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High-Level Design Methodology for Ultra-Fast
Software Defined Radio Prototyping on

Heterogeneous Platforms
Christophe Moy and Mickaël Raulet

Abstract—The design of Software Defined Radio (SDR) equip-
ments (terminals, base stations, etc.) is still very challenging. We
propose here a design methodology for ultra-fast prototyping
on heterogeneous platforms made of GPPs (General Purpose
Processors), DSPs (Digital Signal Processors) and FPGAs (Field
Programmable Gate Array). Lying on a component-based ap-
proach, the methodology mainly aims at automating as much
as possible the design from an algorithmic validation to a
multi-processing heterogeneous implementation. The proposed
methodology is based on the SynDEx CAD design approach,
which was originally dedicated to multi-GPPs networks. We show
how this was changed so that it is made appropriate with an
embedded context of DSP. The implication of FPGAs is then
addressed and integrated in the design approach with very little
restrictions. Apart from a manual HW/SW partitioning, all o ther
operations may be kept automatic in a heterogeneous processing
context. The targeted granularity of the components, whichare
to be assembled in the design flow, is roughly the same size as
that of a FFT, a filter or a Viterbi decoder for instance. The
re-use of third party or pre-developed IPs is a basis for this
design approach. Thanks to the proposed design methodologyit
is possible to port “ultra” fast a radio application over several
platforms. In addition, the proposed design methodology isnot
restricted to SDR equipment design, and can be useful for
any real-time embedded heterogeneous design in a prototyping
context.

Index Terms—Software-defined radio, design methodology,
heterogeneous platform, cross-layer design

I. INTRODUCTION

T HIS paper proposes a method that meets most of the
requirements associated with the design of Software-

Defined Radio (SDR) equipments. SDR related research aims
at investigating all the topics that can help improving future
radio systems technologies [1], [2], [3]. In this paper, we
address the particular issue of SDR equipments design, which
is still a very open subject. This topic is also very similar to any
real-time embedded heterogeneous design issue. SDR design
is indeed a co-design issue, which is not restricted to SDR,
and concerns most of the embedded real-time equipments. If
we could discriminate SDR from other equipment categories,
we could say that SDR brings the flexibility paradigm to its
height. That is why SDR equipments are expected to be made
of various flexible processing components, such as DSPs,
GPPs, FPGAs and ASICs. Moreover, the flexibility is not only
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considered at design time in SDR systems, but also at running
time. An SDR system consequently should be capable of tak-
ing benefit from the potential reconfigurability of the flexible
components it is made of. This implies an appropriate design
methodology, which transforms this potential reconfigurability
into an effective flexibility at run-time [4].

The existence of a reconfiguration management architecture
at equipment level, and at infrastructure system level [5] must
not be forgotten. However reconfiguration management is not
directly included in the design methodology in this paper, but
we explain how this approach is compatible with its insertion,
in a future step. This assertion relies on our deep experience
in reconfiguration management issues [6] and [7]. Reveset al.
in [8] are also investigating ways to resolve these problemsin
a similar spirit.

There are several ways to consider SDR design. The ap-
proaches can be divided into two distinct categories:

- fast prototyping for lab demos,
- commercial equipments design.

Time has not come yet to consider the second category
as a realistic option. Only sub-parts of the design flow are
achieved and they are mainly those used in a prototyping
flow. We particularly address in this paper the fast prototyping
issue from algorithmic simulation to multi-processing het-
erogeneous implementation. Usual heterogeneous embedded
design approaches mix several independent tools dedicatedto
hardware or software, which require long efforts and can cause
errors. In order to tackle the issue, we act at a higher level
so that automation and acceleration are implied in the design
process.

The paper is organized as follows. The requirements of
heterogeneous co-design, as addressed in the SDR area, are
explained in section II. But there are many ways to address
the concerned co-design issue. This is explained in section
III of this paper and section IV extracts the main features of
a realistic flow. Section V suggests a possible instantiation
of this flow and illustrates how the suggested heterogeneous
approach meets section III requirements. Finally, SDR design
examples based on the proposed approach are given in VI,
before drawing some conclusions.

II. SDR DESIGN ISSUES

SDR design is very challenging and there is not any single
solution which covers all radio engineers’ expectations. This
section intends to list the main issues to be resolved. It
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can be noted that other embedded systems share the same
requirements: this does not restrict our approach to SDR.
Advanced image processing, for example, is completely within
the scope of the suggested methodology.

The ideal SDR design methodology should offer a set of
characteristics facilitating the design of systems, whichin turn
features the following main characteristics:

- flexibility,
- multi-processing,
- heterogeneous processing,
- object-oriented design facilities,
- HW-SW co-design,
- embedded constraints,
- signal-processing simulation,
- hardware abstraction.

Moreover, portability and re-usability are constant concerns,
as well as the elevation of abstraction, in order to simplify
the global design process. This list is not exhaustive, but it
is sufficiently challenging to be considered a very ambitious
target.

A. Flexibility

The salient feature to be considered first regarding SDR is
flexibility. All the previously listed elements have to be consid-
ered in light of this keyword. Radio design has been based for
more than a hundred years on analog electronic components,
which imposes a pre-defined transmission scheme. SDR is
the answer to this limitation thanks to the recent technology
progresses.

Flexibility is achieved through a digital approach. Radio
applications become digital (ideally, software) and can be
played in any hardware platform. The radio application (soft-
ware here) consequently can be changed, just like a piece of
software that can be changed on a computer. This is the end
of a century of fixed-behavior radio. This is the beginning of
the software radio era.

B. Multi-processing

SDR is defined as an underdeveloped version of the ideal
Software Radio of Fig. 1 [1]. Software Radio comprises very
demanding digital signal processing capabilities, since it brings
both digital-to-analog (DA) conversion at the transmission
side, and analog to digital (AD) conversion at the reception
side, closer to the antenna. Consequently, multi-processing is
an SDR intrinsic requirement, and its purpose is to speed up
the required computations.

Software radio is currently not realistic except for low
carrier frequency transmission systems. More often, at least a
radio frequency (RF) translation to intermediate frequency (IF)
or baseband (BB) is done in the analog mode, and this between
the antenna and the AD or DA conversion. This pragmatic
approach is illustrated in Fig. 2 and named Software-Defined
Radio or SDR.

Even if this approach reduces the efforts supported by
digital processing components, this situation remains very
challenging. The constraints are so strong that the direct
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Fig. 1. Ideal software radio equipment architecture.
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Fig. 2. A realistic SDR equipment architecture.

approach shown in Fig. 2 may fail and imposes sometimes
to investigate signal processing alternative solutions inthe
most demanding contexts, as for UWB for instance in [9]
and [10]. Nevertheless, in the most relaxed situation of a
baseband digitization, digital operations are timed at a multiple
of the signal bandwidth, which can then reach tens of MHz
in a single band terminal for UMTS, and hundreds of MHz
for multi-band base-stations. A multiple of GHz will soon
be required for multi-standard SDR base-stations or UWB
transmissions. Most demanding operations are those, which
are over-sampled compared to the symbol rate: filtering at
the transmitter exit or at the receiver entrance, as well as the
very complex algorithms used for reception, such as turbo
decoding.

Consequently, digital processing architectures are very com-
plex and combine several similar devices or several kinds of
processing devices. This last consideration is the topic ofthe
next paragraph. But multi-processing, without heterogeneity,
is a topic in itself. An SDR design methodology must provide
some facilities, in order to map and program a distributed
system. Designing an SDR equipment means that the soft-
ware elements, which form the radio application, need to be
allocated on the equipment hardware devices.

It has to manage communications as well as processing.
It has to schedule communication and processing periods for
each processing unit. This includes scheduling predictionand
optimization means, in order to perform an automatic mapping
and scheduling of the SW application for the HW platform.
Moreover, the result of this is the demand for automatic
generation of the communication glue associated with the
processing operations.
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C. Heterogeneous computing

The heterogeneity of devices indeed allows benefiting from
the different advantages associated with each category of
processing components. Let us keep in mind that flexibility
is of major interest for SDR. Consequently, the most popular
processing devices in SDR design are the following:

- GPPs,
- DSPs,
- FPGAs,
- digital ASICs,
- analog ASICs.

As explained earlier, analog ASICs are still necessary. SDR
cannot get away from antennas, amplifiers and analog filters;
this is a condition associated with the transition from the
electric to the electro-magnetic world. Digital ASICs and
FPGAs are able to process heavily parallel computing. ASICs
are hardware solutions particularly suited for low power,
very high speed computing. But they are dedicated to high
quantity markets in order to compensate for the chips design
cost. FPGAs provide some of the requested hardware (HW)
capabilities at a lower buying and developing cost. But FPGAs
offer HW flexibility, which is very important when considering
SDR. Two levels of flexibility may be considered for FPGAs.
Firstly, flexibility at design time, enabling to create several
designs in a FPGA and run them at different periods of
time. FPGAs have been used this way for years, and it is
of great benefit. But FPGAs offer a new opportunity now,
which consists in dynamically reconfiguring a sub-part of
the FPGA gates while the rest of the gates can carry on
the process. Delahayeet al. have defined and validated a
design methodology, as well as flexible processing elements
design approaches which are particularly interesting for SDR
and involve a partial reconfiguration of FPGAs [11]. Other
domains are also making investigations, as for crypto [12],
but this is out of the scope of this paper.

