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We analyze experimentally the dynamics of optical patterns emerging from a photorefractive two-wave mixing

geometry where a tilted single-feedback mirror generates an advectionlike effect. Depending on the nonlocal

coupling (introduced by the tilting angle) between the two counterpropagating beams, the strength of the nonlocal

response of the nonlinear photorefractive bulk medium, and the distance between the mirror and the crystal, we

observe the initiation of different pattern geometries, the inversion of pattern transverse phase velocity, and the

bifurcation from convective to absolute instabilities.
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Because of light-matter interaction, laser beams propagat-

ing through nonlinear media can undergo peculiar effects,

generating a variety of known or new physical mechanisms [1].

Among these many mechanisms, the effect of noise can drive

the system out of the homogeneous state, which can become

unstable because of modulational instability (MI), leading

to the formation of spatial instabilities called patterns [2,3].

For its potential application in optical memory, spontaneous

pattern formation has been studied in different nonlinear

optical systems [4–10]. In general, such dissipative systems

display a large number of unstable pattern modes, but only a

few of them are selected such as stripes and hexagons.

The pattern selection intrinsically implies a spontaneous

breaking of the translation and rotation symmetry in the

system. An additional intentional symmetry breaking by an

external influence of the space symmetry is therefore expected

to modify the pattern geometry. To that end, a breaking of

the reflection symmetry has been proved to be an efficient

process [11–15]. Such a breaking arises if the feedback pump

beam is tilted in the system, giving rise to an advectionlike

effect. Because of this advection, patterns will experience

different behaviors, not only on their geometry but also on

their dynamics. Indeed, this latter effect can become either

convective or absolute [16], depending on various parameters.

Basically, in the so-called “convective regime,” a perturbation

growing on a homogeneous state is simultaneously advected

away so that the system returns to the initial homogeneous

solution: No pattern can arise in this regime. In contrast, in the

absolute regime, a disturbance growing locally can compete

with the advection so that the system reaches a pattern state.

However, the convective regime, where no pattern is expected,

can exhibit patterns if noise is present in the system. Then,

macroscopic noise-sustained structures can be formed as a

result of the amplification in preferential direction of the

perturbations produced by the microscopic noise [17].

Advectionlike effects leading to convective instabilities

have been modeled initially by drift terms in the governing

equations of different systems [17]. This approach is valid for

small shifts of the feedback beam. It has also been demon-

strated, in the general case where large spatial shifts (that

cannot be approximated by drift terms) are allowed, that the

nonlocal spatial coupling opens a larger range of parameters
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where noise-sustained patterns should exist. In these cases,

one speaks often about “two-point nonlocality” [18,19].

Obviously, both models contribute to the study of con-

vective instabilities and, recently, convective regimes have

been reported experimentally in a single-feedback Kerr-type

medium [20,21]. Numerical studies in a temporal system with

mismatched synchronization of the pump pulses in a fiber ring

cavity [22] and theoretical works with lasers with nonlocal

feedback [23] have also provided evidence for such convective

phenomena.

In spite of the extensive theoretical interest, experimental

demonstrations of such convective dynamics remain scarce

and focused mostly on Kerr-type nonlinear media. In this

article, we investigate experimentally the dynamics of pattern

excitation in the presence of an advectionlike effect in

a nonlinear photorefractive single-feedback system. When

modifying the angle of the feedback mirror and when properly

adjusting the intensity of the pump beam (IP ), we observe how

the strength of the advection can (i) influence the geometry

of the forming patterns, (ii) seed noise-sustained structures,

(iii) inverse the transverse phase velocity of a drifting pattern,

and (iv) enable the bifurcation from convective (CI) to absolute

(AI) instability modes. It is worth noting that our study

concerns a nonlinear thick medium that exhibits two kinds

of nonlocalities: the nonlocal photorefractive response and the

nonlocal spatial coupling between the two counterpropagating

beams introduced by the misalignment in the feedback loop. In

our experiment, the latter can be large and can be theoretically

modeled by a “nonlocality” (shift) in the equations of the

photorefractive system. In this article we concentrate on the

experimental observations of the effects resulting from such

nonlocality.

