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Phase-locking between Kuramoto oscillators:
robustness to time-varying natural frequencies

Alessio Franci, Antoine Chaillet and William Pasillas-Lépine

Abstract— In this paper we analyze the robustness of phase-
locking in the Kuramoto system with arbitrary bidirectional
interconnection topology. We show that the effects of time-
varying natural frequencies encompass the heterogeneity in the
ensemble of oscillators, the presence of exogenous disturbances,
and the influence of unmodeled dynamics. The analysis, based
on a Lyapunov function for the incremental dynamics of the
system, provides a general methodology to build explicit bounds
on the region of attraction, on the size of admissible inputs,
and on the input-to-state gains. As an illustrative application
of this method, we show that, in the particular case of the
all-to-all coupling, the synchronized state exponentially input-
to-state stable provided that all the initial phase differences
lie in the same half circle. The approach provides an explicit
bound on the convergence rate, thus extending recent results
on the exponential synchronization of the finite Kuramoto
model. Furthermore, the proposed Lyapunov function for the
incremental dynamics allows for a new characterization of
the robust asymptotically stable phase-locked states of the
unperturbed dynamics in terms of its isolated local minima.

I. INTRODUCTION

Synchronization has recently found many applications in
the modeling and control of physical [1], [2], [3], chemical
[4], medical [5], biological [6], and engineering problems [7].
Roughly speaking, an ensemble of interacting agents is said
to synchronize when their outputs tend to a common value
[8, Chapter 5]. Examples of such a behavior can be found in
interconnected neurons [6], [9], [10], chemical oscillators [4],
coupled mechanical systems [11] and consensus algorithms
[12], [13], [14]. Phase-locking, or frequency locking, is a
particular type of synchronization that describes the ability
of interconnected oscillators to tune themselves to the same
frequency. One of the most widely used mathematical model
to analyze this behavior is the Kuramoto model, which was
first introduced in [4] to describe globally coupled chemical
oscillators, as a generalization of the one originally proposed
by Winfree [16]. Later on, many other works generalized
these pioneer seminal works [12], [17], [18], [19], [20], [21],
[22], [23], [7], [14], [8], [24]. In this paper we consider
the Kuramoto system with time-varying natural frequencies
and a general interconnection topology. Letting the signal $i

denote the time-varying natural frequency of the oscillator
i ∈ {1, . . . , N}, and k = [kij ]i,j=1,...,N ∈ RN×N≥0 represent
the coupling matrix, each agent i is described by its phase
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θi ruled by the following dynamics:

θ̇i(t) = $i(t) +
N∑
j=1

kij sin(θj(t)− θi(t)), ∀t ≥ 0. (1)

The analysis of robustness with respect to time-varying natu-
ral frequencies encompasses different types of perturbations,
including agents heterogeneity, influence of exogenous inputs
and imprecise modeling. Heterogeneities among oscillators,
such as different constant natural frequencies, are known
to prevent phase-locking if the coupling strength is too
small [20], [19], [25], [26], [24]. Exogenous disturbances,
which may include deterministic or stochastic signals [27],
can also affect, and even impede, phase-locking. Time-
varying natural frequencies may also model the influence
of the feedback signals studied in the literature for their
desynchronizing features [26], [28], [29], [30], [31], [15],
as well as time-varying interconnection topologies an non-
sinusoidal coupling. This issue is particularly relevant for
the study of interconnected neuronal cells for which little is
known on the interconnection topology and synaptic weights
between neurons [32].

The robustness of phase-locking in the Kuramoto model
has already been partially addressed in the literature both
in the case of infinite and finite number of oscillators.
On the one hand, the infinite dimensional Kuramoto model
allows for an easier analytical treatment of the robustness
analysis (see for example [18] for a complete survey). This
approach has been used to analyze the effect of delayed
[31] and multisite [28] mean-field feedback approach to
desynchronization. In the case of stochastic inputs it allows to
find the minimum coupling to guarantee phase-locking in the
presence of noise [27]. This approach is, however, feasible
only in the case of all-to-all interconnection. On the other
hand, the finite dimensional case has been the object of both
analytical and numerical studies. In particular, [25] proposes
a complete numerical analysis of robustness to time-varying
natural frequencies, time-varying interconnection topologies
and non-sinusoidal coupling. It suggests that phase-locking
exhibits some robustness to all these types of perturbations.
Analytical studies on the robustness of phase-locking in
the finite Kuramoto model have been addressed only for
constant natural frequencies [20], [17]. The existence and
explicit expression of the fixed points describing stable and
unstable phase-locked states is studied in [19]. The Lyapunov
approach proposed in [21] for an all-to-all coupling suggests
that an analytical study of phase-locking robustness can be
deepened. To the best of our knowledge the problem of
the robustness of phase-locking with respect to time-varying



natural frequencies has still not been analytically addressed
in the finite Kuramoto model with arbitrary bidirectional
interconnection topologies.

This paper establishes that phase-locking is locally input-
to-state stable (ISS) with respect to small inputs. The proof is
based on the existence of an ISS-Lyapunov function for the
incremental dynamics of the system. This analysis provides
a general methodology to build explicit estimates on the size
of the region of convergence, the ISS gain, and the tolerated
input bound. It applies to general symmetric interconnection
topologies and to any asymptotically stable phase-locked
state. As an illustrative application of the main result, we
extend some results in [17] to the time-varying case, by
proving the exponential ISS of synchronization when all the
initial phase differences lie in the interval

[
−π2 ,

π
2

]
, and by

giving explicit bounds on the convergence rate. The size
of the region of convergence, the sufficient bound on the
coupling strength and the convergence rate are compared to
those obtained in [17]. Furthermore, the Lyapunov function
for the incremental dynamics allows for a new characteriza-
tion of the phase-locked states of the unperturbed system. In
particular, when restricted to a suitable invariant manifold,
it allows to completely characterize the robust phase-locked
states in terms of its isolated local minima.

Notation. For a set A ⊂ R and a ∈ R, A≥a denotes the
set {x ∈ A : x ≥ a}. Given a vector x ∈ Rn, |x| denotes
its Euclidean norm, that is |x| :=

√∑n
i=1 x

2
i , while |x|∞

denotes its infinity norm, that is |x|∞ := maxi=1,...,n |xi|.
We adopt the notation |x|2 := |x|, when we want to explicitly
distinguish |x| from |x|∞. For a set A ⊂ Rn and x ∈ Rn,
|x|A = infy∈A |y−x| denotes the point-to-set distance from
x to A. B(x,R) refers to the closed ball of radius R centered
at x in the Euclidean norm, i.e. B(x,R) := {z ∈ Rn :
|x − z| ≤ R}; for a subset A ⊂ Rn, B(A, R) := {z ∈
Rn : |z|A ≤ R}. ‖u‖ is the L1 norm of the signal u(·), that
is, if u : R≥0 → Rn denotes a measurable signal, locally
essentially bounded, ‖u‖ := esssupt≥0|u(t)|. A continuous
function α : R≥0 → R≥0 is said to be of class K if it is
increasing and α(0) = 0. It is said to be of class K∞ if it
is of class K and α(s) → ∞ as s → ∞. A function β :
R≥0 ×R≥0 → R≥0 is said to be of class KL if β(·, t) ∈ K
for any fixed t ≥ 0 and β(s, ·) is continuous decreasing and
tends to zero at infinity for any fixed s ≥ 0. Tn denotes the
n-Torus. If x ∈ Rn, ∇x is the gradient vector with respect to
x, i.e. ∇x =

(
∂
∂x1

, . . . , ∂
∂xn

)
. Given x ∈ Rn and a ∈ R, (x

mod a) := [xi mod a]i=1,...,n, where mod denotes the
modulo operator. The vector with all unitary components in
Rn is denoted by 1n.

II. ROBUSTNESS OF PHASE-LOCKED SOLUTIONS

A. Robustness analysis

Phase-locking can be formally defined based on the in-
cremental dynamics θ̇i − θ̇j associated to (1). As in [15],
a phase-locked solution corresponds to a fixed point of the
incremental dynamics.

Definition 1 (Phase-locking / Exact synchronization) A
solution θ∗ to system (1) is said to be phase-locked iff

θ̇∗j (t)− θ̇∗i (t) = 0, ∀ i, j = 1, . . . , N, ∀t ≥ 0.

It is said to be exactly synchronized if it is phase-locked with
zero phase differences, that is

θ∗i (t)− θ∗j (t) = 0, ∀ i, j = 1, . . . , N, ∀t ≥ 0.