DSPs offer the best trade-off between processing power and
power consumption [13]. They are particularly appropriatein
the SDR context. Manufacturers now integrate more and more
co-processing capabilities dedicated to radio signal processing,
such as Viterbi decoders in the TI C6416 DSP for instance.
Their C language programming ability makes them really
relevant for SDR. They enable portability from one DSP
device to another one (with the hypothesis of good compilers).

GPPs have become a potential alternative in recent years
with a tremendous increase in their computation power. GPPs
have the advantage of supporting high-level programming
languages, as well as highly advanced operating systems.
This later feature may be helpful for portability but also for
reconfiguration management purposes.

D. HW-SW co-design

The distribution of the processing elements between the
different categories of processing devices needs to be doneon
the basis of the capabilities of each category of components,
processing power, but also power consumption, heat dissipa-
tion, cost and other relevant factors must be taken into account.
This topic is very complex and no automatic solution exists

today. The solution relies mostly on engineers’ experience. The
main challenge is to separate software (SW) from hardware
(HW). Let us clarify this statement: we consider SW as being
an object running a processor, and HW the object executed
on a FPGA. We will retain this distinction in the rest of the
article.

By HW-SW co-design, we have to restrict here to the design
flow ability to integrate at a high-level, processing elements
of different nature in code, such as C or VHDL, so that
those are run in different processing components categories,
such as GPPs, DSPs, FPGAs or ASICs. We also take into
consideration the specific case of parameterizable ASIC since,
if the processing is fixed, the configuration of their parameters
may be done on a DSP within a C function. In this sense, an
ASIC is considered as a processing unit running a dedicated
functionality.

E. Object-oriented design facilities

SDR is an evolution of the radio design. Radio design
comes from the electronics field, which is very much linked
to the notion of hardware component. This is mainly due to
technology reasons. Electronics components have been for a
century the only bricks available to build a radio. On the
other side, computer engineering integrated the electronics
paradigm of “components” in the SW domain. This makes
a component-based design approach [14] definitely suitable
for SDR design demand [6]. Advantages are numerous, but
let us highlight the following at least: modularity, portability,
replacement by reconfiguration, re-usability,etc.The reason is
that the component-based approach leads to a natural separa-
tion between signal processing and execution architecture.

The object-oriented approach indeed gives the opportunity
to increase the design abstraction level. This has two main
consequences. Firstly, SDR design may benefit from the latest
progresses in high-level design. The use of UML for embedded
systems design in general [15] and SDR design in particular
[16] are some example. Secondly, we argue that the temptation
of inventing a completely brand new design flow for SDR
must be avoided. SDR design must be based on other design
technologies in order to benefit from their advances. In that
sense, we defend the following approach for SDR design. An
SDR design flow has to give the opportunity to integrate pro-
cessing elements (let us also call them IPs here, for Intellectual
Property) made by other specialized designers or tools. Then
SDR design may be seen as a kind of IPs integration process.
This reduces the SDR design flow constraints supported by the
processing elements or IPs design and provides the designera
higher level position, thanks to a component-based approach.
This permits to consider signal processing elements as black
boxes with very general characteristics, such as for instance
execution time, mean power consumption, memory use,etc.,
and not as a succession of atomic level operations, or a set of
gates. Another advantage, if not the most important, is thatit
allows to keep each IP design optimality, thanks to dedicated
tools specific to each domain; For instance as a synthesizer
for a FPGA, or as a compiler for a DSP. It is unfair to pretend
being able to make a better tool than the each of these domains
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specialists. Moreover, this gives the opportunity to benefit from
IPs third party developers. This announces the proliferation of
IPs integrators on generic platforms in the future. The re-use
of IP, moreover, is a guarantee of reliability. It also givesthe
opportunity to benefit from the use of IP, the content of which
is protected.

F. Embedded constraints

Embedded constraints can be the following:

- hard real-time,
- memory limitation constraints,
- power consumption,
- cost,
- size.

In the SDR context, the first step to overpass is often the
resolution of hard real-time data flow constraints. This often
implies the consideration of memory optimization as well.
These two points are state-of-the art rapid prototyping ap-
proaches, and are of course also to be considered in commer-
cial equipment design. A real-time guarantee is mandatory.
Consequently, It may not be preferable to rely on real-time
operating systems (RTOS) in that context, and when compared
to a static operations scheduling.

Power consumption, as well as cost and size are not con-
sidered in a prototyping approach, but are when considering
commercial systems. As a consequence, those are not in the
scope of the approach proposed in this paper. A long term goal
is to integrate these considerations from the very beginning of
the design phase, which is currently done manually. Research
studies on power consumption are numerous [2], with regards
to the topic importance. Some are based on a power prediction
[17] or measure [18]. Attempts to help taking into consider-
ation several of these parameters at the very early steps of a
design flow have been proposed [19], but without providing
an integrated resolution method yet.

G. Signal-processing integrated simulation

Another required feature of an SDR design flow is the ca-
pability to simulate the system in order to check its functional
and non functional behavior. A major point to be stressed
is that there is almost no interest for such a simulation if
the conformity between the simulated version and the final
version installed in the real system is not guaranteed. If not,
the checking will have to be done again in the platform.

An alternative option is to give the possibility to implement
the system very quickly on the hardware platform, and directly
run the real system in order to check itin-situ.

H. HW abstraction

Abstraction layers may have several roles in an SDR system.
At design time, it may be seen as a technique that enables to
abstract the signal processing IPs from the hardware target, as
a Java code planned to run on a Java virtual machine. This is
not very good for SDR, since it may decrease the processing
performance too much. Another approach is to take benefit
from a higher level design approach, in order to hide some

details of the hardware implementation. This may be achieved
through the use of only a few features for the characterization
of IPs execution on this hardware. This permits to speed-up
both design phase and direct implementation on the platform,
where very precise measurements may be done with exact
results.

Another abstraction is acting at run-time. This may be done
thanks to a middleware layer. The most common proposal
related to this, is the Software Communication Architecture
(SCA) selected by the US Department of Defense (DoD) in the
JTRS (Joint Tactical Radio System) program [20]. A CORBA
(Common Object Request Broker Architecture) software bus
is proposed in the SCA, in order to support the abstraction
of the hardware for the software. This is a major source of
concern for the radio design community. Solutions trying to
go round the full-CORBA approach while supporting some
SCA compatibility are numerous [21]. They mostly consist,
for real-time signal processing, in bypassing CORBA which
should definitely be restricted to reconfiguration management.
As explained earlier, reconfiguration management is not within
the scope of the current paper but has to be taken into account,
as attempted in [6], [7], [8].

I. A design approach with a wider scope than the sole SDR
domain

The list of properties for SDR design approach has many
commonalities with other application fields. This means that
solutions targeting SDR design may also be applicable in other
domains. In the context of image processing in particular,
all listed characteristics are valid, even the flexibility.This is
particularly relevant regarding the very latest versions of video
coding schemes from MPEG standardization groups. MPEG-4
for instance targets a large scale of coding/decoding schemes
which implies flexibility by nature. This requirement is also
stressed at its maximum in recent RVC (Reconfigurable Video
Coding) where reconfigurability is a goal itself [22]. Another
example is the need to solve massively heterogeneous multi-
processing issues related to the networking infrastructure,
which implement video and audio formats transcoders, in order
to broadcast multimedia contents on different media types
(from high definition HD TV to handheld DVB-H).

III. C URRENT AND INNOVATIVE SDR DESIGN

APPROACHES

A. Today: no existing solution

Regarding the design flow requirements listed in the pre-
vious section, no integrated solution for the design of SDR
systems currently exists and it may be expected that none will
ever be found. Consequently, a set of solutions have to be
addressed separately, and then combined. We would rather
expect that a new tool shall be used, in combination with
already existing tools, dedicated themselves to design sub-
parts. We suggest here to present a summary of the potentially
expected solutions, on the basis of the already existing state-
of-the-art languages and commercial proposals.
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B. Co-design languages

If we consider the SDR design issue as a co-design issue,
let us consider first the languages that have been created in
the last 10 years for that purpose. We may refer to SystemC
[23], HandelC from Celoxica, and CatapultC from Mentor
Graphics, to discuss the popular ones. The initial goal was
to provide designers with a completely integrated flow for
the SW joint design, SW being the processors coding, and
HW, FPGAs coding. When using the termintegrated,we refer
to the use of a unique language that would be compiled for
the SW part of the system and synthesized for the HW part
after a joint edition, simulation, debug and validation process.
However, the SW and HW worlds are intrinsically different
if not antagonist, which makes it very challenging. Another
idea was to facilitate the HW design, while getting rid off
the VHDL coding and turning it to C-like. The previously
mentioned languages proposed a C-like programming method
for HW, while creating C++ libraries depicting HW design
requirements, such as binary and vector data types, or the
possibility to express parallelism. But all C++ code can not
be converted into HW, which leads to a lot of synthesis impos-
sibilities. The restrictions are so important that we almost not
exaggerate if we say that it finally consists in writing VHDL in
C++, which brings no help finally. Moreover, this approach is
far from providing the most efficient FPGA design in terms of
processing speed, surface occupation and power consumption.
This finally becomes accurate with regards co-simulation,
but as the HW part has to be manually reprogrammed, this
completely breaks the design flow, since the validation at
a high level is not guaranteed. We must stress here on the
following point: a 95% synthesis of the HW target SystemC
code is not important enough, if a huge amount of energy is
needed to solve the 5% remaining issues, which is often the
case. Finally, these co-design languages are often restricted to
transfer level simulations at their best capability.

