
HAL Id: hal-00491969
https://centralesupelec.hal.science/hal-00491969v1

Submitted on 14 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

InterCell: a Software Suite for Rapid Prototyping and
Parallel Execution of Fine Grained Applications

Jens Gustedt, Stéphane Vialle, Hervé Frezza-Buet, d’Havh Boumba Sitou,
Nicolas Fressengeas

To cite this version:
Jens Gustedt, Stéphane Vialle, Hervé Frezza-Buet, d’Havh Boumba Sitou, Nicolas Fressengeas. In-
terCell: a Software Suite for Rapid Prototyping and Parallel Execution of Fine Grained Applications.
PARA 2010 : State of the Art in Scientific and Parallel Computing, Jun 2010, Reykjavick, Iceland. 4
p. �hal-00491969�

https://centralesupelec.hal.science/hal-00491969v1
https://hal.archives-ouvertes.fr

InterCell: a Software Suite for Rapid Prototyping
and Parallel Execution of Fine Grained Applications∗

Jens Gustedt†1,3, Stéphane Vialle‡2,3, Hervé Frezza-Buet§2,
D’havh Boumba Sitou¶4, and Nicolas Fressengeas‖4

1INRIA Nancy – Grand Est, France
2IMS Group, SUPELEC, France

3AlGorille INRIA Project Team, France
4LMOPS laboratory, Metz University and SUPELEC, France

Abstract InterCell is an open, operational software suite for im-
plementation, code generation and interactive simulation of fine
grained parallel computational models. This article describes the
software architecture, some use cases from physics and cortical
networks as well as first performance measurements.

Keywords fine grained parallel models, interactivity, rapid pro-
totyping

1 Introduction
The goal of the InterCell project is to help non-experts in
parallel computing to use large scale parallel computers
when developing models for physical phenomena, espe-
cially when these models are to be evaluated at large scale.
To achieve this goal we developed a software suite that al-
lows to rapidly design and implement parallel fine grained
computing models on coarse grained parallel architectures,
e.g clusters or mainframes. The InterCell development cy-
cle typically has 4 stages: (1) rapid design of a mathemat-
ical model, (2) automatic implementation of a fine grained
parallel simulator, (3) parallel run of large scale interactive
simulations, and (4) rapid evaluation of the model.

Fine grained models of computation are widely adapted
in different application domains. For our project this con-
cerns two of these domains namely the modeling of phys-
ical phenomena that have some notion of ‘locality’ (spa-
cial or timely) and the modeling and development of neu-
romimetic networks. But most likely InterCell could be
useful for other domains as well.

Figure 1 introduces the InterCell software architecture.
At top level users describe their problems with application
domain tools, such as a PDE solver or a cortical inspired
neural network simulator. These high level tools gener-

∗Authors want to thank Region Lorraine.
†Email: Jens.Gustedt@loria.fr
‡Email: Stephane.Vialle@supelec.fr
§Email: Herve.Frezza-Buet@supelec.fr
¶Email: boumba_dha@metz.supelec.fr
‖Email: Nicolas.Fressengeas@univ-metz.fr

ate fine grained parallel simulators, using a C++ library
named Booz. This library ensures the interactive control of
the simulations and in turn uses the parXXL library. With
that, it efficiently maps the fine grained computations on
a coarse grained parallel architectures. The parXXL run-
time hides the underlying parallel or distributed hardware.
The final software has two parts: a parallel and interactive
compute server and a set of easy-to-use control and visu-
alization clients.

2 Fine grained parallel computations
Fine grained computations that act on statically structured
data (generally matrices) are nowadays well mastered and
can be parallelized on coarse grained architectures (typi-
cally multicore clusters) with good results.

The case we focus here is the computation on unstruc-
tured data for which the structure may even change oc-
casionally and where the compute function that has to be
executed may differ for each data point. Here an efficient
mapping of computations to processors is not straightfor-
ward and good efficiency is generally difficult to achieve.
parXXL provides a framework that facilitates programming
under such constraints and draws good performances out
of nowadays platforms.