In view of this definition, the robustness analysis of phase-
locking boils down to the analysis of the fixed points of
the dynamics ruling the phase differences θi− θj . A similar
approach has been exploited in [17] in the case of all-to-all
coupling and constant inputs. In contrast to [20], studying
the incremental dynamics of the system avoids the use of
the grounded Kuramoto model, in which the mean frequency
of the ensemble is “grounded” to zero and synchronization
corresponds to a fixed point. While the latter is a well defined
mathematical object for constant perturbations, its extension
to time-varying inputs, which is the subject of the present
study, is not clear. Hence, we start by defining the common
drift ω of the system (1) as

ω(t) :=
1
N

N∑
j=1

$j(t), ∀t ≥ 0, (2)

and the grounded input ω̃ as ω̃ := [ω̃i]i=1,...,N , where

ω̃i(t) := $i(t)− ω(t), ∀i = 1, . . . , N, ∀t ≥ 0. (3)

Noticing that $i −$j = ω̃i − ω̃j , the evolution equation of
the incremental dynamics ruled by (1) reads

θ̇i(t)− θ̇j(t) = ω̃i(t)− ω̃j(t)+ (4)∑N
l=1 kil sin(θl(t)−θi(t))−

∑N
l=1 kjl sin(θl(t)− θj(t))

for all i, j = 1, . . . , N , i 6= j, and all t ≥ 0. In the sequel
we use θ̃ to denote the incremental variable:

θ̃ := [θi − θj ]i,j=1,...,N,i6=j ∈ T(N−1)2 . (5)

As expected, the incremental dynamics (4) is independent
of ω, meaning that it is invariant to common drifts among
the oscillators1. As stressed in the Introduction, the system
(1), and thus its incremental dynamics (4), encompasses both
the heterogeneity between agents, the presence of exogenous
disturbances and the uncertainties in the interconnection
topology. To see this clearly, let ωi denote the natural
frequency of the agent i, let pi represent its additive external
perturbations, and let ∆ij denote the uncertainty on each
coupling gain kij . Then the effects of all these disturbances
can be analyzed in a unified manner by letting

$i(t) = ωi + pi(t) +
N∑
j=1

∆ij(t) sin(θj(t)− θi(t)). (6)

When no inputs are applied, i.e. ω̃ = 0, we expect the
solutions of (4) to converge to some asymptotically stable

1This fact can also be interpreted as the invariance of the system (1) with
respect to common phase-shift of the ensemble (i.e. θi → θi + c, ∀i =
1, . . . , N ). See for example [12].



fixed point or, equivalently, the solution of (1) to converge
to some asymptotically stable phase-locked solution at least
for some coupling matrices k. To make this precise, we start
by defining the notion of 0-asymptically stable (0-AS) phase-
locked solutions, which are described by asymptotically
stable fixed points of the incremental dynamics (4) when
no inputs are applied.

Definition 2 (0-AS phase-locked solutions) Given any
coupling matrix k ∈ RN×N≥0 , let Ok denote the set of all
asymptotically stable fixed points of the unperturbed (i.e.
ω̃ ≡ 0) incremental dynamics (4). A phase-locked solution
θ∗ of (1) is said to be 0-asymptotically stable if and only if
the incremental state θ̃∗ :=

[
θ∗i − θ∗j

]
i,j=1,...,N,i6=j belongs

to Ok.

A complete characterization of 0-AS phase-locked solu-
tions of (1) for general interconnection topologies can be
found in [33] and [14, Chapter 3]. In Section II-D, we
characterize the set Ok in terms of the isolated local minima
of a suitable Lyapunov function.

The reason for considering only asymptotically stable
fixed points of the incremental dynamics stands in the fact
that only those are expected to provide some robustness
properties (as asymptotic stability implies local robustness
with respect to small inputs [34], [35]). On the contrary,
(non 0-AS) stable fixed points may correspond to non-robust
phase-locked state, as illustrated by the following example.

Example 1 (Non robust phase-locking) Consider the case
where N > 2 and let k12 = k21 > 0, and kij = 0 for all
(i, j) ∈ N≤N × N≤N \ {(1, 2), (2, 1)}. When ω̃ = 0, the
dynamics (4) reads

θ̇i − θ̇j = 0

for all (i, j) ∈ N≤N × N≤N \ {(1, 2), (2, 1)}, and

θ̇1 − θ̇2 = −2k12 sin(θ1 − θ2).

In this case, all the solutions of the form θ1(t)− θ2(t) = 0,
for all t ≥ 0, and θi(t) − θj(t) = θi(0) − θj(0), for
all t ≥ 0 and all (i, j) ∈ N≤N × N≤N \ {(1, 2), (2, 1)}
are phase-locked. Then can be shown to be stable, but not
asymptotically. By adding any (arbitrarily small) constant
inputs ω̃l 6= 0 to one of the agent l ∈ N≤N\{1, 2}, the system
becomes completely desynchronized, since θ̇l − θ̇i ≡ ω̃l for
all i = 1, . . . , N, i 6= l. In particular, the set Ok is empty for
this particular case.

We next recall the definition of local Input-to-State Sta-
bility with respect to small inputs [36]. This concept is also
referred to as Total Stability [35].

Definition 3 (LISS w.r.t. small inputs) For a system of the
form ẋ = f(x, u), a set A ⊂ Rn is said to be locally input-
to-state stable (LISS) with respect to small inputs iff there
exist some constants δ, δu > 0, a class KL function β and a
class K∞ function ρ, such that, for all |x0|A ≤ δx and all u
satisfying ‖u‖ ≤ δu, its solution satisfies

|x(t)|A ≤ β(|x0|A, t) + ρ(‖u‖), ∀t ≥ 0.

If this estimate holds with β(r, s) = Cre−
s
τ , where C, τ are

positive constants, then A is said to be locally exponentially
Input-to-State Stable with respect to small inputs.

Remark 1 (Local Euclidean metric on the n-Torus)
Definition 3 is given on Rn, which is little adapted to the
context of this article. Its extension to the n-Torus is natural
since Tn is locally isometric to Rn through the identity map
I (i.e. |θ|Tn := |I(θ)| = |θ|). In particular this means that
the n-Torus can be provided with the local Euclidean metric
and its induced norm. Hence, Definition 3 applies locally in
the n-Torus.

The next theorem, whose proof is given in Section III-A,
states the LISS of Ok with respect to small inputs ω̃.

Theorem 1 (LISS of phase-locking w.r.t. small inputs)
Let k ∈ RN×N≥0 be any symmetric interconnection matrix.
Suppose that the set Ok of Definition 3 is non-empty. Then
the system (4) is locally input-to-state stable with respect
to small ω̃. In other words, there exist δθ̃, δω > 0, β ∈ KL
and ρ ∈ K∞, such that, for all ω̃ satisfying ‖ω̃‖ ≤ δω and
all θ̃0 ∈ B(Ok, δθ̃), its solution satisfies

|θ̃(t)|Ok ≤ β(|θ̃0|Ok , t) + ρ(‖ω̃‖), ∀t ≥ 0. (7)

Theorem 1 guarantees that, if a given configuration is
asymptotically stable for the unperturbed system, then so-
lutions starting sufficiently near from that configuration re-
main near it at all time, in presence of sufficiently small
perturbations ω̃. Moreover, the steady-state distance of the
incremental state θ̃ from Ok is somehow “proportional”
to the amplitude of ω̃ with nonlinear gain ρ. This means
that the phase-locked states described by Ok are robust to
time-varying natural frequencies, provided they are not too
heterogeneous. We stress that, while local ISS with respect to
small inputs is a natural consequence of asymptotic stability
[34], the size of the constants δx and δu in Definition 3,
defining the robustness domain in terms of initial conditions
and inputs amplitude, are potentially infinitesimal. As we
show explicitly in the next section in the special case
of all-to-all coupling, the Lyapunov analysis used in the
proof of Theorem 1 (cf. Section III-A) provides a general
methodology to build these estimates explicitly. We stress in
particular that, while the region of attraction depends on the
geometric properties of the fixed points of the unperturbed
system, the size of admissible inputs can be made arbitrarily
large by taking a sufficiently large coupling strength. This is
detailed in the sequel (cf. (26), (28), (32) and (33)).

B. Robustness of the synchronized state in the case of all-
to-all coupling

In this section we focus the Lyapunov analysis used in
the proof of Theorem 1 to the case of all-to-all coupling. In
this case, it is known [33] that the only asymptotically stable
phase-locked solution is the exact synchronization

θ̃(t) = 0, ∀t ≥ 0, (8)



corresponding to a zero phase difference between each pair
of oscillators (cf. Definition 1). The following proposition
states the local exponential input-to-state stability of the
synchronized state with respect to small inputs, and provides
explicit bounds on the region of convergence, the size of
admissible inputs, the ISS gain, and the convergence rate.
Its proof can be found in Section III-B.