C. MathWorks

A very popular method for fast prototyping is proposed by
Mathworks, based on Simulink. The first solution was pro-
posed in the early 2000 in association with LYRtech, an SDR
platform provider [24] and has been generalized to many other
providers since. It consists in providing a direct bridge between
a Simulink environment for signal processing simulation and
the execution on a heterogeneous hardware platform made of
DSPs and FPGAs. The link from Simulink to DSPs is obtained
through RealTime Workshop from MathWorks. With regards
the HW side, Xilinx is providing a set of FPGA IPs, which are
guaranteed to be cycle accurate equivalent to the IPs provided
in Simulink. It provides indeed an artificial translation from
Simulink to the FPGA. However, the following restrictions
have to be taken into account: It is firstly dependent on
the existence of appropriate APIs (Application Programming
Interface) for each platform. If this solution was generalized,
all platform providers would have to make the effort to provide
those APIs. Secondly and most importantly, the HW domain is
restricted to Xilinx provider and technology. Even worse, only
a sub-set of Xilinx IPs is valid in this approach. The constraint

on the IPs is that an equivalent cycle accurate version of the
IPs should exist in both Simulink and VHDL. Note that this
does not prevent designers to make their own IP with this
technique. The guarantee of the equivalence is then under the
responsibility of each company.

Despite the above mentioned concern, MathWorks offers
the most effective solution to SDR designer in the short-
term. Just a lack of a higher modeling introductory work at
specification level in the design flow may be missed. However,
it really permits to implement a heterogeneous design in a
Simulink environment from functional simulation to proper
implementation. It is, in this sense, a signal processing based
approach.

D. High-level design

Moreover with longer term objectives, we may refer to
computer-science oriented approaches based on high-level
modeling, such as UML (Unified Modeling Language) of
the OMG (Object Management group). UML is another way
to interpret co-design. As UML indeed is dedicated to help
modeling any kind of system, even outside the engineering
domain, then why not for mixed SW and HW? In addition,
systems in general become more and more complex. Hardware
and software designers (we refer to this term usual mean-
ing here, not to the “differentiating processors from FPGA
designers” meaning) have to cooperate in larger and larger
projects. This induces a need for a global system design
methodology. The engineering answer has been MDE for
Model Driven Engineering, and the methodology, MDA for
Model Driven Architecture [25]. This approach is mainly
based on UML concepts. Another feature is the two steps PIM
and PSM. PIM stands for Platform Independent Model and
corresponds to a modeling of the application, which is done
independently from any implementation consideration. Then
PSM (Platform Specific Model) adds new characteristics to
the model, in order to take into account the execution HW
platform. MDA, which was introduced in 2000 by the OMG,
is now a quite successful concept. An attempt to integrate SDR
design in a UML methodology has been done in A3S project
[19], [26] for the modeling and prediction of non functional
characteristics of such systems. A metamodel for SDR has
been established, in order to generate a UML profile named
“A3S profile” [19]. A profile is a way to extend UML concepts
for a specific domain. In practice, this consists in customizing
a UML environment for a specific application domain (and
getting rid off all the unnecessary concepts). The OMG has
already standardized several metamodels for embedded real-
time systems. The latest is MARTE [15]. New researches on
SDR have been inspired by MARTE, such as Mopcom [27]
whose aim is to define a design flow generating automatically
VHDL code from high-level UML-based modeling [28].

Note that if we push SDR design towards cognitive radio,
this increases once step further complexity. High-level design,
through meta-modelling, is a key to deal with system com-
plexity, such as proposed in [29].
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E. Other approaches

Other design approaches for SDR have mainly oriented
their solution towards a specific hardware implementation
target, while offering the inherent flexibility of SDR design.
One solution is to suggest an SDR customized processor.
QuickSilver Inc. has designed a hardware chip and associated
software development tools. The Adapt2000 ACM System
Platform claims to integrate in a single IC, the Adapt2400
ACM (Adaptive Computing Machine), ASICs, DSPs, FPGAs
capabilities and micro-processors [30]. The Adapt2400 com-
prises four distinct heterogeneous node types and a node
wrapper. The InSpire Node Software Tool Set complements
the Adadpt2400 architecture, and abstracts away the com-
plexity of the heterogeneous, multi-nodal, multi-taskingACM
architecture under a single unified programming model.

Another choice is to privilege brut performance (computa-
tion speed, power consumption). A promising approach in this
field is the use of systems on chip (SoC) that gathers several
(more or less dedicated) processing units inside a single chip.
The generalization to a high number of units, as required in
SDR systems, leads to networks on chip (NoC). A NoC can be
differentiated from a SoC, as the number of units become so
high, that communication between units themselves becomes
an issue, and they then need their own processing units. A very
advanced work in the SDR domain is the FAUST (Flexible
Architecture of Unified System for Telecommunication) chip
designed by CEA [31]. It has been originally designed to
support potential 4G candidates based on MC-CDMA mod-
ulation schemes [32]. Flexibility was a necessity in order to
support several ranges of parameters and to evaluate several
possibilities, and to incorporate flexible schemes for 4G. This
included real-time reconfiguration capabilities in a certain set
of configurations, which were limited by each unit parameters
possibilities. Then it turned in a second step towards a real
platform for the support of multi-standards SDR systems.
CEA designed a new version of the FAUST chip named
MAGALI (Multi-Applications Globally Asynchronous Low-
power Integrated circuit), which incorporates new and more
diverse processing units. This allows MAGALI to support a
large scale of current and future standards, such as WiFi,
WiMax, etc. with MIMO support. Please note that, even if
the set of possibilities is very high, it is limited by specific
manufacturing constraints. It is specifically dedicated radio
processing and could not address other domains. It also
includes advanced capabilities in terms of power consumption
savings, which is a definitely advanced feature in the SDR
field.

Even if this seems to be in contradiction with choosing
a HW target, Vanu Inc. made the choice to remain generic
a hundred percent, i.e. the hardware target they selected is
“the” generic processor. It is based on the MIT researches,
which were carried out in the middle of the 90’s [33] for GSM
base stations [34]. The main idea is to benefit from the GPPs
technological improvement, according to Moore’s Law, and
keep the advantage of existing high-level programming tools,
which are supported by a GPP environment. The portability is
then implicit, as it is an exact application of the PC concept

to the radio domain. Vanu Inc. was the first company in
the USA to be certified for GSM SDR base stations, and
began manufacturing in 2004. But we may wonder why
this technique is not so popular and why Vanu Inc. does
not have a stronger market position. This indicates that this
technique is probably not yet mature for the infrastructure.
It will consequently be even worse for terminals as GPPs
main drawback is power consumption, a key point of terminal
design.

Let us mention also the tools which are very accurate for
the optimized design of FPGA IPs and may be complementary
to the previous ones. For example: LISAtek [35], and GAUT
[36]. LISAtek aims at providing integrated tools for the design
of ASIPs (Application Specific Instruction Set Processor),in
order to obtain an optimized hardware processor architecture
for a dedicated set of processing operations and the associated
programming tools (debugger, compiler). This could be used
for the design of an SDR SoC for instance, as experimented in
[37]. GAUT enables to reuse an IP algorithmic specification
written in C/C++, and to synthesize it into an equivalent
VHDL RTL specification. The potentially pipelined architec-
ture which is generated, allows exploring the design space
for FPGAs or ASICs, through a trade-off between processing
speed, power consumption and area. This can be a comple-
mentary tool for the integration of the processing units into
the previous solutions.

From the system point of view, another tool worth to
be considered for the design of embedded equipments is
CoFluent Studio, made by CoFluent Design [38]. The tool
allows to manually exploring a heterogeneous design space
with an extreme intimacy, in order to anticipate and orient
design possibilities. This is a product-oriented approachwhich
requires quite some time and expertise. Moreover, CoFluent
does not provide automatic code generation facilities. The
exploration stays at the level of a virtual platform. We mostly
privilege in this paper rapid prototyping oriented solutions,
which help a signal processing engineer to implement quickly
an SDR system with automated steps.

Future will tell if one of those approaches more or less
dedicated to SDR, is an appropriate answer or not. Maybe
the SDR market will be shared between several of them.
The design methodology suggested in the next section is less
dedicated to SDR than most of those described here, and could
also be worth for other embedded real-time prototyping design
perspectives.