Our experimental setup (Fig. 1) is similar to the configura-

tion described in Refs. [20,24]. It contains a standard photore-

fractive two-wave mixing in a reflection-grating geometry and

a tunable single feedback. A p-polarized 532-nm laser beam

is focused inside a nominally undoped BaTiO3 crystal to a

350-µm diameter. The feedback mirror can be precisely moved

longitudinally to vary the position of the corresponding virtual

mirror created by a 2f : 2f lens system. This makes it possible

to adjust positive (mirror outside the medium) or negative

(mirror inside the medium) effective propagation lengths L

(Fig. 1) [25].

In this counterpropagating configuration, for a particular

intensity threshold ITh, the pump beam becomes unstable

1050-2947/2010/81(3)/031804(4) 031804-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.031804


RAPID COMMUNICATIONS

MARSAL, WOLFERSBERGER, SCIAMANNA, AND MONTEMEZZANI PHYSICAL REVIEW A 81, 031804(R) (2010)

F

M
L

B

2f 2f

L

PRC

VM

B

H

ββ

FIG. 1. Schematic of the setup composed of a photorefractive

crystal (PRC) in a single-feedback configuration. M, mirror; VM,

virtual mirror; L, distance between the virtual mirror and the crystal;

β, mirror tilt angle; H = L sin β, transverse shift (in µm); F and

B correspond respectively to the forward and backward beams

responsible for the pattern formation.

against MI. The pump intensity is correlated to the gain

of the (nonlocal) reflection grating arising in the crystal

due to photorefractive effect [26]. Above ITh, MI leads to

the formation of patterns [5,24], which are identified by

monitoring their far and near fields onto a CCD camera.

Depending on the distance between the mirror and the crystal

(L in Fig. 1) and above ITh, a finite set of wave vectors pairs

is selected, leading to the formation of different patterns, with

hexagonal being the main one. Its far- and near-field intensity

distributions are shown in Fig. 2(A). To create an advectionlike

effect, the feedback mirror can be precisely tilted in the x or

y direction, giving rise to the shift H in Fig. 1.

Let us first analyze the behavior related to the formation

of different patterns geometries in our system. We arbitrarily

choose the transverse displacement H along the y axis.

For a feedback mirror located outside the medium in the

absence of advection (H = 0), hexagons are the only displayed

patterns [Fig. 2(A)]. With increasing the transverse shift, we

successively observe horizontal stripes [Fig. 2(B)], squeezed

hexagons [Fig. 2(C)], and eventually a state where no clearly

defined pattern exists [Fig. 2(D)], although vestiges of the

previous horizontal lines are still present in the near field. This

scenario follows the one observed in [25].

The scenario changes when the virtual mirror is located

inside. Thereby, starting from the situation in which the

transverse shift H is absent [Fig. 3(A)], we increase the

value of H and successively discover different patterns similar

to those observed earlier in liquid-crystal Kerr-type media

[14,21]: horizontal stripes, squeezed hexagon, vertical stripes,

rectangular lattice, no pattern [Figs. 3(B)–3(F)]. Similar

H=0

Hexagon Squeezed
Hexagon

Stripe No Pattern

H=18H=10 H=56

(A) (B) (C) (D)

FIG. 2. (Color online) Different patterns obtained for different

transverse shifts H (in µm) and for a virtual mirror located outside

the crystal (L ≈ 1 mm). The pump beam intensity is fixed to the value

Ip ≃ 45 mW. Top, near field; bottom, far field.

FIG. 3. (Color online) Different patterns obtained for different

transverse shifts H (in µm) and for a virtual mirror located inside the

crystal (L ≈ −2 mm). The pump beam intensity is fixed to the value

Ip ≃ 45 mW. Top, near-field; bottom, far-field.

patterns were already observed in such a nonlinear system

by modifying the longitudinal position of the mirror in the

so-called “multiple-patterns” region inside the medium [25].