Proposition 1 (Exponential LISS of synchronization)
Consider the system (1) with the all-to-all interconnection
topology, i.e. kij = K > 0 for all i, j = 1, . . . , N . Then, for
all 0 ≤ ε ≤ π

2 , and all ω̃ satisfying

‖ω̃‖ ≤ δεω :=
K
√
N

π2

(π
2
− ε
)
, (9)

the following facts hold:

1) the set Dε :=
{
θ̃ ∈ T(N−1)2 : |θ̃|∞ ≤ π

2 − ε
}

is for-
ward invariant for the system (4);

2) for all θ̃0 ∈ D0, the set Dε is attractive, and the solution
of (4) satisfies

|θ̃(t)| ≤ π

2
|θ̃0|e−

K
π2 t +

π2

K
‖ω̃‖, ∀t ≥ 0.

Proposition 1 establishes the exponential ISS of the syn-
chronized state in the all-to-all Kuramoto model with respect
to time-varying inputs whose amplitudes are smaller than
K
√
N

π2 . It holds for any initial condition lying in D0, that
is when all the initial phase differences lie in

[
−π2 ,

π
2

]
.

Moreover, if the inputs amplitude is bounded by δεω , for some
0 ≤ ε ≤ π

2 , then the set Dε is forward invariant and all the
solutions starting in D0 actually converge to Dε.

Recently, necessary and sufficient conditions for the expo-
nential synchronization of the Kuramoto system with all-to-
all coupling and constant different natural frequencies were
given in [17]. We stress that the estimated region of attraction
provided by Proposition 1 is strictly larger than the one
obtained in [17, Theorem 4.1], which does not allow ε to
be picked as zero. For initial conditions lying in Dε, with a
strictly positive ε, it is interesting to compare the convergence
rate obtained in Proposition 1, K

π2 , with the one obtained in
[17, Theorem 3.1], NK sin(ε). While the convergence rate of
Proposition 1 is slower than the one obtained in [17, Theorem
3.1] for large ε, it provides a better estimate for small values
of ε. Furthermore, for any fixed amplitude ‖ω̃‖, the bound
(9) allows to find the sufficient coupling strength Kε which
ensures the attractivity of Dε:

Kε =
π2(

π
2 − ε

)√
N
‖ω̃‖.

Noticing that
√
N maxi,j=1,...,N ‖$i −$j‖ ≥ ‖ω̃‖, we get

that

Kε ≤
π2(

π
2 − ε

) max
i,j=1,...,N

‖$i −$j‖.

Since
(
π
2 − ε

)
≥ 2

π cos(ε), for all 0 ≤ ε ≤ π
2 , it results that

Kε ≤
π3

2 cos(ε)
max

i,j=1,...,N
‖$i −$j‖ < π3Kinv,

where Kinv is the sufficient coupling strength provided in
[17, Proof of Theorem 4.1]. This observation shows that,
while the estimate Kε may be more restrictive than the one
proposed in [17], both are of of the same order, in the sense
that Kε

Kinv
< π3.

In conclusion, Proposition 1 partially extends the main
results of [17] to time-varying inputs. On the one hand,
it allows to consider a larger set of initial conditions, and
bounds the convergence rate by a strictly positive value,
independently of the region of attraction. On the other hand
it may require larger coupling strength, and, for small regions
of attraction, the bound on the convergence rate obtained in
Proposition 1 is not as good as the one of [17, Theorem 3.1].

C. Robustness of neural synchrony to mean-field feedback
Deep Brain Stimulation

The model (1) encompasses our model of interconnected
neurons under mean-field feedback DBS, introduced in [15]
and that is referred to as the Kuramoto system under real
mean-field feedback,

θ̇i(t) = ωi +
N∑
j=1

kij sin(θj − θi)+

N∑
j=1

γij sin(θj(t)− θi(t))−
N∑
j=1

γij sin(θj(t) + θi(t)) (10)

for all i = 1, . . . , N and all t ≥ 0, where ωi is the constant
natural frequency of the i-th neuron, k = [kij ]i,j=11,...,N ∈
RN×N describes the interconnection between the neurons in
the subthalamic nucleus, and γ = [γij ]i,j=11,...,N ∈ RN×N
is the feedback gain. Indeed, the effect of the real mean-field
feedback can be modeled as an exogenous input, that is with

$i(t) =

ωi +
N∑
j=1

γij sin(θj(t)− θi(t))−
N∑
j=1

γij sin(θj(t) + θi(t)),

(11)
for all i = 1, . . . , N and all t ≥ 0. In particular the results
of this paper can be used to compute necessary conditions
on the mean field feedback gain to guarantee an effective
desynchronization. To that end, consider the system (10),
and define

γ := max
i,j=1,...,N

|γij |, (12)

i.e. γ denotes the intensity of the mean-field feedback DBS,
and

ω⊥ :=

ωi − 1
N

N∑
j=1

ωj


i=1,...,N

, (13)

i.e. ω⊥ represents the heterogeneity of the ensemble of
neurons. We define the grounded mean-field input ĨMF of
the incremental dynamics associated to (10) as

ĨMF (t) := IMF (t)− IMF (t), ∀t ≥ 0, (14)
where

IMF (t) :=



 N∑
j=1

γij

(
sin(θi(t)− θj(t))− sin(θi(t) + θj(t)

)
i=1,...,N

,

for all t ≥ 0, represents the input of the mean-field feedback
(cf. (11)) and

IMF (t):=
1
N

N∑
i,j=1

γij

(
sin(θi(t)−θj(t))−sin(θi(t)+θj(t)

)
,

for all t ≥ 0, represents the common drift among the
ensemble of neurons due to the mean-field feedback. The
grounded mean-field input ĨMF is the quantity of interest for
the aim of desynchronization. Indeed, as already pointed out
in (4), it is this input, along with the intrinsic heterogeneity
of the ensemble (i.e. ω⊥), which is responsible for the
destabilization of the incremental dynamics of the Kuramoto
system under real mean-field feedback. The following result
underlines the robustness of phase-locking to this particular
perturbation. In other words, it provides a negative answer
to the question whether mean-field feedback stimulation with
arbitrarily small amplitude can effectively desynchronize the
STN neurons.

Corollary 1 Let k ∈ RN×N≥0 be any symmetric intercon-
nection matrix and {ωi}i=1,...,N be any (constant) natural
frequencies. Let γ ∈ RN×N be any feedback gain. Let γ
and ω⊥ be defined as in (12)-(13). Let the set Ok be defined
as in Definition 2 and suppose that it is non-empty. Then
there exist a class KL function β, a class K∞ function σ,
a positive constant δω , and a neighborhood P of Ok, such
that, for all natural frequencies and all mean-field feedback
satisfying

|ω⊥|+ 2 γ N
√
N ≤ δω,

the solution of the incremental dynamics of (10) satisfies, for
all θ̃0 ∈ P ,

|θ̃(t)|Ok ≤ β(|θ̃0|Ok , t) + σ(|ω⊥|+ ‖ĨMF ‖),

where ĨMF is defined in (14).

Corollary 1 states that the phase-locked states associated
to any symmetric interconnection topology are robust to
sufficiently small real mean-field feedbacks. The intensity of
the tolerable feedback gain γ depends on the distribution of
natural frequencies, reflecting the fact that a heterogeneous
ensemble can be more easily brought to an incoherent state.

Energy consumption is a critical issue in the DBS frame-
work [37]. Corollary 1, along with the explicit input bound
δω , which can be found in the proof of Theorem 1 (cf. (33)),
provide a necessary condition on the intensity of the DBS
through mean-field feedback to achieve effective desynchro-
nisation for a general interconnection between neurons and
recording-stimulation setup. Even an approximate knowledge
of the distribution of natural frequencies of the neurons
in the STN, of their interconnection topology and of the
electrical characteristics of the recording-stimulation setup
can be used to compute this value, based on the Lyapunov
analysis detailed in Section II-D.

Future works will focus on the computation of sufficient
conditions on this intensity in order to achieve full desyn-
chronization (see [28] for the N → ∞ case with all-to-all
coupling and separate stimulation-registration setup).