IV. A REALISTIC DESIGN FLOW FORSDR OPEN

ARCHITECTURES

The term “realistic” is used here to explain that, with
current state-of-the-art technologies, a perfect solution for fully
integrated co-design is not available, and even not foreseen.
The term “open architectures” means that we consider the
solutions based on COTS programmable and reconfigurable
components. We exclude from the study any approaches based
on pre-oriented hardware, which reduces its range to only a
subset of SDR capabilities in terms of flexibility. The solutions
suggested here can be used for any heterogeneous real-time
data-flow oriented embedded design.
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Fig. 3. Ideal SDR design flow.

However, the concern of this paper is SDR, so we must keep
in mind that SDR is not only data-flow oriented. The approach
has to be compatible with the adding of a reconfiguration
management architecture at a later stage of the design, more
control-oriented by definition. Moreover, SDR design must
not be restricted to radio design. It should be seen from a
larger point of view or scale, including other layers of the
OSI (Open Systems Interconnection) model. SDR design is
also a question of cross-layer design. This typically concerns,
at terminal level, a joint approach for both radio and image
processing for instance [39].

A. SDR Ideal design flow

Fig. 3 schematically represents what could be the ideal
SDR design flow. It would, first of all, consist in a high
level modelling phase. This would allow taking advantage
of mature modelling techniques, which allow in turn the
various design protagonists, respectively HW, SW and signal
processing designers, to refine the very early design choices in
a common environment issued from the system specifications.

The first step consists in making a simulation and functional
validation of each IP. The hardware target that is planned to

run the IPs, would be here completely transparent. Ideally,the
same language would be used to program a SW (dedicated to
run in a processor) or a HW (dedicated to run on a FPGA) IP.

The system functional validation is directly obtained by
combining the previous step validated IPs. In conjunction with
this step, non functional requirements, as well as platform
features are derived. The platform has to be considered here
as the combination of devices with their associated low level
software as a board support package, or as RTOS,etc..

Then all the information is merged to allow an automatic
HW/SW partitioning for heterogeneous multi-processing. Pre-
dictions figures are achievable, such as the application exe-
cution time, so that other HW/SW matching could be tried
if the constraints are not respected. This allows dimensioning
the HW platform at the early stage of the design flow. Let us
just note that this is far from current reality. The partitioning
guarantees the functional accuracy of the application multi-
processing version, when compared to the previously simu-
lated mono-processing version. Of course, in that ideal world,
the automatic scheduling is also done. The communication
code generation is derived directly from the scheduling. IPs
automatic code generation is obtained, for either HW or
SW. The transformation guarantees an equivalence with the
previous model: this permits to avoid the repetition of the
simulation and verification procedures, already done earlier.

A co-simulation tool allows to validating definitively the
heterogeneous system. Finally, the implementation on the
platform is straightforward as the ideal design flow takes every
aspects of the implementation, whatever their level.

B. A realistic SDR design flow

A realistic SDR design flow is suggested in Fig. 4. It intends
using a set of already existing commercial and/or academic
technologies at their maximum capabilities.

Two main goals are achieved here. The first goal is to avoid
the reprogramming of the same function several times. This
is what happens usually in heterogeneous design. No less
than 6 re-coding steps may be done for certain sub-parts of a
heterogeneous system, as for instance a HW IP:

- Matlab functional validation,
- floating point C functional validation,
- fixed-point C validation,
- SystemC,
- cycle-accurate SystemC,
- VHDL.

In addition to the extra time necessary to code again the same
functionality, this approach is very error-prone and each step
requires a repetition of the debug and validation process.

The second goal consists in automating all the implemen-
tation dependent actions, and keeping the multi-processing
functional accuracy from separately developed and validated
IPs. The IPs typical abstraction level is C language or VHDL.
This could even be an executable code or a bitstream coming
from a third party, which would keep its code secret. This
means that the IPs code for the selected HW target is available,
or can be obtained with dedicated tools (compiler for DSP and
synthesizer, place and route for FPGA), so that non functional
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characteristics may be extracted, such as for instance: the
programming code and data code size in a DSP, the number
of gates for a FPGA, the execution speed,etc.

As previously stated, the IPs design is voluntary set out of
this flow. Please note that we also definitely consider here,
that there is no efficient solution for an automatic HW/SW
partitioning. This must be left to the designer’s discretion,
his/her choice being made on the basis of his/her experience.

Then HW (respectively FPGAs) and SW (respectively pro-
cessors) worlds have to be treated separately, each of them
having their own ways of managing multi-processing for
automatic partitioning and scheduling. But strong equivalent
principles must be applied for both; this enables to keep a
global cohesion for an SDR design approach. The most im-
portant thing is the asynchronism between operations. Thisis
an obvious thing when it concerns processors, since processing
speed is correlated to the device clock and not data rhythm. It
can be used in FPGAs using a GALS (Globally Asynchronous,
Locally Synchronous) design methodology for HW IPs [40].
This gives many advantages which are also SDR requirements:

- re-usability: an IP may be used in different designs at
different clock rates,

- portability: from one HW device to another,
- managing reconfiguration in a future step,
- power consumption considerations, since GALS originate

from those.
Nevertheless automatic code generation for communications

between both worlds has to be possible at least.
The methodology should also bring some automatic parti-

tioning and scheduling concerning the SW side only. It should
be able to provide a multi-processing version, which is a
functionally certified equivalent of the application used for
the mono-processing version validation.

Section V proposes a way to implement the design flow
proposed in Fig. 4.

C. How can reconfiguration be supported at a later stage?

Reconfigurability is intrinsically provided within this
methodology by two complementary means:

- the choice of generic hardware components for the plat-
form, such as GPPs, DSPs, FPGAs,

- through the software application building, which is done
via a component-based approach for both SW (proces-
sors) and HW (FPGAs) processing elements.

This is the necessary base that will enable to integrate a
reconfiguration management architecture at a later stage.

We have derived a reconfiguration management architecture
that is particularly suited to this design methodology [6],[7].
It is out of the scope of this paper to describe it, but we precise
that it has been successfully developed and experimented
through several prototyping showcases. One main feature of
an appropriate reconfiguration management architecture, is
to perform reconfiguration operations in a very short time,
in order to limit as much as possible the overhead, when
compared to the signal processing duration.

It is important to point out that we deliberately disjoined
the reconfiguration management design on one hand, and the
SDR signal processing on the other hand, while keeping all
the necessary interconnections between them.

We do not think that this technology is mature enough yet,
so that both approaches can be merged. That is the reason
why the design methodology of this paper does not include,
but supports the coherence with a reconfiguration management
architecture. However we are attempting to pursue this final
goal, such as for the FPGA sub-part in the Mopcom collabo-
rative project [27], [28].

Adding to this, it has been highlighted that a particular
effort has been done to completely master each part of the
design. We insist that this is a key point of an efficient
reconfiguration process, i.e. integrate reconfiguration inthe
processing elements design itself. From a formal point of view,
we have been investigating parameterization techniques for
several years. This consists in designing processing elements
in such a way, that they may be reconfigurable quickly enough
through the use of parameters [41]. If we extend the scope
of this approach, we can plan to use it for multi-standard
equipments design in combination with the use ofcommon
operators, as explained in [42], [43], [44].

From the experimentation point of view, we have also shown
that the reconfiguration management may be merged, at least
partially, with the signal processing in order to offer more
flexibility. That is why we propose hierarchical and distributed
management architecture in [45]. It is particularly obvious



MOY AND RAULET: HIGH-LEVEL DESIGN METHODOLOGY FOR ULTRA-FAST SOFTWARE DEFINED RADIO PROTOTYPING 75

in the particular case of FPGAs partial reconfiguration, as
investigated in [7], [11].

The transition from one configuration to another can be
extracted from the difference existing between two designs,
which are generated rapidly by the methodology proposed in
this paper. Some overhead has to be planned for the transition
from one design to another in terms of processing time.

D. Which already existing solutions fit or do not?

The combination of Simulink with platforms such as
LYRTech seems to us the best solution. But there is an
eliminating limit: designing one’s own IP is a necessity in
order to control the system in such a sensible implementation
domain. With the Simulink approach, the designer depends on
Xilinx IPs to fully use the design flow pertinence. It is also
possible to add your own IP, but it then requires a second
coding: both for Simulink and VHDL. Then you miss one of
the goals, which is to avoid re-coding.

High level design approaches based on UML offer promis-
ing perspectives to formalize the top of the design flow. A
bridge is needed between specification and functional valida-
tion. A3S approach and A3S metamodel [16] partly answered
this need, but without generating, as a result of the architec-
tural study, the code for both validation and implementation.
The Mopcom project is trying to fill this gap for the HW side,
while using automatic transformations between three layers of
metamodels [27]. Each of these layers takes into account, with
an increasing level of accuracy, the implementation details.
The aim is to model a system at several levels of abstractions,
while keeping advantage at a lower level of the validation and
results already obtained at a higher level.

We do not pretend that we have explored all the existing
solutions, but we mentioned the most interesting ones. In
a nutshell, we can draw the following analysis: there are
two ways of considering the extension of the design flow
towards a fully integrated and automatic design flow for SDR.
Either starting from the electronics point of view and follow
a bottom-up way. This was chosen by designers who want to
keep real-time a priority, for instance. Or it is also possible to
look at it in a top-down perspective and privilege a software
engineering approach, in order to take full benefit from the
latest computer science advances and tools.

