communicatiortistributed energy-efficient power control problem; 2. het
A very simple and pragmatic way of knowing to what exterdéase of FPC, we derive equilibrium PC strategies which are
a communication is energy-efficient has been proposed based on a cooperation plan between the transmitters oParet
[6][7]. The authors of these articles define energy-efficyen efficient, and only require individual channel state infatian
as the net number of information bits that are transmitt¢@SI) at the transmitters and a public signal to be implednt
without error per time unit (goodput) to the transmit powes. In the case of SPC, which is much more difficult to treat

_ .y _properly, only the set of possible equilibrium utilities tife
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rate is considered for the utilities) is derived by expluitia transmit power for playet, andu, ..., u; are the utilities of
very recent result in game theory derived by Horner et &] [1the different players which are defined by:
and Fudenberg and Yamamoto [14]. To achieve this utility R, f(SINR,)
region, global CSI and a public signal are assumed at the wi(p1y s PK) = —2 :
transmitters. The determination of the equilibrium siyés '
is left as a non-trivial extension of this work. We suppose from now that the above description of the game
is common knowledge and the players are rational (every
Il. SIGNAL MODEL player does the best for himself and knows the others do so

We consider a distributed MAC with a finite number o]and._so .on). .An impofta”t game .solution concept i§ thE." Nash
users, which is denoted b. The network is said to be equilibrium (i.e., a point from which no player has interagst

distributed in the sense that the receiver (e.g., a basierslatumlatera”y deviating). When it exists, the non-satueiiiash

does not dictate to the transmitters (e.g., mobile stalion%qu'“br'um of this game is given by

their PC policy. Rather, all the transmitters chooses their Vi 1K ., o° 5*

policy byﬁ-themsel_ves a;\d Iwatnr;[ to seffishly maximize their ief{l,..K}, p; = mI—(K-1)5"

energy-efficiency; in particular they can ignore some dJj@eti . . . _

centralized policies. We assume that the users transmiit ﬂj%hereﬁ is the unique solution of the equatiary”(z) —
t

data over block flat fading channels. The equivalent baséb () = 0 By using th? term n;)n-satuhrated NdE we gleg)r(l that
signal received by the base station can be written as the maximum transmﬂ power for €ach user, { enoted’By*,
is assumed to be sufficiently high for not being reached at the

K equilibrium i.e., each user maximizes his energy-efficyefoc
Y= Z git; +2 (1) avalueless tha®"** (see [9] for more technical details about

=1 this assumption). An important property of the NE given by (4
with i € K, K = {1,.., K}, E|lz;|2 = pi, 2 ~ CN(0,02). 1S that transmitters only need to know their individual cheln
Each channel gaim; varies over time following a Markoy 9ain (i-€.,9;) to play their equilibrium strategy. One of the
chain and is assumed to be constant over each block. HYEresting results we want to prove is that it is possible to
each transmittei, the channel gainy, is assumed to lie in obtain a more efficient equilibrium point when transmitters
a discrete set (e.g., because channel chains are quantiZedf) Update their powers several times per block while keepin
The notationy; = IgiIQ, with n; € Ty, |T4| < oo, will be this key information property of individual CSI.

used. For the transmit power levels they will be assumed g the discounted repeated power control game
to lie in a compact seP; = [0, P*¥] in Sec. lll and in a

discrete se’; = {P!,.., PM}, with PM = Pma<_in Sec. In this section, we assume that the transmitters can update
IV. The discrete setza{ssfjrr;ptic;n is suited to (;xpléit theltesytheir Powers within time intervals less than the channekcoh

of [13][14] without introducing additional technicalisewe ©€NC€ time. The instants at which the transmitters updaie the
wanted to avoid in this (relatively short) paper. At laste thPOWers are called game stages. Therefore, for each channel

receiver is assumed to implement single-user decoding. realizationg = (g1, ..., gx) a given repeated game is played.
As mentioned in Sec. |, the fact that the PC game is repeated

I11. FAST POWER CONTROL AND STANDARD REPEATED induces new behaviors (namely Cooperative behaviors) for
GAMES the transmitters. Because of repetition, selfish but efficie

agreements between transmitters are possible. In this,work

we propose an operating point (OP) of the one-shot PC game
Here we review a few key results from [7] concerning thevhich can serve as a part of a cooperation plan between the

static PC game. We denote % the transmission information transmitters. Before defining the repeated power contnolega

rate (in bps) for usei and f an efficiency function represent-let define the proposed OP.