D. A Lyapunov function for the incremental dynamics
In this section, we introduce the Lyapunov function for

the incremental dynamics (4) used in the proof of Theorem
1, that will be referred to as the incremental Lyapunov
function in the sequel. We start by showing that the in-
cremental dynamics (4) possesses an invariant manifold,
that we characterize through some linear relations. This
observation allows us to restrict the analysis of the critical
points of the Lyapunov function to this manifold. Beyond
its technical interest, this analysis shows that phase-locked
solutions correspond to these critical points. In particular,
it provides an analytic way of computing the set Ok of
Definition 2, completely characterizing the set of robust
asymptotically stable phase-locked solutions. Furthermore,
we give some partial extensions on existing results on the
robustness of phase-locking in the finite Kuramoto model.

The incremental Lyapunov function: We start by introduc-
ing the normalized interconnection matrix associated to k

E = [Eij ]i,j=1,...,N :=
1
K

[kij ]i,j=1,...,N , (15)

where the scalar K is defined as

K = max
i,j=1,...,N

kij . (16)

Inspired by [14, Chapter 3], we consider the incremental
Lyapunov function VI : T(N−1)2 → R≥0 defined by

VI(θ̃) = 2
N∑
i=1

N∑
j=1

Eij sin2

(
θi − θj

2

)
, (17)

where the incremental variable θ̃ is defined in (5). We stress
that VI is independent of the coupling strength K.

The invariant manifold: Before analyzing the behavior
of the function VI along the solutions of (4), we stress
the existence and identify an invariant manifold for the
dynamics of interest. The presence of an invariant manifold
results from the fact that the components of the incremental
variable θ̃ are not linearly independent. Indeed, we can
express (N − 1)(N − 2) of them in terms of the other
N−1 independent components. More precisely, by choosing
ϕi := θi−θN , i = 1, . . . , N−1 as the independent variables,
it is possible to write, for all i = 1, . . . , N ,

θi − θN = ϕi, (18a)
θi − θj = ϕi − ϕj , ∀j = 1, . . . , N − 1. (18b)

These relations can be expressed in a compact form as

θ̃ = B̃(ϕ) := Bϕ mod 2π, ϕ ∈M, (19)

where ϕ := [ϕi]i=1,...,N−1, B ∈ R(N−1)2×(N−1), rankB =
N − 1, B̃ is continuous and continuously differentiable,
and M ⊂ T(N−1)2 is the submanifold defined by the



embedding (19). The continuous differentiability of B̃ :
M→ T(N−1)2 comes from the fact that ϕi ∈ T1, for all i =
1, . . . , N , and the components of B̃(ϕ) are linear functions
of the form (18). Formally, this means that the system is
evolving in the invariant submanifold M ⊂ T(N−1)2 of
dimension N−1. In particularM is diffeomorphic to TN−1.

Restriction to the invariant manifold: In order to conduct
a Lyapunov analysis based on VI it is important to identify its
critical points. Since the system is evolving on the invariant
manifold M, only the critical points of the Lyapuonov
function VI restricted to this manifold are of interest. Hence
we restrict our attention to the critical points of the restriction
of VI to M, which is defined by the function VI |M :
TN−1 → R as

VI |M(ϕ) := VI(Bϕ), ∀ϕ ∈M. (20)

The analysis of the critical points of VI |M is not trivial. To
simplify this problem, we exploit the fact that the variable
ϕ can be expressed in terms of θ by means of a linear
transformation A ∈ R(N−1)×N , with rankA = N − 1, in
such a way that

ϕ = Ã(θ) = Aθ mod 2π. (21)

Based on this, we define the function V : TN → R as

V (θ) = VI |M(Aθ). (22)

In contrast with VI |M, the function V owns the advantage
that its critical points are already widely studied in the
synchronization literature, see for instance [7, Section III]
and [14, Chapter 3]. The following lemma allows to reduce
the analysis of the critical points of VI on M to that of the
critical points of V on TN . Its proof is given in Section IV-E.

Lemma 1 (Computation of the critical points on the
invariant manifold) Let M, VI |M, A and V be defined
by (19)-(22). Then θ∗ ∈ TN is a critical point of V (i.e.
∇θV (θ∗) = 0) if and only if ϕ∗ = Aθ∗ ∈ M is a critical
point of VI |M (i.e. ∇ϕVI |M(ϕ∗) = 0). Moreover if θ∗ is
a local maximum (resp. minimum) of V then ϕ∗ is a local
maximum (resp. minimum) of VI |M. Finally the origin ofM
is a local minimum of VI |M.

Lyapunov characterization of robust phase-locking: The
above development allows to characterize phase-locked states
through the incremental Lyapunov function VI . The follow-
ing lemma states that the fixed points of the unperturbed
incremental dynamics are the critical points of VI |M, modulo
the linear relations (18). That is, recalling that the fixed points
of the incremental dynamics describe phase-locked solutions
(cf. Definition 1), the critical points of VI |M completely
characterize phase-locked solutions.

Lemma 2 (Incremental Lyapunov characterization of
phase-locking) Let k ∈ RN×N≥0 be any symmetric inter-
connection matrix. Let B and VI |M be defined as in (19)
and (20). Then ϕ∗ ∈ M is a critical point of VI |M (i.e.

∇ϕVI |M(ϕ∗) = 0) if and only if Bϕ∗ is a fixed point of the
unperturbed (i.e. ω̃ = 0) incremental dynamics (4).

Consequence for the system without inputs: At the light
of Lemma 2, we can state the following corollary, which
recovers, and partially extends, the result of [14, Proposition
3.3.2] in terms of the incremental dynamics of the system.
It states that, for a symmetric interconnection topology,
any disturbance with zero grounded input (3) preserves the
almost global asymptotic stability of phase-locking for (1).

Corollary 2 (Almost global asymptotic phase-locking)
Let $ : R≥0 → RN be any signal satisfying ω̃(t) = 0, for
all t ≥ 0, where ω̃ is defined in (3). If the interconnection
matrix k ∈ RN×N≥0 is symmetric, then almost all trajectories
of (1) converge to a stable phase-locked solution.

We stress that Corollary 2 is an almost global result. It
follows from the fact that almost all trajectories converge
to the set of local minima of VI |M. From Lemma 2, this
set corresponds to stable fixed points of the incremental dy-
namics, that is to stable phase-locked solutions. The precise
proof is omitted here.

Consequences for the robustness of exact synchronization:
We now restrict our attention to the exact synchronization,
as introduced in Definition 1. This configuration corresponds
to the origin of the incremental dynamics and, in particular,
of the invariant manifold M. As stressed by Lemma 1,
the origin of M is always a local minimum of VI |M.
The following corollary exploits the incremental Lyapunov
analysis to extend known results on the robustness of the ex-
actly synchronized state to external inputs. Its proof directly
follows from Theorem 1 and Lemma 1.

Corollary 3 (LISS of the synchronized state) If the cou-
pling matrix k ∈ RN×N≥0 is symmetric, and the origin of M
is an isolated critical point of VI |M, then the origin of M
(exact synchronization) is LISS with respect to small inputs.

Consequences for the disturbance rejection: In [20, The-
orem 2] sufficient conditions are given for the existence of
an asymptotically stable synchronized state for the Kuramoto
system with general symmetric interconnection and constant
different natural frequencies in terms of the algebraic proper-
ties of the coupling graph. The proof of Corollary 3 gives an
extension of that result to time-varying inputs, by providing
sufficient conditions on the coupling strength K, introduced
in (16), for the local ISS of the synchronized state. Indeed,
Equation (33) in the proof can be inverted to give

K >
2δω
σ
(
δ
2

) , (23)

where δω denotes the inputs amplitude, δ is the minimum
distance between two critical sets of the unperturbed incre-
mental dynamics, and σ is a K∞ function. We stress that
both δ and σ depend only on the normalized interconnection
matrix E introduced in (15) and are therefore independent of



the coupling strength K. It follows that any arbitrarily large
input ω̃ can be tolerated if K is taken sufficiently large.

In the following corollary we formally state this result by
considering the case when the amplitude of the inputs is
bounded and the coupling strength K is seen as a tunable
gain. In this situation, the system is practically stable in
the sense of [38]. That is, given any precision d > 0, we
can find a sufficiently large coupling strength K that makes
the solutions of (1) phase-locked, modulo this prescribed
tolerance d. The proof comes directly from [38] in view of
Claim 2, by recalling that the Lyapunov function VI does
not depend on the tuning parameter K.

Corollary 4 (Practical phase-locking) Consider any sym-
metric interconnection matrix k ∈ RN×N≥0 . Let Ok be defined
as in Definition 2 and suppose that it is non-empty. Then
there exists δθ̃ such that, for any δω > 0 and any d > 0 there
exist K > 0 and β ∈ KL, such that, for all θ̃0 ∈ B(Ok, δθ̃)
and all ‖ω̃‖ ≤ δω , the solution of (4) satisfies

|θ̃(t)|Ok ≤ β(|θ̃0|Ok , t) + d, ∀t ≥ 0.