V. A DESIGN METHODOLOGY FOR ULTRA-FAST SDR
PROTOTYPING BASED ONSYNDEX

We suggest here in detail a design methodology for SDR
prototyping, respecting 4 and fulfilling the requirements of part
II. The set of tools we are using for that purpose is probably
not the only possibility. That is why we firstly presented this
methodology from a general perspective in section IV-B, and
from a possible instantiation perspective in the present section.
Designers are then free to use any other implementation of this
methodology, according to their particular application domain
or habits. We remind also that the granularity level of the
constitutive elements considered in the methodology is thesize
of a signal processing IP, such as a filter, a Viterbi decoder or
a FFT for instance.
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Fig. 5. Example of a SynDEx software application graph.

A. SynDEx approach

The tool selected for the design flow has been SynDEx
[46], created by INRIA. SynDEx stands for Synchronized
Distributed Executives. The role of this tool in the proposed
methodology is to proceed the coarse grain design steps
until the code generation [47]. This mainly concerns the
communication code glue between IPs.

Then specialized tools dedicated to each processing domain
(respectively HW/FPGAs and SW/processors) take over to the
implementation. A major requirement of the design flow is that
no re-writing of the code is necessary between these two steps
in order to keep the former step verifications valid.

a) Major features: Entries for the design flow are two
graphs:

- a hardware platform diagram,
- a software application diagram,

In order to speed-up the design phase, it is deliberately chosen
to have only a restricted set of parameters and to take into
account the architectural exploration:

- execution time of each IP,
- atomic communication time for each data type,
- communication media features

The goal is to obtain an implementation on the HW platform
as quickly as possible, in order to deal with realistic con-
straints instead of having approximated simulations of those
constraints in the design flow itself.

Partitioning optimization of SynDEx is performed using
graph theory. The SW application graph is modeled by an
extended Data Flow Graph (DFG), which is an oriented hyper-
graph. Each vertex corresponds to an algorithm operation or
a processing element, which is activated by the fullness of its
input buffer and each edge represents a data transfer between
operations. An example of a SynDEx software application
graph is given in Fig. 5.

Moreover, the model includes hierarchy, delay, conditioning
(if / then / else) and factorization (for loop), in order to express
the potential parallelism. Factorization, which is associated
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with a repetition factor, is used to repeat operations and
requires additional specific vertexes in the DFG:

1) Fork/Join vertexes: the “Fork” vertex explodes each
element of the data it receives for each parallel repetitionof
the consumer operation, whereas the “Joint” vertex builds the
data it sends, via the concatenation of each separated element
produced by each producer operation repetition.

2) Iterate vertex: this vertex aims at sequentially duplicating
a producer/consumer operation, where the outputs of the
current operation can be the input of the next one, if the data
names are similar. More details can be found in [48].

The hardware architecture is modeled by a non-oriented
hyper-graph, where each vertex is a processor (hardware
component) and each hyper-edge represents a communication
medium, as shown in Fig. 6. In this model, a processor consists
of one operator and as many communicators as there are
connected media. An operator executes the operations, which
are a part of the algorithm, and a communicator executes a
communication operation, when a data transfer is required.By
doing this, a multi-component architecture can be represented
by a network of Finite State Machines (FSM) interconnected
with communication media (FIFO, shared memories etc.).

The aim of this tool is to find the best combination of an
algorithm which specifies the running of the application, and a
multi-component architecture. In addition to this, real-time and
embedding constraints must be satisfied. This methodology
is based on a graph theory, in order to model the software
application and the hardware architecture. The software and
hardware are described by two distinct graphs. SynDEx trans-
forms those two graphs with graph transformations in order
to generate an optimized code implementation.

An efficient implementation graph is obtained thanks to
optimizations and simultaneous distribution and scheduling
operations, while trying to minimize the execution time.

There are a large number of possible implementations. The
optimization problem aims at selecting the most efficient one
between all of them (best latency). The latency is the total
DFG execution time on a given HW architecture, between
the first scheduled operation and the last one. Moreover, the
distribution and scheduling problem in the case of HW multi-
component is known to be NP-hard (an exhaustive research
on all the possible fulfillments is inconceivable). This is why
heuristics are used to find the the optimal solution best approx-
imation (greedy and genetic algorithm). The current heuristic
approach attempts to minimize the total running algorithm ex-
ecution time on the multi-component architecture. Moreover,
since the Synchronized Distributed Executives (SynDEx) are
automatically generated and safe, this consequently eliminates
some of the tests and low-level hand-coding, and decrease the
lifecycle development as well.
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SynDEx provides a timing graph, as in Fig. 7, which
includes simulation results of the distributed application and
thus enables SynDEx to be used as a virtual prototyping tool.

SynDEx is also providing a static scheduling, which is of
major importance for hard real-time requirements. It givesthe
guarantee of an execution within a restricted given latency
period. SDR equipment will have very strong real-time con-
straints to respect. The introduction of SW in radio design
must not cause customer’s suspicion, or even worse, them
rejecting it. This has already been witnessed in the mobile
phone area with the collapse of WAP (Wireless Application
Protocol), illustrating the fact that a badly introduced techno-
logical advance can turn into an economic disappointment.

b) SynDEx tool:SynDEx is a CAD tool whose original
aim is to parallelize the application processing for a multi-
processor network [49]. It provides a multi-processing version
of an application that is functionally accurate, when com-
pared to the mono-processor initial version. SynDEx performs
an optimized partitioning and scheduling of an application
used with a GPPs multi-processors architecture. Typically, the
communication media is a TCP/IP in this context. This can
be easily implemented in a platform, instead of a network
perspective, by varying communication means between the
processors, such as FIFO, dual-port memory, PCI bus,etc..
Moreover, SynDEx has been extended towards the embedded
reality and in particular in terms of memory optimization [48],
[50]. In this sense, SynDEx answers particularly well SDR
issues in the restricted SW domain, in other words if the SDR
equipment is only made of processors. SynDEx indeed is close
to the ideal software radio design. Nevertheless, other SynDEx
intrinsic features are worth to be used, beyond the purely
SW application domain. After the multi-processor matching,
SynDEx generates a scheduled version of the application
for each of the processors involved in the platform. This
code is generic and not dedicated to any implementation.
It is written in M4 macro-code. Therefore a M4 macro-
code file is obtained for each processing node of the graph
describing both scheduling and communication synchronisms.
Those M4 files can be translated in any programming language
(assembly, C, VHDL,etc.). The translation is operated with
a GNU M4 macro-translator, thanks to the use of translation
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TABLE I
L IBRARIES DEVELOPPED FOR THE SUPPORT OF MULTI-TARGETS,

MULTI -PLATFORMS DEVELOPPED BYIETR/INSA

Platforms Processors Communication
media

Media Type

Sundance
SMT310q

TMS320C64x SDB
(Sundance)

FIFO/SAM

Sundance
SMT320

TMS320C62x SHB
(Sundance)

FIFO/SAM

Sundance
SMT361

DM642 Comport
(Sundance)

FIFO/SAM

Sundance
SMT395

x86 (windows) PCI RAM
(Sundance)

FIFO/RAM

Sundance
SMT365

FPGA PCI SAM
(Sundance)

FIFO/SAM

Sundance SMT
319
(Framegrabber)

TCP (windows,
C62x, C64x)

FIFO/SAM

Pentek p4292 Converter ADC
(Pentek)

FIFO/SAM

Vitec
VP3-PMC

Converter DAC
(Pentek)

FIFO/SAM

Sundance
SMT348

VP3 RAM
(Vitec)

FIFO/RAM

Bi-FIFO
(Pentek)

FIFO/SAM

TABLE II
ALREADY EXISTING LIBRARIES

Processors Communication media Media Type

Intel x86 (linux) TCP (linux) FIFO/SAM

ADSP21060 RS232 FIFO/SAM

TMS320C40 CAN FIFO/SAM

MC68332

MPC555

libraries, considered as dictionaries. We have been developing
translation libraries for many different embedded targets, as
shown in Table I, added to the already existing ones shown in
II.

Libraries for platforms, processors and communication me-
dia are listed in both tables. Some libraries depend only upon
the language (C, VHDL), others depend on the processor
nature, and finally on other devices, typically those used for
communications (FIFO, memory, bus,etc.).

Since SynDEx is dedicated to the processor world (called
SW in this paper), it extracts parallel operations from the
application graph, in order to map them on different processors
(hardware components). However, it performs IP sequen-
tial operations on each of the HW graph processors. This
consequently does not match with the HW (FGPA) reality,
which benefits from parallel execution. However all the code
generation and scheduling carried out in the SW world on
the one hand, and between the HW and SW world on the
other hand can be kept in totality. The HW domain content
has only to be considered separately, bearing in mind that
common principles are shared with the SW side.

B. Heterogeneous processing support

This methodology is originally dedicated to multi-processor
(of any kind: DSP, GPP,µC, etc.) architectures programming.

It also efficiently supports devices which are controlled by
processors, such as analog or digital ASICs. And, in order
to adapt it to SDR design, it is mandatory to extend it to
reconfigurable hardware computing, namely FPGA.