ing the block success rate, which is assumed to be sigmoidaBy considering all the point$ps,...,px) such thatp; €

and identical for all the users. For a given block, the signal [0, P™?¥], i € K, one obtains the feasible utility region. We

interference plus noise ratio (SINR) at receiver {1,..., K} consider a subset of points of this region for which the power

[bit/J]. 3)

2

(4)

A. Review of the one-shot power conrol game

is denoted bySINR,; and writes as: profiles(p, ..., px ) verify p;|g:|*> = pj|g;|* forall (i, j) € K2.
pini Such a subset is made of the following system of equations:
SINR; = e ) o
. - P15 g .. 7 .
ser\i Pals V(i,j) € K% 5 5(p) = 0 with pilgil* = pslg;*. ()

Ip;
wherep;, € [0, P™**]. With these notations, the static PC P . _
game, denoted b¢, is defined in its normal form as follows. !t Urns out that, following the lines of the proof of SE
Definition 1 (Static PC game): The static PC game is 4niquenessin [9], it is easy to show that a sufficient coaditi
triplet G = (K, {P;Yicx, {witiex) wherekC = {1,.., K} is for ensuring both existence and uniqueness of the solution

. SvE : .
the set of playersP,, ..., Px are the corresponding discrete(© this system of eqzuiuolns is that there exisfs<]0, —|
sets of strategies?; = {0,..., Pma*}, PMax js the maximum such that ’;((f)) - 1,((Ki1))m is strictly positive on]0, z|




and strictly negative oz, ﬁ[. It is satisfied for the two law is known by the players. Otherwise sailcan be seen
efficiency functions the authors are aware of, which aras the stopping probability at each game stage: the prdtyabil
f(x)=(1—e )M [6] and f(z) = e~ % [15] with ¢ = 28 —1 that the game stops at stagis thus)\(1—\)*~!. The function
(R is the transmission rate). Under the aforementioned condj* would correspond to an expected utility given the law of

tion, the unique solution of (5) can be checked to be: the game duration. This shows that the discount factor © als
9 useful to study wireless games where a player enters/leaves
o y*
Vie K, pPf = (6) the game.

mi 1= (K —1)y Theorem 4 (Equilibrium strategies in the DRG): Assume
where~* is the unique solution of[1 — (K — 1) -z|f/(z) — that the following condition is met:

f(z) =0. The propqseql OP, given by (6), is thus fair in the 1= (K -1y f(v*) 1—(K—1)p*

sense of the SINR sincé € K, SINR; = ~*. We are going to A< & -1 [ (K-1)p 9)
exploit this point of the one-shot PC game to build equilibmi . . )

strategies of the DRG. Then, for alli € K, the following action plan is a subgame

The transmitters are assumed to receive a public sigftal 92ns:

after playing at game stageand keep this in memory. This pPT  if the other players play_;
public signal is linked to the actions of the transmittersaloy Vt=1, 7= P otherwise :
observation functior) : P; x ... x Px — S. (20)

Definition 2 (Players’ strategies in the RG): A pure stratThe proof of this theorem is not provided here; the main
egy for playeri € K is a sequence of causal functioprs,),., idea of the proof is to derive a sufficient condition on the

with , discount factor such that the maximum gain induced by

. He — [0, P (7) @ unilateral deviation is less than the loss induced by the

' hy pi(t) punishment procedure that the other transmitters apply by

wheret is the game stage indek, = (s(1),...,s(t — 1)) is playing at the one—§hot_game.NE. The proposgd coqperation
the game history vector arf; = St~!. plan therefore consists in playing at the operating poimtoif

The strategy of player, which is a sequence of functions willtransmitter deviates from this point. If one transmittevielees

be denoted byr; Thé vector of strategies = (7 71;) from the OP, then all the other transmitters play the action
" = MRS . . . ey .