Even if the notation may be confusing, we stress that the
set Ok does not depend on the coupling strength K, but
only on the normalized interconnection matrix E defined
in (15). We also stress that the constant δθ̃ estimating the
domain of attraction in the above result is independent of
the tuning gain K. Corollary 4 states that it is possible to
arbitrarily tune the steady-state value of the phase differences
by choosing a sufficiently large coupling strength K. The
proposed Lyapunov function permits to exploit Lyapunov-
based practical stability analysis also for the asymptotically
stable fixed points, other than synchronization (i.e. θ̃∗ 6= 0),
of the unperturbed Kuramoto system, which may appear
for interconnection topologies that differ from the complete
graph [14, Section 3.4].

In the case of all-to-all coupling this result partially
extends [17, Section IV] to time-varying (bounded) natural-
frequencies. Indeed in this case the same arguments of our
proof apply locally (i.e. for θ̃ inside the half circle) to the
quadratic Lyapunov functions presented in [17] which can
indeed be seen as a small-angles approximation of the one
proposed here (see also Proposition 1 above). In the case of
all-to-all coupling and constant different natural frequencies,
necessary and sufficient conditions for the existence of an
asymptotically stable phase-locked solution and its explicit
expression are given in [19]. Again, Corollaries 3 and 4
partially generalize this result by giving sufficient conditions
for the LISS of the synchronized state and by giving an
estimate on the size of the phase differences.

III. PROOFS OF THE MAIN RESULTS

A. Proof of Theorem 1

In order to develop our robustness analysis we consider
the Lyapunov function

VI(θ̃) = 2
N∑
i=1

N∑
j=1

Eij sin2

(
θi − θj

2

)
,

already introduce in (17) where the incremental variable θ̃ is
defined in (5), and the normalized interconnection matrix E
is defined in (15). The derivative of VI along the trajectories
of the incremental dynamics (4) yields

V̇I(θ̃) = (∇θ̃VI)
T ˙̃
θ.

The following claim, whose proof is given in Section IV,
provides an alternative expression for V̇I .

Claim 1 If k is symmetric, then V̇I = −2(KχTχ + χT ω̃),
where χ(θ̃) := ∇θV

(
θ̃) =

[∑N
j=1Eij sin(θj − θi)

]
i=1,...,N

.

From Claim 1, we see that if the inputs are small, there
are regions of the phase space where the derivative of VI
is negative even in the presence of perturbations. More
precisely, it holds that:

|χ| ≥ 2|ω̃|
K

⇒ V̇I ≤ −KχTχ.

However, LISS does not follow yet as these regions are
given in terms of χ instead of the phase differences θ̃. In
order to estimate these region in terms of θ̃, we define F
as the set of critical points of VI |M (i.e. F := {ϕ∗ ∈ M :
∇ϕVI |M(ϕ∗) = 0}), whereM and VI |M are defined in (19)
and (17), respectively. Then, from Lemma 1 and recalling
that χ = ∇θV , it holds that |χ| = 0 if and only if θ̃ ∈ F .
Since |χ| is a positive definite function of θ̃ defined on a
compact set, [39, Lemma 4.3], guarantees the existence of a
K∞ function σ such that, for all θ̃ ∈ T(N−1)2 ,

|χ| ≥ σ(|θ̃|F ). (24)

Let U := F \Ok. In view of Lemma 2, U denotes the set
of all the critical points of VI |M which are not asymptoti-
cally stable fixed points of the incremental dynamics. Since
∇VI |M is a Lipschitz function defined on a compact space,
it can be different from zero only on a finite collection of
open sets. That is U and Ok can be expressed as the disjoint
union of a finite family of closed sets:

U =
⋃
i∈IU

νi, Ok =
⋃

i∈IOk

{φi}, (25)

where IU , IOk ⊂ N are finite sets, {νi, i ∈ IU} is a family
of closed subsets ofM, and

{
{φi}, i ∈ IOk

}
is a family of

singletons of M. We stress that a 6= b implies a∩ b = ∅ for
any a, b ∈ {νi, i ∈ IU}

⋃{
{φi}, i ∈ IOk

}
=: FS . Define

δ := min
a,b∈FS ,a 6=b

inf
θ̃∈a
|θ̃|b, (26)

which represents the minimum distance between two critical
sets, and, at the light of Lemma 2, between two fixed points
of the unpertubed incremental dynamics (1). Note that, since
FS is finite, δ > 0. Define

δ′ω =
K

2
σ

(
δ

2

)
, (27)

and let
δθ̃ :=

δ

2
, (28)



which gives an estimate of the size of the region of attraction,
modulo the shape of the level sets of the Lyapunov function
VI . Then the following claim holds true. Its proof is given
in Section IV

Claim 2 For all i ∈ IOk , all θ̃ ∈ B(φi, δθ̃), and all |ω̃| ≤ δ′ω ,
it holds that

|θ̃ − φi| ≥ σ−1

(
2|ω̃|
K

)
⇒ V̇I ≤ −Kσ2(|θ̃ − φi|).

For all i ∈ IOk , the function VI(θ̃) − VI(φi) is zero for
θ̃ = φi, and strictly positive for all θ ∈ B(φi, δθ̃)\φi. Hence
it is positive definite on B(φi, δθ̃). Noticing that B(φi, δθ̃) is
compact, [39, Lemma 4.3] guarantees the existence of K∞
functions αi, αi such that, for all θ̃ ∈ B(φi, δθ̃),

αi(|θ̃ − φi|) ≤ VI(θ̃)− VI(φi) ≤ αi(|θ̃ − φi|). (29)

Define the following two K∞ functions

α(s) := min
i∈IOk

αi, α(s) := max
i∈IOk

αi, ∀s ≥ 0. (30)

It then holds that, for all i ∈ IOk , and all θ̃ ∈ B(φi, δθ̃)

α(|θ̃ − φi|) ≤ VI(θ̃)− VI(φi) ≤ α(|θ̃ − φi|). (31)

In view of Claim 2 and (31), an estimates of the ISS gain is
then given by

ρ(s) := α−1 ◦ α ◦ σ−1

(
2
K
s

)
, ∀s ≥ 0 (32)

where σ is defined in (24). In the same way, the tolerated
input bound is given by

δω := ρ−1(δθ̃) ≤ δ
′
ω. (33)

From [40, Section 10.4] and Claim 2, it follows that, for
all ‖ω̃‖ ≤ δω , the set B(Ok, δθ̃) is forward invariant for the
system (4) . Furthermore, invoking [41] and [40, Section
10.4], Claim 2 thus implies LISS with respect to small
inputs satisfying ‖ω̃‖ ≤ δω , meaning that there exists a
class KL function β such that, for all ‖ω̃‖ ≤ δω , and
all θ̃0 ∈ B(Ok, δθ̃), the trajectory of (4) satisfies |θ̃(t)| ≤
β(|θ̃0|, t) + ρ(‖ω̃‖), for all t ≥ 0. �

B. Proof of Proposition 1

Input-to-State Gain: We start by computing the ISS gain
ρ, defined in (32), in the particular case of all-to-all coupling
and show that it can be taken as a linear function. The
first step is to compute the function σ, defined in (24),
with respect to the origin of the incremental dynamics.
That is we have to find a class K∞ function σ, such that
|χ(θ̃)| ≥ σ(|θ̃|) for all θ̃ in some neighborhood of the origin
of the incremental dynamics, where χ is defined in Claim
1. The following claim, whose proof is given in Section
IV, gives an explicit expression of this function on the set
D0 = {θ̃ ∈ T(N−1)2 : |θ̃|∞ ≤ π

2 }, as defined in the statement
of Proposition 1.

Claim 3 In the case of all-to-all coupling , the function χ

defined in Claim 1 satisfies, for any θ̃ ∈ D0, |χ(θ̃)| ≥ |θ̃|
π ,

that is σ(r) = r
π .

At the light of Claim 3, the ISS gain ρ can be easily
computed through (32). Indeed, in the all-to-all case, the
entries of the matrix E, introduced in (15), are all 1, and the
Lyapunov function VI , provided in (17), thus becomes

VI(θ̃) = 2
N∑

i,j=1

sin2

(
θi − θj

2

)
.