The parXXL framework, see [1], includes several soft-
ware layers, as shown in Fig. 1. Important for this project
here are the following.

par::cell: a set of functionalities and a programming
model to design and implement fine grained compu-
tations. This layer allows to dynamically create and
connect cells to establish cellular networks that are
executed cyclically.

When created, each cell is associated to four cell be-
havior functions: a function that is executed in each
compute cycle, a query function that can be used to
capture the state of the cell, a constructor and a de-
structor.

Jens.Gustedt@loria.fr
Stephane.Vialle@supelec.fr
Herve.Frezza-Buet@supelec.fr
boumba_dha@metz.supelec.fr
Nicolas.Fressengeas@univ-metz.fr

Visualisation
Booz
client

Data sender
Booz
client

Generic and
interactive Booz

clients

Generic and
interactive Booz

clients

Sage escabooz.sage program

cellular automata
specification files

C++/Booz files

Generation of a
cellular automata
in C++/Booz

PDE solver

Partial Differential Equations

parXXL runtime

MPI Posix threads Posix mmap

parXXLrun

dynamic runtime support
Large object (segments
& files) management

par::cellnet
par::cell
par::step
par::cntrl
par::mem
par::sys
par::cpp

p
ar

::
b
en

ch

parXXL library

C++
compilation

Booz interactive
and generic server

library
Generic and

interactive Booz
clients

Booz

Execution on
clusters and Grids

Execution on shared
memory mainframes

IO stream
(camera image, ...)

parXXL

Cortical inspired neural network

C++/Booz files

Bijama library

Interactive
control

at runtime

Interactive & parallel
devoted simulator

Cortical
neural
library

escabooz compiler

Using a cellular automata
implemented in C++/Booz

Figure 1: Global architecture of our interactive problem modeler and PDE solver on large parallel and distributed com-
puters

Cells can communicate in a synchronous or quasi-
asynchronous mode. If in synchronous mode, cell
inputs are all updated at the end of each computation
cycle. In quasi-asynchronous mode, cells are grouped
in subsets and the communications of the different
groups are routed at different times.

A network of cells can easily be controlled by a se-
quential program, using missions. Such a mission can
create a set of cells, execute one compute cycle, or ex-
tract data running the query functions of the cells.

par::mem: an abstraction layer for handling large
chunks of data. These allow for an efficient handling
of large tables that are allocated on the heap or inside
files and that can be resized dynamically. It allows
to group the cell data and output and access them in
order or through hashed indices.

par::cntrl: handles the basic communication function-
alities. It abstracts from the underlying runtime, cur-
rently MPI or POSIX threads. In particular impor-

tant for this project has been the transfer family of
functions that implements a all to all v commu-
nication. In combination with the resizability of the
mem::chunk, transfer dispenses to specify com-
munication sizes and to allocate buffers beforehand.

par::bench: is used to instrument the library and to col-
lect various performance data. In particular it reg-
isters the number of communications and their size,
wall-clock and CPU times.

3 Interactive parallel computations
One original feature of the InterCell software suite is that
cellular computation is interactive. It allows visualization,
writing and loading of snapshots, setting of cell values, all,
while the cellular automaton is running in parallel. This
feature is provided by the Booz library that includes a vi-
sualization client, see Fig. 2.

This interactivity allows to use a cluster for situated
systems, like robots, where cellular computation mod-
els the inclusion of an artificial brain in some real robot

Figure 2: Example of interactive Booz client

Figure 3: Three examples of InterCell simulations

perceptivo-motor loop. It also provides a real-time view
of the running process, that allows to detect convergence
problems of the cellular models. Such an on-line avail-
ability allows programmers of cellular automata to proto-
type their model at a large scale, from the very first design
stage. This is of primary importance since properties of
large scale discrete dynamical systems are not easily pre-
dictable from small prototypes.