will be referred to a joint strategy. A joint strategyinduces CcOrresponding to one-shot game NE. At this point it is pdesib

in a natural way a unique action pla(t));>:. To each to see very clearly the information assumptions needed to

profile of powersp(t) corresponds a certain instantaneod§'Plement tgg prop*osed distributed power control p02ILC|es

utility u,(p(t)) for playeri. In our setup, each player does'© Play atp;™ or pi only the individual CSI 4; = |g[)

not care about what he gets at a given stage but what igcheeded by each transmitter. To detect the deviation of a

gets over the whole duration of the game. This is why wgansmitter we prop(_)se_the foIIowu;g me%hanlsm: the rexreiv

consider a utility function resulting from averaging oveet Proadcasts the public signalt) = o® + 5 ,_, mi(t)pi(t) € S

instantaneous utility. (note that the knowledge of the individual SINR is a suffitien
Definition 3 (Players’ utilities in the RG): Let condition to re-conzstruct this public signal). At the OFsth
. . 20. . . .
7 = (r,..,7%) be a joint strategy. The utility for player Signal equals;—z=y—=. Thus, if one transmitter deviates
i € K is defined by: all the other transmitters detect this unilateral deviatamd
. can therefore stop cooperating and start playing the ooe-sh
M r) = Z/\(l B /\)t_lui(g(t)) ®) game NE. Interestingly, the proposed equilibrium straegi

have been found to be Pareto-optimal for all simulations we
_ _ _ _ have performed. As a result, the proposed PC policies afe bot
wherep(t) is the power profile of the action plan induced b¥fficient and rely on reasonable information assumptions. F

the joint strategyr and0 < A < 1 is a parameter of the DRG comparison, the policies based on pricing [18] require alob
called the discount factor and is known to every player @ings|.

the game is with complete information).

In the current available wireless literature on the problem V. SLOW POWER CONTROL AND STOCHASTIC

under investigation discounted repeated games (DRG) atk us DISCOUNTED REPEATED GAMES

as follows: in [16] the discount factor is used as a way of From now on, we consider a more general scenario in which
accounting for the delay sensitivity of the network; in [1@¢ channel gaing; can vary from game stage to game stage.
discount factor is used to let the transmitters the postsiid  The utility function at a given game stage therefore depends
value short-term and long-term gains differently. Intérggy, not only on the profile of actiong(¢) played at stage but
[11][12] offers another interpretation of this model. ledethe also on the vector of channel gaip&t) = (g1 (t), ..., g ())
author sees the DRG as a finite RG where the number of gaamel more precisely om(t) = (7,(t),...,nx(t)) € T, with
duration would be unknown to the players and considered Bs=T'; x ... x I'x. The corresponding game-theoretic frame-
an integer-valued random variable, finite almost surelypseh work is the one of stochastic repeated games. Our objedtive i

t=1



to characterize the set of equilibrium utilities of the refgel fact, we show that, in our framework, the players should not
game. This can be thought of as a counterpart of a capadte into account their private history. A strategy is a sxgpe
region in information theory. The corresponding resul@iberd  of functions from the history of the game onto a probability
a Folk theorem. It turns out that no general Folk theoredistribution over the set of power.

is available for stochastic RG. It is only very recently that Definition 6 (Players’ strategies in the RG): A public
some authors [13][14] succeeded to derive a Folk theorem firategy for player € K is a sequence of functiors; ;)
stochastic RG with public information. To be able to exploitvith -

these very interesting results we assume that every tréesmi 7, Hy — A(Pi) (12)
knows the public signa € S as in the previous section and ' hy = pi(t).

has global CSh at each game instance or stage. An importaW/hereA(Pi) denote the set of probability over;.

condition_ WhiCh is assgm_ed to be satisfied by the channel ggife public strategy of player will therefore be denoted by

process is the irreducibility property. 7; while the vector of public strategies = (71, ..., 7x) Will
Definition 5: Let ) and 7' be two channel states andpe referred to a joint public strategy. A joint public stayer

7(1'[n), the probability that the next state will bg knowing  jnqyce in a natural way a unique probabiliey . over the set

Fhat thg ac.tual state is;. The transition prol?abllltyw IS of action plans(p(t));>; and sequence of §igna(§(t))t>1.

irreducible if for any channel stateg and 7', we have the ayeraged utility for playercan then be defined as follows.

(n'[n) >0 R Definition 7 (Players’ utilities in the RG): Let

T_he mobility in W.Ire|?SS communlcanon impose thqt for & = (#,..,7%) be a joint mixed strategy. The utility

given channel realization, there is always a positive podiha  tor playeri € £ if the initial channel state is)(1), is defined

for each channel gain to be drawn in the next stage. In orderﬁg:

characterize the set of equilibrium payoff, we assume that t

transition probability is irreducible. As in the previowssion,  7i(7.9) = Y _ AL = N7 'Ez « [wi(p(t),n(t))In(1)] (13)

we assume that the player does not observe perfectly the t<1

actions played by the other player in the past stages (irperfyhere (p(t)),>; is the sequence of power profile induced by
monitoring) but have only access to the public sigi(@) € S.  the joint strategyz.