However, in our case these different patterns are obtained

by changing the mirror angle (reflection breaking) when the

virtual mirror has a fixed position inside the multiple-patterns

region. Furthermore, a different peculiar structured state is

observed in Fig. 3(G). It is obtained for large values of H and

does not depend drastically on Ip. This disordered state does

not occupy the whole available space and is located at the edge

of the outgoing flow created by the strong misalignment. The

corresponding far field shows noisy hexagonal spots located

all around a ring of instabilities. This behavior corresponds

to typical noise-sustained structures, as predicted in Fig. 6 of

Ref. [27], for large values of the parameter H.

The profile of each pattern, observed in presence of an

advectionlike effect (Figs. 2 and 3), propagates along the trans-

verse shift direction with a transverse group velocity (velocity

of the envelope of the pattern) always positive and increasing

with H. In fact, each pattern exists for a range of parameter H,

and inside this range the transverse group velocity increases

with H until another pattern state is reached. Nevertheless,

even if the propagation of the pattern envelope is directed

toward the direction of the transverse shift, the phase velocity

(velocity of the pattern components) can be positive or negative

and even equal to zero. This remarkable nonintuitive property

means that the pattern components can drift downstream, drift

upstream, or stabilize themselves, depending on H [19,21]. We

show an example of this phenomenon in our system (Fig. 4)],

for the squeezed hexagon obtained in Fig. 2(C). For the range

of parameters, 18 < H < 30, where this pattern appears, we

find that the envelope and the components of the pattern

follow the transverse direction of the shift imposed by the

orientation of the mirror (vertical arrow in the leftmost panel

of Fig. 4): Both the phase and group velocities are positive
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FIG. 4. (Color online) Time evolution of the transverse profile

of the squeezed hexagon from Fig. 2(C). From left to right, drifting

pattern passing from a positive transverse phase velocity v ≃ +π/

3 rad s−1 (A) to null (B) then to a negative value v ≃ −π/3 rad s−1

(C) for different H .

[Fig. 4(A)]. Then, for a particular value of H [H = 24 in

Fig. 4(B)], the pattern stabilizes itself (null phase velocity)

before moving in the other direction (H = 26), although the

shift is always imposed in the opposite direction: The phase

velocity is henceforth negative [Fig. 4(C)].

Let us now identify the different dynamics in the pattern-

formation process. As explained, the dynamics can be either

convective or absolute; both possess their own unique signa-

tures [17–22,27,28]. Indeed, in the near-field, noise-sustained

patterns must not occupy all the system space but are rather

located in the area closest to the edge of the outgoing

flow, in contrast to dynamics-sustained patterns which invade

the whole space. A time-resolved spectral analysis of field

dynamics can quantitatively determine the nature of the pattern

(dynamics- or noise-sustained). Finally, the analysis of the

width and shape of the near- and far-field patterns makes it

possible to find the thresholds of the transition from CI to AI.

Experimentally, as seen earlier in this article, two main

features must be taken into account: the near- and far-field

spatiotemporal intensity evolution of the pattern (Fig. 5) and

the relative size occupied by the pattern (Fig. 6). We choose

the stripe pattern from Fig. 2(B). For increasing pump power,

we observe three qualitatively different behaviors similar to

those seen in Kerr-type material [20].

(i) For low input intensities, the output beam shows erratic

stripes that appear randomly in time and space with short time

duration [Fig. 5(A)]. This is due to the fact that noise excites

all possible orientations and the newly generated advected

pattern has no relation with the one already formed. Regarding

the space occupation of the near field for low-intensity power

(Fig. 6, “NP” area), the stripes occupy on average 80% of the

available space. In addition, the two corresponding spots in

the far-field [Fig. 5(A), inset] are very broad and move in time.

All these observations are associated with a precursor, induced

by noise, of the pattern that emerges for high intensities in the

absolute regime [28].