Using the fact that z ≥ sin z ≥ 2
π z, for all 0 ≤ z ≤ π

2 , it
follows that, for all θ̃ ∈ D0,

2
π2
|θ̃|2 ≤ VI(θ̃) ≤

1
2
|θ̃|2. (34)

Recalling the definition of the upper α and lower α estimates
of the Lyapunov function with respect the set of asymptoti-
cally stable fixed point (30), and that, in the all-to-all case,
this set reduces to the origin, we conclude that

α(r) =
2
π2
r2, α(r) =

1
2
r2, ∀r ≥ 0.

In view of Claim 3 and (32), it follows that the ISS gain ρ
in the statement of Theorem 1, can be chose as

ρ(r) =
π2

K
r. (35)

Input bound and invariant set: For Claim 3, the ISS gain
computed in the last section is valid as soon as θ̃ belongs
to D0. In the following we compute an input bound which
guarantees that trajectories starting in D0 remain inside D0.
For the sake of generality, we actually show the forward
invariance of Dε for any ε ∈

[
0, π2

]
. To that end, we start

by the following technical claim, whose proof is given in
Section IV.

Claim 4 Given any 0 ≤ δ ≤ π, the following holds true:

|θ̃| ≤
√
Nδ ⇒ max

i,j=1,...,N
|θi − θj | ≤ δ.

At the light of Claim 4, and in view of (7) and (35), we can
compute the input bound δεω which lets Dε be invariant for
the systems (4) by imposing ρ(δεω) =

√
N
(
π
2 − ε

)
, where

ρ(s) = π2

K s is the ISS gain in the statement of Theorem 1.
This gives

δεω =
K
√
N

π2

(π
2
− ε
)
. (36)

Exponential convergence and attractivity of Dε: From
Claims 2 and 3, and (34), it holds that, for all |ω̃| ≤ δεω ,
and all θ̃ ∈ D0,

|θ̃| ≥ 2π
K
|ω̃| ⇒ V̇I ≤ −

K

π2
|θ̃|2 ≤ −2K

π2
VI .

Invoking the comparison Lemma [39, Lemma 3.4], it follows
that, for all t ≥ 0 min0≤s≤t |θ̃(s)| ≥ 2π

K ‖ω̃‖,

min
0≤s≤t

|θ̃(s)| ≥ 2π
K
‖ω̃‖ ⇒ VI(θ̃(t)) ≤ VI(θ̃(0))e−

2K
π2 t.



From (34), this also implies that, for all t ≥ 0

min
0≤s≤t

|θ̃(s)| ≥ 2π
K
‖ω̃‖ ⇒ |θ̃(t)| ≤ π

2
|θ̃(0)|e−

K
π2 t.

Recalling the explicit expression of ISS gain (35), this
implies that the system is exponentially input-to-state stable
(see for instance [40, Section 10.4] and [39, Lemma 4.4 and
Theorem 4.10]), and in particular that for all ‖ω̃‖ ≤ δεω and
all θ̃0 in D0,

|θ̃(t)| ≤ π

2
|θ̃0|e−

K
π2 t +

π2

K
‖ω̃‖, ∀t ≥ 0.

Noticing finally that, if ‖ω̃‖ ≤ δεω , (36) guarantees that

|θ̃(t)| ≤ π

2
|θ̃0|e−

K
π2 t +

√
N
(π

2
− ε
)
, ∀t ≥ 0,

Claim 4 implies the attractivity of Dε for all ‖ω̃‖ ≤ δεω . �

IV. TECHNICAL PROOFS

A. Proof of Claim 1

Consider the derivative of the incremental Lyapunov
function VI , defined in (17), along the trajectories of the
incremental dynamics (4):

V̇I(θ̃) := (∇θ̃VI)
T ˙̃
θ =

N∑
i,j=1

Eij sin(θj − θi)(θ̇j − θ̇i)

= −2
N∑

i,j=1

Eij sin(θj − θi)θ̇i,

where the last equality comes from the fact that, if E
is a symmetric matrix, then

∑N
i,j=1Eij sin(θj − θi)θ̇j =

−
∑N
i,j=1Eij sin(θj − θi)θ̇i. For the same reason it holds

that ω
∑N
i,j=1Eij sin(θj − θi) = 0. Since, from (1), θ̇i =

ω + ω̃i +K
∑N
l=1Eil sin(θl − θi), we get that

V̇I=−2
N∑
i=1

N∑
j=1

Eij sin(θj − θi)

(K N∑
l=1

Eil sin(θl − θi) + ω̃i

)
,

which proves the claim.

B. Proof of Claim 2

From Claim 1 it holds that V̇I = −2K|χ|2 − 2χT ω̃ ≤
−2K|χ|2 + 2|χ||ω̃|. That is

|χ| ≥ 2|ω̃|
K

, ⇒ V̇I ≤ −K|χ|2.

In view of (27)-(28), |ω̃| ≤ δ′ω implies that σ−1
(

2|ω̃|
K

)
≤ δθ̃.

Recalling that, for all θ̃ ∈ B(φi, δθ̃), |θ̃|F = |θ̃−φi|, it results
that

|θ̃ − φi| ≥ σ−1

(
2|ω̃|
K

)
⇒ |χ| ≥ 2|ω̃|

K
,

Since (24) ensures that −|χ|2 ≤ −σ2(|θ̃ − φi|), we obtain

|θ̃ − φi| ≥ σ−1

(
2|ω̃|
K

)
⇒ V̇I ≤ −Kσ2(|θ̃ − φi|).

C. Proof of Claim 3
In the case of all-to-all coupling, the vector χ defined in

Claim 1 reads

χ(θ̃) =

 N∑
j=1

sin(θj − θi)


i=1,...,N

.

Therefore, the norm inequality |θ̃|2 ≥ |θ̃|∞ implies

|χ(θ̃)|2 ≥ max
i=1,...,N

∣∣∣∣∣∣
N∑
j=1

sin(θj − θi)

∣∣∣∣∣∣ .
Now, since θ̃ ∈ D0, we have |θi − θj | ≤ π

2 , which implies
that the phases of all oscillators belong to the same quarter
of circle. We can thus renumber the indexes of the oscillator
phases in such a way that θi ≤ θj whenever i < j.

First step — For a given θ̃, in order to find a tight lower
bound on |χ(θ̃)|2, we are going to show that

max
i=1,...,N

∣∣∣∣∣∣
N∑
j=1

sin(θj − θi)

∣∣∣∣∣∣
= max


N∑
j=1

sin |θj − θ1|,
N∑
j=1

sin |θj − θN |

 .

On the one hand, for all j = 1, . . . , N , we have 0 ≤
θj − θ1 ≤ π

2 and 0 ≤ θN − θj ≤ π
2 . It follows that∣∣∣∣∣∣

N∑
j=1

sin(θj − θ1)

∣∣∣∣∣∣ =
N∑
j=1

sin |θj − θ1|, (37)

and ∣∣∣∣∣∣
N∑
j=1

sin(θj − θN )

∣∣∣∣∣∣ =
N∑
j=1

sin |θj − θN |. (38)

On the other hand, for any i 6∈ {1, N}, we have that,
for any j < i, 0 ≤ θi − θj ≤ π

2 ; while, for any j > i,
0 ≤ θj − θi ≤ π

2 . That is∣∣∣∣∣∣
N∑
j=1

sin(θj − θi)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑

j=i+1

sin |θj − θi| −
i−1∑
j=1

sin |θj − θi|

∣∣∣∣∣∣ .
Now, for all θ̃ ∈ D0, if i > j, it results that |θj − θi| ≤
|θj−θN |, while, if i < j, it results that |θj−θi| ≤ |θj−θ1|.
Hence, for all θ̃ ∈ D0,

i−1∑
j=1

sin |θj − θi| ≤
N∑
j=1

sin |θj − θN |, ∀i 6∈ {1, N},

and
N∑

j=i+1

sin |θj − θi| ≤
N∑
j=1

sin |θj − θ1|, ∀i 6∈ {1, N}.

Recalling that, for all a, b > 0, |a− b| ≤ max{a, b}, it then
follows that, for any i 6∈ {1, N},



∣∣∣∑N
j=1 sin(θj − θi)

∣∣∣
≤ max

{∑i−1
j=1 sin |θj − θi|,

∑N
j=i+1 sin |θj − θi|

}
≤ max

{∑N
j=1 sin |θj − θ1|,

∑N
j=1 sin |θj − θN |

}
. (39)

Therefore, combining (37), (38), and (39), we obtain

max
i=1,...,N

∣∣∣∣∣∣
N∑
j=1

sin(θj − θi)

∣∣∣∣∣∣
= max


N∑
j=1

sin |θj − θ1|,
N∑
j=1

sin |θj − θN |

 , (40)

which ends the first step of the proof.
Second step — Using the fact that sin z ≥ 2

π z, for all
z ∈

[
0, π2

]
, Equation (40) yields

|χ(θ̃)|2 ≥ max


N∑
j=1

sin |θj − θ1|,
N∑
j=1

sin |θj − θN |


≥ 2

π
max


N∑
j=1

|θj − θ1|,
N∑
j=1

|θj − θN |


≥ 2

π
max


N∑
j=1

(θj − θ1),
N∑
j=1

(θN − θj)

 .