HW implication has indeed to be considered outside the
SynDEx partitioning optimization, if we want to keep HW effi-
ciency (of parallelism), since the processor world is sequential.
That is why we mentioned earlier that HW/SW partitioning
was not supported by this methodology. The risk related to the
HW and SW approaches in a single automatic methodology,
is to decrease one side performance for the benefit of the
other side. Optimization purposes may be indeed at opposite
ends, with regards HW and SW. This can be considered as a
granularity issue, between respectively the description of an
efficient algorithm written in SW (coarse grain), C language,
or HW (fine grain) VHDL.

Therefore, we suggest a methodology which integrates the
HW design with the SW and system design methodology
presented till now, while the HW/SW partitioning has been
manually done. The characteristics that should be kept in the
HW side and that have to be fully compatible with the design
at the SW side, are the following:

- based on a component-based approach,
- HW portability from one design to another, whatever the

device, the clock,etc.
- HW to SW IPs migration,
- the support of IPs made of gates as well as IPs running

on embedded processor cores inside FPGAs,
- the support of ASIC.

c) FPGA support: A reformulation of the design ap-
proach has to be made here. The way to solve the interaction
issue between an intrinsically sequential and a highly parallel
approach lies in the response to the following question:
How should we reformulate the data-flow approach related
to the processors sequential world within the reconfigurable
hardware parallel world, without loosing parallel HW highly
efficient processing speed? Let us just recall that one major
goal in SDR is to add, delete, replace a processing element,
without causing any disturbance to the other processing ele-
ments of the radio design being inside or outside the FPGA.

The first part of the solution is solved thanks to the IP ap-
proach, which guarantees the parallelism inside the IPs, since
it has been designed with usual HW tools. In other words,
SynDEx allows keeping the execution parallelism inside an
HW IP with this approach, whereas SynDEx is designed so
that it executes sequential operations inside a single processor,
and only extracts parallelism between several IPs on a multi-
processing architecture.

The second part of the solution uses GALS, as already
addressed in section IV-B. That permits to provide also par-
allelism through pipeline. GALS permits to extend the IPs
processing asynchronism to the HW world, independently
from the data flow rhythm (just has to be faster). Input
buffers, associated with adequate hand shaking signals of Fig.
8 permit to launch and stop the IPs operation, depending on
the presence (or not) of data at the input of the IP, or at the
place available in the buffers at its output.
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Fig. 9. Data flow speed adaptation in a GALS if f1 > f2 > f3.

GALS has three main interesting features in our methodol-
ogy, as illustrated in Fig. 9:

- It adapts the IP operation average frequency to the other
IPs frequencies of the chain (9b for IP A),

- This allows to change an IP of clock domain (9c),
- This allows blocking an IP from time to time, as for a

reconfiguration operation for instance (9d).

d) Specific design use cases with FPGA:In the specific
case of a unique IP running on a FPGA, the methodology
is one hundred percent useful and automatic, as there is
no sequential issue for one IP. The FPGA is then a HW
accelerator. In this particular context, an automatic HW/SW
partitioning is even possible as illustrated in Fig. 11. Letus
consider the example of the software application in Fig. 10.
If one has to decide whether IP4 should be inside a FPGA
or a DSP, then the condition is to have both code versions,
and their corresponding execution time for both targets. Then,
the methodology is able to deal with such a context and may
optimize and generate the full code for both DSP and FPGA
with the scheduling obtained on Fig. 11.

The methodology takes the decision to instantiate IP4 on
the FPGA instead of the DSP, since executing IP4 in parallel
of IP 3 and IP 5 executions, saves time: IP4 execution time
and communication overheads are completely masked during
IP 5 and IP 3 executions. The FPGA acts here as a co-
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Fig. 11. Fully automatic scheduling obtained with one IP on the FPGA.

processor.

A sub-optimal but entirely automatic way of using the
suggested methodology is also possible with several IPs on
a FPGA. As shown in Fig. 12, it consists in separating a
FPGA in as many HW components as there are IPs. If IP3
and IP4 of Fig. 10 are planned to be implemented on a
single FPGA, we may define twoVirtual FPGAs, assigning
IP3 on virtual FPGA1 and IP4 on virtual FPGA2. Fig. 12
shows how the methodology is able to parallelize IP3 and
IP4 and take it into account in the global scheduling of the
application. The merging of all generated VHDL code for each
HW components, only needs to be done hereafter.

e) Digital and analog ASIC support:SDR design may
not only involve fully programmable or reconfigurable devices,
it is necessary to support also specific devices such as ASIC for
instance. For example, in an SDR design, typical ASIC devices
are: digital down and up converters (DDC and DUC), analog
to digital and digital to analog converters (ADC and DAC),
amplifiers, analog filters, antenna,etc. such as illustrated in
Fig. 13. These circuit boards have to be inserted in the design
flow for two reasons: firstly, they may be the destination
or the source of the data to be processed. Secondly, they
may be parameterizable and need to be configured through
primitive functions, which are activated by a processor for
instance. Therefore, the processor needs to have the necessary
code necessary, so that it can perform both initialization and
adjustment of these parameters. Please note that in some
contexts, a DSP may change registers inside a FPGA, from
which they configure the ASIC.
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C. A non functional time-based approach

The set of non functional characteristics to be taken into
account would ideally be as many as possible, but in order
to keep it feasible, it is restricted here totime. This means
that each IP has only to be characterized in time in order
to be integrated in the design flow. Time includes both
processing and communication time. Either it is extracted from
measurement, or it can be estimated. Then SynDEx processes
the global application timing optimization by mapping the
IPs on the hardware architecture. The precision of the global
design prediction depends on the accuracy on each IP. The
partitioning algorithm used in SynDEx is a greedy algorithm,
which provides a good compromise between partitioning ex-
ecution time and quality result. Another approach has also
been developed on the basis of a genetic algorithm, in order
to refine the SynDEx greedy algorithm solution [47]. This
approach provides the same functional results. If the genetic
algorithm is used, the cost function decreases the latency in
some cases by 50%. The price is an extended computation
time of many thousands compared to a solution obtained by a
SynDEx greedy solution.

Moreover, on top of time considerations, some memory
considerations may be taken into account and considerably
diminish the default memory allocation done by SynDEx [50].

D. Platform abstraction

This methodology implicitly provides, on one hand an
hardware platform abstraction related to the software pro-
cessing elements, by using already existing IPs. With regards
to communications, on the other hand, SynDEx generates

a generic code which allows the designer to translate it in
whatever language he/she wants, as explained in V-A.

The automatic partitioning is maximum in the case of multi-
processing on the SW side (processors) using SynDEx, and on
the HW side (FPGAs) using dedicated hardware tools such as
GAUT for instance. Only the border between HW and SW
has to be manually decided: this is the current limitation of
the HS/SW co-design issue.

This abstraction permits ease in terms of portability for
new processing units or new platforms. It relies on the use
of libraries using the appropriate drivers for each platform

An IP can be moved from SW to HW if its code is available
for both targets, in C and VHDL for example. This allows
design adaptation by mean of a simple click:

- migrate a processing element from a processor to a FPGA
and vice-versa,

- add a processing element in a data-flow graph whatever
is on the processor: a FPGA or an ASIC

- change of platform,
- migrate a processing element from a gate-oriented im-

plementation to a processor-oriented implementation on
a processor core inside a FPGA,

- etc.

E. Methodology principles summary

The proposed methodology is based on the SynDEx tool
in association with several concepts, such as the component-
based approach. This paragraph aims at recalling its advan-
tages and show how it meets the requirements described in
part II as for SDR design, and as for the realistic design flow,
described in part IV-B.

SynDEx provides an overall application execution time
prediction in the context of a multi-processing platform,
featuring several possibilities towards heterogeneous design.
At least some FPGA design contexts are fully integrated
in the methodology, and ASICs are also included in the
design. SynDEx has the advantage to propose an optimized
and static scheduling, which is a guarantee for hard real-
time SDR constraints. Moreover, the methodology allows
the automatic code generation for each processing unit of
the platform, including IPs encapsulation and communication
glue. Since this code is generic (M4 macro-code), it may be
translated in whatever language, thus enabling the supportof
a heterogeneity of processing devices. The re-usability ofIPs
is intrinsic to the methodology. All this permits to speed up
designs at an amazing rate.

The reduced set of non-functional parameters is consid-
ered as a positive feature, with regards ultra-fast prototyping.
SynDEx is a tool which can generate prototypes based on
existing previous work in a couple of days. Students can use
it for small projects. Only a few weeks are needed to become
an expert. It is affordable to student trainees for a period of
several months as soon as a supporting designer is in the lab.
Section VI proves the approach efficiency for many design
scenarios examples. If a frequent user of this methodology
has a hardware platform at his disposal, then he/she gets used
to perform the simulation, test and validation of the application
on the platform itself.
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Please note that, in the future, any other tools providing such
extended features, concerning the presented goals compared
to SynDEx, would be worth to be considered. Moreover, this
methodology could be also expanded at the top of the design
flow, towards higher level design tools based on UML. The
input graphs from SynDEx could easily be generated from
previous graphs defined in a UML environment. A bridge
between A3S graphs and SynDEx graphs for instance would
be straightforward. SynDEx would then only take the timing
non-functional parameter from A3S. The other non functional
parameters (power consumption, memory and surface consid-
erations) taken into account in A3S would not be used in the
mapping process itself but would at least have been considered
at the very beginning of the design, which is better than
nothing. Of course, the long term goal is to really integrateall
non-functional parameters in the complete design flow.