(ii) When the input intensity is increased up to 18 mW,

stripes, drifting outside the pump beam [Fig. 5(B)], arise

continuously. This structure occupies only 60% of the available

space and have a spread width increasing slowly with Ip

(Fig. 6, “CI” area). The far-field pattern is now stable in

its transverse plane, but still present extended spots [inset

Fig. 5(B)]. In Fig. 5(B), the pattern arises remarkably at

a different spatial position for different times. In this case,

Drift

Drift

Time (s)0 60

Convective pattern : sustained by noise

Noisy precursor of the absolute pattern

Absolute pattern : sustained by the dynamics

(A)

(B)

(C)

FIG. 5. (Color online) Spatiotemporal evolution of the transverse

profile of the stripe pattern obtained in Fig. 2(B)(H = 10 µm)

for different powers of the pump beam: (A) 15 mW, (B) 30 mW,

(C) 55 mW. The dotted lines depict the available space for the

growing process of the pattern. From blue to red, the colors indicate

respectively an evolution from low to high intensities in the near-field

pattern. (Inset) Corresponding far field.

the perturbations are amplified, are advected away [drift in

Fig. 5(B)], and then reappear recursively. All these behaviors

characterize a regime of noise-sustained pattern. Note that

Fig. 3(G), obtained for a stronger advection force, shares

similar behaviors with this regime, but no particular pattern

is obtained during the process. Such convective instabilities

would not have been observed if noise had not been present in

the system: this regime is known to be convective, sustained

by noise.

(iii) For high input intensities, the stripe pattern extends

further upstream and invades almost all the available pumping

region of the system [Fig. 5(C); Fig. 6, “AI” area]. The
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FIG. 6. Evolution of near-field pattern size versus the pump

power. NP, noisy precursor regime; CI, convective instability regime;

AI, absolute instability regime.
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spatiotemporal trace shows a strong periodicity of the ad-

vection effect. The far-field spots [Fig. 5(C), inset] are now

well-defined. Finally, by comparison with the convective

regime, note that the pattern arises almost at the same position

in space [see the white lines following the upstream edges of

the stripe pattern in Figs. 5(B) and 5(C)]. These phenomena are

linked to an absolute regime displaying dynamics-sustained

patterns.

Finally, Fig. 6 shows the evolution of the mean width

of the pattern region as a function of the pump intensity.

The three regimes discussed earlier in this article (noisy

precursor, convective instability, absolute instability) mani-

fest themselves when the pump intensity reaches different

thresholds and clearly correspond to different signatures of

the pattern dynamics and of the corresponding pattern size

[20]. Indeed, in Fig. 6 we identify three different plateaus

located between two critical values (vertical dashed lines)

of the pump beam intensity: the convective and absolute

intensity thresholds, respectively. Before the first division in

the graph (CI threshold at Ip ≃ 18 mW), the first plateau

settles in a structure that occupies approximately 80% of

the available space (≃350 µm) and represents the noisy

precursor (NP) of the dynamics-sustained pattern [case (i)].

After the second plateau (AI threshold at Ip ≃ 37 mW),

the pattern starts to invade the whole system and reaches

a saturated value (above Ip ≃ 55 mW): here we are in the

AI regime [case (iii)]. Finally, between Ip ≃ 18 mW and

Ip ≃ 37 mW the pattern occupies roughly 60% of the pump

area: the CI regime dominates the dynamics of the system

[case (ii)].

In conclusion, we have experimentally investigated the

dynamics of pattern formation in a tilted photorefractive

single-feedback system. The geometry, transverse phase ve-

locity, and dynamics of the forming patterns are strongly

influenced by the transverse shift, the mirror distance and

the pump beam intensity. When the virtual tilted mirror is

located inside the medium, different patterns are observed and

an inversion of the pattern transverse phase velocity can be

found for particular values of the tilt angle. The signatures of

convective and absolute instabilities have been identified for

the first time in a photorefractive system, in a similar way to

those observed in thin Kerr-type media although the physics

that rules the nonlinear light-matter interaction is different. It

confirms that the behaviors are general and do not depend on

the nature of the involved nonlinearity.
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