Or, equivalently, by defining δ := θN − θ1, with 0 ≤ δ ≤ π
2 ,

|χ(θ̃)|2 ≥
2
π

max


N∑
j=1

(θj − θ1),
N∑
j=1

[δ − (θj − θ1)]

 .

(41)
For notation purposes, define Iθ̃ := [0, δ]N−2, xi :=

θi+1−θ1, for all i = 1, . . . , N−2, and x := [xi]i=1,...,N−2 ∈
Iθ̃. Then

max


N∑
j=1

(θj − θ1),
N∑
j=1

[δ − (θj − θ1)]


= max

{
δ +

N−2∑
i=1

xi, δ +
N−2∑
i=1

(δ − xi)

}

= δ + max

{
N−2∑
i=1

xi,

N−2∑
i=1

(δ − xi)

}
. (42)

In order to obtain the desired bound, we thus have to
minimize the function f : Iθ̃ → R≥0, defined by f(x) :=
max

{∑N−2
i=1 xi,

∑N−2
i=1 (δ − xi)

}
. Define the functions

a(x) :=
N−2∑
i=1

xi and b(x) :=
N−2∑
i=1

(δ − xi).

And the sets

A := {x ∈ Iθ̃ : a(x) > b(x)}
B := {x ∈ Iθ̃ : b(x) > a(x)}
C := {x ∈ Iθ̃ : a(x) = b(x)}.

It then results that Iθ̃ = A ∪ B ∪ C, with A ∩ B = B ∩
C = C ∩A = ∅. Observe, moreover, that we obviously have
f |A = a|A and f |B = b|B . By the fact that, for all x ∈ C,∑N−2
i=1 xi =

∑N−2
i=1 (δ − xi), we have

f(x) = a(x) = b(x) =
N − 2

2
δ, ∀x ∈ C. (43)

Moreover, since b(x) = (N − 2)δ − a(x), it results that

a(x) >
N − 2

2
δ, ∀x ∈ A,

and
b(x) >

N − 2
2

δ, ∀x ∈ B.

That is, since f |A = a|A, f |B = b|B , and A ∪B = Iθ̃ \ C,

f(x) >
N − 2

2
δ, ∀x ∈ Iθ̃ \ C.

From (43), this also implies that, for all x ∈ Iθ̃,

f(x) ≥ N − 2
2

δ. (44)

From (41), (42), and (44), we obtain

|χ(θ̃)|2 ≥
2
π

(
δ +

N − 2
2

δ

)
=
N

π
δ.

Finally, recalling that δ = |θ̃|∞, by the norm inequality
|θ̃|∞ ≥ |θ̃|2

N−1 , we can conclude that, for all θ̃ ∈ D0,

|χ(θ̃)|2 ≥
N

π(N − 1)
|θ̃|2 ≥

|θ̃|2
π
,

which proves the claim.

D. Proof of Claim 4
Since we want to prove that |θ̃|2 ≤

√
Nδ ⇒ |θ̃|∞ ≤ δ,

we are going to prove that |θ̃|∞ ≥ δ ⇒ |θ̃|2 ≥
√
Nδ. But,

by the monotonicity of the norm, it is enough to show that

|θ̃|∞ = δ ⇒ |θ̃|2 ≥
√
Nδ.

In order to do that we minimize the Euclidean norm |θ̃|2
(or, equivalently, |θ̃|22), with the constraint that |θ̃|∞ = δ.
For the sake of simplicity, renumber the oscillator phases
indexes in such a way that θi ≤ θj whenever i < j, as in
the proof of Claim 3. The problem can then be translated
into minimizing |θ̃|22, with the constraint that θN − θ1 = δ.
Since the square of the Euclidean norm and the constrained
function are smooth, we can apply the method of Lagrange
multipliers (see Appendix). That is, we can find critical
points of |θ̃|22, under the constraint θN − θ1 = δ, by solving
the set of equations

∂

∂θi
F (θ, λ) = 0, i = 1, . . . , N, (45)

∂

∂λ
F (θ, λ) = 0, (46)

where F (θ, λ) :=
∑N
i,j=1(θi − θj)2 − λ(θN − θ1 − δ).

Differentiating with respect to θl, for l 6∈ {1, N}, gives
N∑
j=1

(θl − θj) = 0. (47)



Differentiating with respect to λ gives the constraint θN −
θ1 = δ. Differentiating with respect to θ1 gives 4

∑N
j=1(θ1−

θj) + λ = 0, differentiating with respect to θN gives
4
∑N
j=1(θN − θj) − λ = 0, and, by solving with respect

to λ, we get

N∑
j=1

(θ1 − θj) +
N∑
j=1

(θN − θj) = 0. (48)

Equations (47), (48), with the constraint θN − θ1 = δ, admit
a unique solution, modulo a common phase shift among the
ensemble (i.e θi → θi + α for all i):

θ∗i − θ∗j = 0, ∀(i, j) 6∈ {(1, N), (N, 1)}, (49a)

θ∗i − θ∗1 =
δ

2
, θ∗i − θ∗N = −δ

2
, ∀i 6∈ {1, N}. (49b)

By computing the Hessian of F with respect to the vector
x = (θ̃T , λ)T , it is easy to show that its symmetric part
is positive semidefinite for all x. Hence the solution (49)
corresponds to a minimum. To show the uniqueness of this
critical point, modulo a common phase shift, note that the
set of equations (45) can be rewritten as the linear system

N − 1 −1 . . . −1 −1
−1 N − 1 . . . −1 −1

...
...

. . .
...

...
−1 −1 . . . N − 1 −1
−1 −1 . . . −1 N − 1
−1 0 . . . 0 1





θ1
θ2
...

θN−2

θN−1

θN


=:

=: Gθ =



λ
4
0
...
0
−λ4
δ


. (50)

The matrix G ∈ R(N+1)×N has rank N −1, since the minor
given by the first N rows is the Laplacian matrix associated
to a complete graph, which has rank N − 1 . In particular,
it holds that G1N = 0. Hence the solution to (50) is of the
form θ∗ = θ∗⊥ + α1N , α ∈ R, where θ∗⊥ belongs to the
ortogonal space to 1N , and is uniquely determined by (50),
which confirms that the solution (49) is unique, modulo a
common phase shift. We can then conclude that, if |θ̃|∞ = δ,
then

|θ̃|22 ≥
N∑

i,j=1

(θ∗i − θ∗j )2

≥ 2δ2 + 2
N−2∑
j=2

δ2

4
+ 2

N−2∑
j=2

δ2

4

≥ Nδ2,

which proves the claim.

E. Proof of Lemma 1

By the definition (22) of V (θ), it holds that ∇θV (θ) =
∇θVI |M(Aθ) = AT∇AθVI |M(Aθ). Hence

∇AθVI |M(Aθ) = 0 ⇒ ∇θV (θ) = 0,

by the linearity of AT . Recalling that, since rankA = N−1,
kerAT = 0, it follows that

∇θV (θ) = 0 ⇒ ∇AθVI |M(Aθ) = 0,

which proofs the first part of the lemma.
To proove the second part of the lemma, we note that if θ∗

is a local minimum of V then there exists a neighborhood
U of θ∗ such that V (θ) ≥ V (θ∗) for all θ ∈ U . That is,
VI |M(Aθ) ≥ VI |M(Aθ∗) for all θ ∈ U . That is VI |M(ϕ) ≥
VI |M(ϕ∗) for all ϕ ∈W = AU , where ϕ∗ = Aθ∗. A similar
proof holds for maxima.