VI. D ESIGN EXAMPLES(IMPLEMENTATION)

Whatever the methodology is, the necessary SDR develop-
ment efforts are, on one hand, the coding of an application in
order to simulate and validate the correct radio functionality,
and on the other hand, the coding of a low level software
associated with the hardware components in order to prototype
the radio on the platform. The lack of methodology results in
the repetition of this process from scratch for each new design.
This is the current SDR domain situation.

The methodology suggested in this paper permits to share
development efforts for both:

- radio signal processing IPs,
- low level software of hardware architecture.
This is the main cause of the acceleration of the method-

ology; together with a set of concepts particularly adequate
for SDR design and explained earlier. We suggest in the
following paragraphs to illustrate the methodology efficiency
in various designscenarii. Please note that it will be illustrated
that SDR design is tackled in its widest acceptation here.
This involves also cross-layer design, as PHY (radio) layer,
as well as application (video) layer may be merged with
the proposed design approach. This proves also the relevance
of the approach for general heterogeneous embedded design
outside SDR.

A. Starting from scratch

Our first attempt to develop an SDR is as simple as a
broadcast FM receiver development. This is a play activity
for a hundred percent software radio implementation, since
the antenna is directly connected to the analogue to digital
converter. The selected platform is a Pentek P4292 made
of four TMS320C6203 DSPs. All this processing power is
much greater than necessary, and is only used to evaluate
the methodology in a multi-processing context. First of all,
the work consists in developing the FM receiver data-flow
graph with a component based approach, and the fixed-point
C language code for the content of each IP. This represents
a time period ranging from a few days to a couple of weeks
of work at the most, depending on the previous knowledge of
the modulation, the receiver quality (stereo or mono, choice
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Fig. 14. SynDEx FM receiver application graph.

of demodulation algorithm,etc.). This can be done on a first
hardware platform architecture made of one PC, which is
available by default in SynDEx.

Secondly, low level software for the HW component support
are generated for the Pentek platform and gathered in li-
braries. This concern all the specific primitives, which address
synchronisations and threads for the C6203, as well as the
communications dedicated to the platform FIFO . This may
take several weeks, but less than 2 months and includes M4
learning.

It is not at this stage that the methodology allows to gain
anything, since this preliminary work is always necessary.
However, as the design steps are very well identified and sep-
arated in the methodology, this is already helpful and enables
to save time. The work can also be easily separated between
two designers, one signal processing designer for the software
application (FM) and one for the platform software support
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(libraries). Fig. 14 gives a FM receiver application graph which
enables to generate, with the use of this methodology, the
full software radio FM receiver. Bottom Fig. 14 represents the
hierarchical view of the topFM Demodulationbox.

The FM receiver shown here is a complex one which
operates stereo demodulation. It is the result of the improve-
ment of much simpler previous designs. Only one DSP is
sufficient to run the FM receiver in real-time. Nevertheless
the methodology enables to run it on several DSPs with no
additional effort.

B. Digital ASIC implication

Under-sampling techniques are used with a 65 MHz ADC
sampling frequency. The tuning is managed by a software,
which changes the DDC (Digital Down Converter). These
considerations may appear or not in the HW platform graph.
The digital ASICs present in such architectures, and in the
Pentek platform for example, are usually managed by DSPs.
DSPs contain the adequate initialization code, necessary to
configure ASICS parameters , such as ADC and DDC here, but
also DAC (Digital to Analog Converter) and DUC (Digital Up-
Converter) in a transmitter context. The DSP may also change
these parameters at run-time. ADC and DDC are represented
in a unique bloc in Fig. 15, since the only information the
DSP needs to know is which media (BIFOVIM) it has to
send data to, and which control information was sent to the
2 ASICs. The connection between the 2 ASICs is described
thereafter.

C. A new SW application installed on the previous platform

The Pentek platform, featuring four C6203, is of course
supposed to support much more demanding radio applications,
such as 3G radio waveforms. We then develop a UMTS FDD
baseband chain, implementing DPDCH (data) and DPCCH
(control) channels until the intermediate frequency (IF).

After a fixed point functional validation on a PC environ-
ment (Visual C++ or Borland), the application is then ported
in the embedded multi-DSP platform environment at no cost,
since libraries were already existing from FM first experi-
ments. From a practical point of view, this means that once the
SW application graph is done in SynDEx and validated on a
mono-processor PC architecture graph, the designer just need
to take the hardware platform graph of the Pentek platform
previously developed for the FM application, and map in one
click the UMTS application on the Pentek multi-DSP platform.
The methodology automatically generates, thanks to SynDEx
and the M4 macro-translator, themain.cexecutive file of each
DSP, including IPs launching and synchronizations means. The
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Fig. 16. SynDEx UMTS transmitter application graph.

designer may even choose how many DSPs are needed to run
the application in real-time, thanks to the overall execution
time prediction provided by SynDEx. Anyway, he/she can
directly check it on the platform itself in real conditions.
SynDEx helps indeed to make this prediction while offering
the possibility to automatically insert timing measurement
between all IPs. Then mono-processing runs are carried out
for each potential device target, and measurements provide
the execution time figures for each IP. Once these figures
have been entered in SynDEx, as well as the communication
timings, the tool is able to optimize the multi-processor
implementation mapping. It provides a timing prediction and
the associated code for each processing unit. The designer
may explore different architectural possibilities until he/she is
satisfied.

Fig. 16 shows the UMTS transmitter application graph
within SynDEx environment. Several hierarchical blocks are
present in this graph, as well as repetitions. The hardware
architecture then comprises 130 instances and this for a single
frame execution. One UMTS frame is made of 15 slots, the
content of which has been detailed in the bottom half part of
Fig. 16.

Fig. 17 shows the Pentek platform HW architecture with
four TI C6203 DSPs and one ADC.

D. Very fast platform extension

We saw in the previous paragraphs that the UMTS applica-
tion porting on the Pentek platform is done at no cost, since
SynDEx libraries already exist from the FM case study. It
may also be necessary sometimes to rapidly investigate which
little changes could happen. Let us consider the context of
the UMTS repartition processing between a GPP and several
DSPs. In the Pentek platform environment, this means adding
a TCP link between one of the platform DSP and the host
PC processor. SynDEx already has the necessary TCP library
on the PC side. So one only needs to develop the DSP side
equivalent library, which only consists in encapsulating the
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code provided by Pentek in a SynDEx library. This takes one
day.

Fig. 18 shows the SynDEx graph of the new platform
involving both PC and DSP, which allows now to automat-
ically provide the code and run the UMTS application in a
new environment made of one Pentium and four TI C6203
processors.

This gives the opportunity to rapidly evaluate if new design
choices are relevant are not, and this at very low cost and
in real conditions. This is exactly the opposite of a manual
design methodology, where any architecture exploration is
very expensive.
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E. Very fast application extension

The platform extension regarding the general purpose pro-
cessing side is experimented in a cross-layer design mixing
video and radio processing. We consider the following appli-
cation already discussed in [39]: a combined UMTS FDD /
MPEG-4 implementation.

This cross-layer implementation benefits from two designs
made in two different research contexts, but using the same
methodology suggested here. On one hand, the SDR design
approach we are illustrating in this paper, and on the other
hand an image processing perspective to investigate MPEG-
4 coding features. These two designs are being developed in
2 completely distinct manners in 2 distinct SynDEx projects.
Each of the projects just has to connect to the same TCP
socket, on the PC side for the MPEG-4 application, and on the
DSP board side for the UMTS radio. Connection is obtained
automatically between the two applications, and MPEG-4 data
are transmitted through a UMTS link.

F. Rapid prototyping on a new platform

Now the porting context of this complex application gath-
ering UMTS and MPEG-4 applications is considered. This
is yet another issue, which needs to be addressed by SDR
design. It has been illustrated in [39] in the case of a Pentek
platform made of two C6203 DSPs, and a Sundance platform
featuring two C6416 DSPs. We suggest referring to [39] for
more information about hardware platform description model,
and corresponding developed libraries. The schematic of Fig.
[19] displays a porting scenario summary.

Another platform used in this work is a desktop computer
associated with the VP3-pmC multi-DSP board. The PC
consists of an Intel Core 2 Duo CPU at 2.2 GHz. The VP3-
pmC is a parallel programmable processing platform dedicated
to professional video applications, like MPEG4-AVC/H.264
real-time encoding and MPEG2 to H.264 trans-coding. This
platform comprises 5 DSPs TMS320DM642 running at a
720 MHz clock rate, each of them comprising a 32 MBytes
SDRAM and a FPGA hardware co-processor, in order to
manage the communications between all platform DSPs and
the communications with the PCI-Host. All transfers between
DSPs are managed by 5 DMA controllers, which are inside
the FPGA.