We present now the proper definition of a stochastic repeated

t>1

A. The game course

. _ game.
The game starts at stage= 1 with an initial stateg(1 - ; ; ; iy
which % known by the gayers. The transmitters gsgm)ulta- Definition 8 (Stochastic RG with Public Monitoring): A
neously choose a power leve(1) = (pi(1),...,pk(1)) stochastic repeated game with public monitoring is defined

and get a public signa(1) € S from ¢(p(1)). The stage asg = (K, (7i):, (%), (Ti)i, 7, S, @), where £ is the set of
utility, denoted byu;(p(1),7(1)) is not known by the player players,7; is the set of strategy of playéy o;, her long-term
i. After the staget — 1, the channel states are drawn fromutility function, 7 is the transition probability over the set
the probability distribution(-[n(t — 1)) € A(') and the of channels gaingn;);, ® is the public observation function
realization is publicly announcedy(t) = (11(t), ..., nx(t). and S is the set of public signals.

Taking into account the past history of the game, the play P ;
choose simultaneously their actipr(7) and get a public signaI% suppose from now that the above description of the game is

s(t) € S from ®(p(t)) ‘and does not know their stage utilityc@mmon knowledge and the players are rational (every player
wi(p(t), n(t)) and so on. We define the vector of privéIth) does the best for himself and knows the others do so and so

and publich(t) history of player; : on).

Bt = (i(D.s(U.n(D),pilt ~ 1), 5t ).t~ 1),y B+ EQuilibrium concept
h(t) = (s(1),n(1),...,s(t — 1),n(t — 1), 7(t)) At this point, public Nash equilibrium strategies of the

] o ) _stochastic repeated game starting with the channel gteés
We define the public history of the game as the intersectigR gefined.

of. all private _histories. Note that the private hi_stqry CoN- Definition 9 (Public Equilibrium Strategies of the RG):
tains the public one and. the sequence of_ transmission poviehplic mixed strategyr supports an equilibrium of the
(pi(t))T-12¢>1 Of playeri. The vectorh(t) lies in the set  siochastic repeated game with initial channel state) if

Hy=(SxD) "' xT (11) Vi€ KC,VF, 52 n(1) > 67, 7_,n()  (14)

where the notation(.)!~! refer to the Cartesian product ofwhere —i is the standard notation to refer to the &&t{:};
sets. This vector (11) that is assumed to be known by eawlrer , = (71, ..., Ti—1, Tit1y -, TK)-

transmitters before playing for bloegk The private and public The notion of Nash equilibrium in repeated game is refined by
histories are introduced in order to define the private aed tthe sub-game perfection property, introduced by Selteexer
public strategies. In the sequel we will restrict ourselfyaio  tensive games [19], [20]. For a sub-game perfect equilibyiu
the public strategies for which it is possible to charaggethe the incentives hold along the duration of the game.

set of equilibrium utilities. Note that this restriction e® not Definition 10 (Perfect Public Equilibrium Strat. of the RG):
affect the final result in terms of set of equilibrium utiéi§i. In A public strategy profiler is a perfect public equilibrium if



for every bt ¢ H,, the continuation profiler;,. is a Nash V. NUMERICAL |ILLUSTRATION OF OPTIMAL
equilibrium of the restricted stochastic repeated gametistg. EQUILIBRIUM UTILITIES

with the channel statg(t). We denoteE,(n(1)) the set o ) -
of Perfect public equilibrium of the game with initial state 1€ above result implies that each Pareto-optimal utility
n(1) € T and discount facton. vector that |§_|nQ|V|duaIIy rational can be sustained by plm:u
An important issue is precisely to characterize the set efpo Perfect equilibrium strategy for a discount factor suffitlg

ble equilibrium payoff or public perfect equilibrium payeh ~ Small- In practice, we have to focus on a particular Pareto-
the repeated game. This kind of result often appears as “FERIiMal point which is individually rational. For example,
Theorem” (see e.g.,[10][11]). A huge part of the literaturd€note byp the solution of the maximization problem :
is dedicated to find the set of equilibria under differeft!@Xpepr s.t.u;>v;vieK > iex iui(p) anda it's ‘EOTVGSPond'Og
assumptions, but a general characterization is still urenia. Utility vector. The above theorem states thats a public
Our model is included in the framework of stochastic repgat@@rfect equilibrium utility of theh—discounted repeated game

game with imperfect public monitoring. for a sufficiently small discount factor i, Pareto-dominates
o the Minmax utilities. In the whole section we consider the
C. Independence of the initial State same type of scenarios as [8][9] namely random code division