The third part of the lemma follows from the fact the
function VI |M is positive definite and VI |M(0) = 0. �

F. Proof of Lemma 2

From Lemma 1, it results that φ∗ ∈M is a critical point
of VI |M if and only if θ∗ ∈ TN is a critical point of V ,
where φ∗ = Aθ∗, and A is defined in (21). Moreover, when
ω̃ = 0, it results that the incremental dynamics (4) can be
re-written as

θ̇i − θ̇j = χj(θ)− χi(θ), ∀i, j = 1, . . . , N,

where χ(θ) = [χi(θ)]i=1,...,N := ∇θV (θ) =∑N
j=1Eij sin(θj − θi), and the normalized interconnection

matrix E is defined in (15). Hence, χ(θ∗) = ∇θV (θ∗) = 0
if and only if φ∗ = Aθ∗ is a critical point of VI |M; and
χj(θ∗) − χi(θ∗) = 0, for all i, j = 1, . . . , N , if and only if
Bφ∗ = BAθ∗ is a fixed point of the unperturbed incremental
dynamics, where B is defined in (19). To prove the lemma
it thus suffices to show that

χ(θ∗) = 0 ⇔ χj(θ∗)−χi(θ∗) = 0, ∀i, j = 1, . . . , N.

One implication is straightforward: if χ(θ∗) = 0, then in
particular all of its components are zero, that is χj(θ∗) −
χi(θ∗) = 0, for all i, j = 1, . . . , N . On the other hand, if
χj(θ∗)−χi(θ∗) = 0 for all i, j = 1, . . . , N , then there exists
a constant χ, such that χi(θ∗) = χ for all i = 1, . . . , N .
Hence, it results that

Nχ =
N∑
i=1

χi(θ∗) =
N∑
i=1

∂V

∂θi
(θ∗) =

N∑
i=1

N∑
j=1

Eij sin(θ∗j−θ∗i ).

Since the interconnection matrix k is symmetric, so is the
normalized interconnection matrix E (cf. (15)), and it results
that

N∑
i=1

N∑
j=1

Eij sin(θ∗j − θ∗i ) = 0.

Consequently, χi(θ∗) = χ = 0 for all i = 1, . . . , N , which
proves the converse implication. �



APPENDIX

An extremum of a continuously differentiable function f :
Rn → R, under the constraints gi(x) = bi, i = 1, . . . ,m,
where gi : Rn → R is continuously differentiable, and bi ∈
R belongs to the image of gi, for all i = 1, . . . ,m, can be
found by constructing the Lagrangian function F through the
Lagrangian multipliers λi, i = 1, . . . ,m,

F (x, λ1, . . . , λm) = f(x)−
m∑
i=1

λi(gi(x)− bi)

and by solving the set of equations

∂

∂xi
F (x, λ1, . . . , λm) = 0,

∂

∂λj
F (x, λ1, . . . , λm) = 0,

for all i = 1, . . . , n and all j = 1, . . . ,m. The optimal
value x∗, is found together with the vector of Lagrangian
multipliers λ∗ = (λ∗1, . . . , λ

∗
m). See for example [42].
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locking in coupled Kuramoto oscillators under real mean-field feed-
back with applications to Deep Brain Stimulation,” Submitted to the
Proc. 49th. IEEE Conf. Decision Contr., 2010.

[16] A. Winfree, “Biological rhythms and the behaviors of population of
coupled oscillators,” Journal of Theoretical Biology, vol. 16, p. 15,
1967.

[17] N. Chopra and M. W. Spong, “On exponential synchronization of
Kuramoto oscillators,” IEEE Trans. on Automat. Contr., vol. 54, no. 2,
pp. 353–357, 2009.

[18] J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler,
“The Kuramoto model: A simple paradigm for synchronization phe-
nomena,” Reviews of modern physics, vol. 77, pp. 137–185, 2005.

[19] D. Aeyels and J. Rogge, “Existence of partial entrainment and sta-
bility of phase locking behavior of coupled oscillator,” Progress of
Theoretical Physics, vol. 112, no. 6, pp. 921–942, 2004.

[20] A. Jadbabaie, N.Motee, and M. Barahona, “On the stability of the
Kuramoto model of coupled nonlinear oscillators,” Proc. American
Control Conference, vol. 5, pp. 4296–4301, 2004.

[21] J. van Hemmen and W. Wreszinski, “Lyapunov function for the
Kuramoto model on nonlinearly coupled oscillators,” Journal of Sta-
tistical Physics, vol. 72, pp. 145–166, 1993.

[22] E. Brown, P. Holmes, and J. Moehlis, “Globally coupled oscillator
networks,” in Perspectives and Problems in Nonlinear Science: A
Celebratory Volume in Honor of Larry Sirovich, 2003.

[23] C. G. Assisi, V. K. Jirsa, and J. A. S. Kelso, “Synchrony and clus-
tering in heterogeneous networks with global coupling and parameter
dispersion,” Phys. Rev. Lett., vol. 94, no. 1, 2005.

[24] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Uni-
versal Concept in Nonlinear Sciences. Cambridge, United Kingdom:
Cambridge Nonlinear Science Series, 2001.

[25] C. U. D. Cumin, “Generalising the Kuramoto model for the study
of neuronal synchronisation in the brain,” Physica D, vol. 226, pp.
181–196, 2007.

[26] Y. Maistrenko, O. Popovych, and P. Tass, “Desynchronization and
chaos in the Kuramoto model,” Lect. Notes Phys., vol. 671, pp. 285–
306, 2005.

[27] B. C. Daniels, “Synchronization of globally coupled nonlinear
oscillators: the rich behavior of the Kuramoto model,” Available at
http://go.owu.edu/p̃hysics/StudentResearch/2005/BryanDa-
niels/kuramoto paper.pdf, 2005.

[28] K. Pyragas, O. V. Popovich, and P. A. Tass, “Controlling synchrony
in oscillatory networks with a separate stimulation-registration setup,”
EPL, vol. 80, no. 4, 2008.

[29] N. Tukhlina, M. Rosenblum, A. Pikovsky, and J. Kurths, “Feedback
suppression of neural synchrony by vanishing stimulation,” Physical
Review E, vol. 75, no. 1, p. 011918(8), 2007.

[30] P. Tass, “A model of desynchronizing deep brain stimulation with a
demand-controlled coordinated reset of neural subpopulations,” Biol.
Cybern., vol. 89, pp. 81–88, 2003.

[31] C. Hauptmann, O. Popovych, and P. Tass, “Delayed feedback control
of synchronization in locally coupled neuronal networks,” Neurocom-
puting, vol. 65, pp. 759–767, 2005.

[32] M. Bennet and R. Zukin, “Electrical coupling and neuronal synchro-
nization in the mammalian brain,” Neuron, vol. 41, no. 4, pp. 495–511,
2004.

[33] R. Sepulchre, D. Paley, and N. E. Leonard, “Stabilization of planar
collective motion with limited communication,” IEEE Transactions on
Automatic Control, vol. 53, no. 3, pp. 706–719, 2008.

[34] A. Loria and E. Panteley, “Cascade nonlinear time-varying systems:
analysis and design,” in Advanced topics in control systems theory,
ser. Lecture Notes in Control and Information Sciences, F. Lamnabhi-
Lagarrigue, A. Loria, and E. Panteley, Eds. Springer Verlag, 2005.

[35] I. J. Malkin, “Theory of stability of motion,” U.S. Atomic energy
commission, Tech. Rep., 1958.

[36] E. Sontag and Y. Wang, “New characterizations of input-to-state
stability,” IEEE Trans. on Automat. Contr., vol. 20, 1999.

[37] M. Rodriguez-Oroz, J. Obeso, A. Lang, J.-L. Houeto, P. Pollak,
S. Rehncrona, J. Kulisevsky, A. Albanese, J. Volkmann, M. Hariz,
N. Quinn, J. Speelman, J. Guridi, I. Zamarbide, A. Gironell, J. Molet,
B. Pascual-Sedano, B. Pidoux, A. Bonnet, Y. Agid, J. Xie, A. Benabid,
A. Lozano, J. Saint-Cyr, L. Romito, M. Contarino, M. Scerrati,
V. Fraix, and N. V. Blercom, “Bilateral deep brain stimulation in
Parkinson’s disease: a multicentre study with 4 years follow-up,”
Brain, vol. 128, pp. 2240–2249, 2005.

[38] A. Chaillet and A. Lorı́a, “Uniform global practical asymptotic sta-
bility for non-autonomous cascaded systems,” European Journal of
Control, vol. 12, no. 6, pp. 595–605, 2006.

[39] H. Khalil, Nonlinear systems. New York: Prentice Hall, 3rd ed., 2001.
[40] A.Isidori, Nonlinear control system II. Springer Verlag, 1999.
[41] E. Sontag and Y. Wang, “On characterizations of the input-to-state

stability property,” Syst. & Contr. Letters, vol. 24, pp. 351–359, 1995.
[42] G. Bliss, Lectures on the calculus of variations. Chicago Univ. Press,

1947.