This platform has been previously described with the Syn-
DEx tool in [51]. The UMTS application is automatically pro-
totyped on this platform, and takes advantages of the method-
ology: no deadlocks, functional checking of the application
portability, and automatic multi-processors implementation.
Thanks to the small internal memory, the TI cache memory
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TABLE III
T IMINGS OF THE UMTS TRANSMITTER FOR A NEW PLATFORM

1 DSP 2 DSPs 3 DSPs 4 DSPs 5 DSPs

14,3 ms 11,3 ms 11,3ms 11,3ms 11 ms

TABLE IV
T IMINGS OF THE UMTS TRANSMITTER WITHOUT AND WITH FPGAON

THE SUNDANCEPLATFORM

Target Sundance Pentek

Configuration 1*C64x 1*C62x 1*XC2V + 1*C62x

Time/frame 15.9ms 20.2ms 9.9ms

MFL ratio 60% 84% 32%

is automatically used as presented in [52]. Timings, given in
Table III, have proven that increasing the number of DSPs for
this application was not accurate, since we obtain only a 1.35
acceleration factor from one to two DSPs, and then no more
acceleration whatever the number of DSPs are, and this until
there are five of them.

Results for this platform are slower than the compulsory
standard real-time figure, which is 10ms. This shows that the
application graph has to be redefined, in order to extract more
potential parallelism so that the hardware platform can perform
more parallel executions.

G. FPGA implication

Another extension of the design space exploration is to
combine SW and HW processing, with regard to processors
and FPGAs. This could be the solution for the real-time issue
encountered in the previous paragraph scenario.

Thanks to the development of VHDL M4 libraries, the
suggested methodology enables to generate VHDL as easily as
C language code from SynDEx. The sole limitation has been
exposed earlier: SynDEx is not appropriate to automatically
optimize the scheduling and partitioning of multiple HW IPs,
since it based on a sequential processing model between
IPs. But all the other methodology features are valid, such
as the automatic code generation of communications and
synchronization means. And in the particular case of only one
IP inside a FPGA, it means that the restriction is null and the
FPGA is used as a hardware accelerator.

The UMTS FDD baseband transmitter most demanding IP
in terms of processing power is the pulse shaping filter. We
propose to map the UMTS receiver in the hardware platform
of Fig. 20, in order to speed up the receiver execution.

Results of Table IV show the timings obtained after the
implementation, without or with an FPGA. An FPGA is used
as an accelerating device and permits to respect real-time
constraints, since a UMTS FDD frame has to be generated
every 10 ms and the combination of a Xilinx Virtex2 FPGA
and a TI C62x DSP enables to decrease the frame execution
down to 9.9 ms.

H. MPEG-4 Decoder rapid prototyping

An MPEG-4 decoder description has been built for intra pic-
tures in [53], according to the video MPEG-4 texture decoding
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libraries. The operation granularity of those fits IDCT, VLC
and dequantization levels within a block. Description gran-
ularity has a significant impact on the final implementation.
The MPEG-4 decoder in [53] is extended in [52] to Simple
Profile. MPEG-4 natural texture coding tools divide intra or
predictive pictures into macroblocks, each made of four 8x8
blocks of luminance channel, and the associated 8x8 blocks of
chromatic component. Each MB operation has been optimized
for a DSP implementation: interleaving loops, conditionaltests
leading to a pipeline rupture, no dynamic allocations. Our
implementation is an open source one, started with the xvid
decoder (http://www.xvid.org), and which received the xvid
team agreement to be the first porting over a DSP.

Thanks to the methodology developed here, we would like
to emphasize how fast an application can be ported from one
platform to another one. In this case, this MPEG-4 decoder has
been quickly ported over several platforms presented earlier in
this paper: Vitec, Pentek and Sundance. It can decode in real-
time sequences up to 2048 Mbps with a VGA resolution at
60 frames per second on the TI C6416 DSP at 1 Ghz. The
data-flow application development phase, in atomic operations
enabling parallelism expression, requested approximately a
full year working time for one person working on a Sundance
platform. In comparison, the porting over the 2 other platforms
is very fast (less than one day) for a first implementation shot
as soon as libraries of Table I in V-A0b are available. This
proves the efficiency of the design methodology suggested in
this paper. For instance, the development of libraries for the
Pentek and Vitec platforms takes around 2 weeks time. Library
indeed consists in encapsulating the board support package
provided by the platform manufacturer. Note that after the first
implementation on a new platform obtained in a few mouse
clicks with SynDEx, it takes a few more days to optimize
execution time if real-time is not reached at first shot.
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VII. C ONCLUSION

We have discussed and tried to convince the reader of the
advantages of the suggested SDR prototyping methodology.
This methodology has been derived from years of experience
in terms of prototyping, and enables to produce prototypes
within ultra short time delays. It can also be used by students
as well, thanks to its simplicity.

The main point to be stressed in this methodology is, that the
gathering within a unique framework of several concepts and
tools, can and do work indeed. Practical limits are defined and
clear objectives are targeted. A component based approach is
the basis of the methodology, and combined with efficient and
realistic automatic transformations, it allows us to propose a
heterogeneous design strategy for SDR prototyping, and in a
wider perspective, the design of any embedded equipments.
We are convinced that SDR design will not be solved by
a brand new design methodology. Moreover, SDR design
perspectives are as numerous as radio design perspectives
currently are. Other tools may be chosen with regards the
rules given in Fig. 4. Moreover, other tools will have to be
added to the suggested flow, in order to enhance its current
capabilities. In particular, we are investigating higher level
design techniques, using UML modelling solutions. Benefits
from automatic co-design advances in general will help as
well.

A future step of the design solution we suggest, consists in
merging the design methodology exposed in this paper with
the reconfiguration management that we are investigating in
other studies. This will be the SDR design ultimate level we
aim to attain.

REFERENCES

[1] J. Mitola, “The software Radio Architecture,”IEEE Commun. Mag., pp.
26–38, May 1995.

[2] J. Reed and B. D. Woerner,Software Radio: A Modern Approach to
Radio Engineering. Prentice Hall, 2002.

[3] W. Tuttlebee,Software Defined Radio: Origins, Drivers and Interna-
tional Perspectives. John Wiley & Sons, 2002.

[4] A. A. Kountouris, C. Moy, and L. Rambaud, “Reconfigurability: A Key
Property in Software Radio Systems,” inProc. First Karlsruhe Workshop
on Software Radios, Karlsruhe, Germany, Mar. 2000.

[5] P. Demestichas, G. Vivier, K. El-Khazem, and M. Theologou, “Evolution
in Wireless Systems Management Concepts: from Composite Radio
Environments to Reconfigurability,”IEEE Commun. Mag., May 2004.

[6] A. A. Kountouris and C. Moy, “Reconfiguration in SoftwareRadio
Systems,” inProc. Second Karlsruhe Workshop on Software Radios,
Karlsruhe, Germany, Mar. 2002.

[7] J. Delahaye, C. Moy, P. Leray, and J. Palicot, “Managing Dynamic
Partial Reconfiguration on Heterogeneous SDR Platforms,” in Proc. SDR
Forum Technical Conference, Anaheim, USA, Nov. 2005.

[8] X. Revés, A. Gelonch, V. Marojevic, and R. Ferrús, “Software radios:
Unifying the reconfiguration process over heterogeneous platforms,”
EURASIP Journal on Applied Signal Processing, vol. 2005, no. 16, Sep.
2005.

[9] S. Paquelet, C. Moy, and L-M.Aubert, “RF Front-End Considerations
for SDR Ultra-Wideband Communications Systems,”RF Design, Jul.
2004.

[10] C. R. Anderson, “A Software Defined Ultra Wideband Transceiver
Testbed for Communications, Ranging, or Imaging,” PhD dissertation,
Virginia Tech, 2007.

[11] J.-P. Delahaye, C. Moy, P.Leray, and J. Palicot, “Partial Reconfiguration
of FPGAs for Dynamical Reconfiguration of a Software Radio Plat-
form,” in Proc. of IST Mobile and Wireless Communications Summit,
Budapest, Hungary, Jun. 2007.

[12] G. Gogniat, T. Wolf, W. Burleson, J.-P. Diguet, L. Bossuet, and R. Vaslin,
“Reconfigurable Hardware for High-Security/ High-Performance Em-
bedded Systems: The SAFES Perspective,”IEEE Trans. VLSI Syst.,
vol. 16, no. 2, pp. 144–155, Feb. 2008.

[13] J. Bier, “Use a Microprocessor, a DSP or both?” inProc. Embedded
Systems Conference, Apr. 2007.

[14] C. Szyperski,Component Software, Beyond Object-Oriented Program-
ming. Addison-Wesley, 1998.

[15] Www.omgmarte.org.
[16] C. Moy, M. Raulet, S. Rouxel, J. Diguetet al., “UML Profiles for

Waveform Signal Processing Systems Abstraction,” inProc. of SDR
Forum Technical Conference, Phoenix, USA, Nov. 2004.

[17] J. Laurent, E. Senn, N. Julien, and E. Martin, “Functional Level Power
Analysis: An Efficient Approach for Modeling the Power Consumption
of Complex Processors,” inProc. DATE04, Paris, France, 2004.
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Algorithme Architecture pour Code Embarqué sur Architectures Par-
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