In classical models of stochastic repeated game, thelinitiaultiple access systems with a spreading factor equay to
stater(1) could be determinant for characterizing the solutiornd the efficiency functiorf(x) = (1 —e~*)™, M being the
of our problem. However, it is natural to think that the iaiti block length.
state of channel gain will not influence the future sequentéWe consider a simple stochastic process with two channel
of channel realization. We present some results of Dutsates:(n1,72) € {(7,1),(1,7)}. The transition probability

(1995) [21] that formalize the above statement. Because isfconstant over the channel stateg:) = (1,1) and its
the irreducibility property of the channel stochastic @ss; invariant measure is. = (4,3). Consider the scenario

the limit set of feasible utilities, the set of perfect publi (K, M, N) = (2,2,2). Fig. 1 represents the achievable utility
equilibrium utilities and the minmax utilities are indepiemt region for the two different channel state and the long-term
of the initial state. expected utility region. The positive orthan denotes the se
Theorem 11 (Independence of the Initial Stat8uppose of expected individually rational utilities. Its intersam
that the stochastic repeated game is irreducible (5), itieap with the expected achievable utility region describes the
that : set of public perfect equilibrium utility. Three important

« The limit of the minmax is independent of the initial stat80ints are highlighted in the different scenario: the expec
i.e. limx_o min,_,maz,, 5 (%, 7_,,n(1)) = @ for all Nash equilibrium of the one-shot game studied in [7], the

n(1) and all i € K. expected operating/cooperation point studied by Le Treust
« The limit set of feasible utilities is independent of thend Lasaulce 2010 [23], and the point where the expected
initial state i.e.limy__o Fi(n(1)) = F for all n(1). social welfare (sum of utilities) is maximized (star). From

« The limit set of public perfect equilibrium utilities is in-this figure it can be seen that: a significant gain can be
dependent of the initial state i.Bm,__.o E\(n(1)) = £ obtained by using a model of repeated games instead of the

for all 5(1). one-shot model. Moreover, significant improvement in term

The following definition is fundamental for characterize th_of expected utilities is a direct consequence of the full CSl

set of public perfect equilibrium payoff of our repeated mmstead of individual CSl. .
PUDIC P quiibrium pay ur rep e Il%lAs a second type of numerical results, the performance

gain brought by the stochastic discounted repeated game
(SDRG) formulation of the distributed PC problem is
F*={xeFlx; >0, Vie K} (15) assessed. Considering a simple stochastic process where

. . g .o, = 2 andn; = 1 for all j € K\{i} and thei’s player
The setF™ is defined as the set of energy-efficiency utilitied drawn with uniform distribution over thé players. We

IS,
tmhﬁ]rﬂ:)}(/el;tsi”f;n get such that each of them has more thancﬁo'?npute the expected social utility the players get at the

social optimumwgpra. Denote bywyg (resp.wprg and
D. Main Result : Folk Theorem wspre) the efficiency of the NE (resp. DRG and SDRG

The following theorem state that only a condition over thgduilibrium) in terms of social welfare i.e. the sum of uigs
discount factor\ is sufficient to have a sub-game perfec®f the players. Fig. 2 represents the quantity>fc—se
equilibrium property for a utility vector in F*. and “2IE=RXE in percentage as a function of the spectral

Theorem 13: For each utility vectar € F*, there exists a efficiencya = § with N = 128 and2 < K < f + 1.

Ao such that for all\ < )\, there exists is a perfect publicThe asymptotesy,,.. = % + % are indicated by dotted
equilibrium strategy of our stochastic repeated power mant lines for different values\ € {10,100}. The improvement
game, such that the long-term utility equadss F*. becomes very significant when the system load is close to
The proof is based on Horner, Sugaya, Takahashi and Vieiglf.ur ﬁl this is because the power at the one-shot game NE

(2009), [13] ; Kandori and Matsushima (1998) [22]. becomes large when the system becomes more and more

individually rational payoff by



loaded. As explained in [9] for the Stackelberg approaghs] R. Etkin, A. Parekh, and D. Tse, “Spectrum sharing fotiaemsed

these gains are in fact limited by the maximum transmit power

VI. CONCLUSION

Repeating a power control game is a way of introducings]
cooperation between selfish transmitters. In this paper, we
have shown that the corresponding cooperative power dont[rlgl
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