4 Examples of InterCell usage
Fig. 3 shows 3 examples of InterCell simulations. On top is
a classic 2D-Jacobi relaxation, where each cell just com-
putes the average value of its four neighbors. It has been
implemented to test the functionality of our software suite.
The middle image shows a 2D grid of cells, each connected
to its 8 neighbors. Each cell represents the elongation of
a spring that is coupled to neighboring springs, in order to
create 2D waves along the grid surface.

Fig. 3 bottom is a more complex simulation from semi-
conductor physics. It shows the result of a simulation
of the electrostatic potential in a 2D P-N junction whose
N-doped side is the square upper part while the P-doped
part is the rest. This computation is done through the
sage/escapade/escabooz part as described in Fig. 1.

The numerical method is based on a modified version
of the Least Squares Finite Element Method (LSFEM) [2].
From LSFEM, we have derived a “local only” recursive
rule. It allows for each point in a mesh to be considered
as an independent automaton, which is particularly well
suited for fine grained parallel computing. The initial prob-
lem is a partial differential system of equations involving
a Poisson equation and the field expressions from the dop-
ing of the material. Added to this system is a set of bound-
ary conditions: Dirichlet type where ohmic contacts are
present, and Neumann type elsewhere.

The complete modeling and development process is thus
as follows: the physicist (non-expert in parallelism) pro-
grams his equations in the SAGE[3] language, see Fig. 4,
focusing entirely on physical and mathematical issues.
Then, the escabooz.sage software suite, formally de-
rives an update rule for each point of a given discretization
mesh. Thereby it describes a complete cellular automa-
ton. The SAGE program applies Newton’s minimization
method to a global error term. This error results from a
discretized form of the initial partial differential problem.
Following Newton’s method, an approximate solution is
fed to the automaton. Once run in asynchronous mode, the
automaton eventually stabilizes around a fixed point. This
is the nearest minimum of the error term and corresponds
to the solution to the discretized problem.

5 Experimental performances
In Fig. 5 we show the results of a first performance eval-
uation of the second application of Section 3 on the Inter-
Cell cluster (Fig. 3 bottom). This cluster consists of 256
2.66 GHz Xeon bi-core nodes that are connected via stan-
dard Gbit Ethernet.

The example application consists of a 100×300 grid of
cells that is split evenly among the parXXL processes. We
experimented several different splitting strategies to find
out that (for this example) the difference in performance is
negligible. Thus, here we only give the values for a split
along the long side (300) of the grid, 1× 2,1× 3, In
one series of experiments we placed one parXXL process
per compute node and in a second series we placed two,

�
P o i s s o n ’ s e q u a t i o n f o r s e m i c o n d u c t o r d e v i c e s
eq1 = (lmbda∗n l a p (p h i (x , y) , r , d r) = = n i ∗ (exp (p h i (x , y)) − exp(− p h i (x , y))) − dop (x , y)) . s u b s t i t u t e (x =0 , y =0)

#Newman c o n t i d i o n s on one b o r d e r
anp =(lmbda∗nd2 (p h i (x , y) , y , dy) = = n i ∗ (exp (p h i (x , y)) − exp(− p h i (x , y))) − dop (x , y)) . s u b s t i t u t e (x =0 , y =0)� �

Figure 4: Extract of a SAGE file to specify the electrostatic potential of a 2D P-N junction.

0.005

0.01

0.05

1 2 4 8 16 32

te
xe

c/
cy

cl
e

(s
)

Nb of nodes

sequential
parallel, 1 proc/node
parallel, 2 proc/node

(a) As a function of the number of used computing nodes

0.005

0.01

0.05

1 2 4 8 16 32
te

xe
c/

cy
cl

e
(s

)
Nb of processes

sequential
parallel, 1 proc/node
parallel, 2 proc/node

(b) As a function of the number of run parXXL processes

Figure 5: Execution time per compute cycle

i.e one parXXL process per compute core.
Each data point in the figures represents an average over

several runs of batches of 1000 compute cycles. Variances
where low, so usually we only performed 3 runs to do
the averaging. Printed are the run times broken down to
the time for one compute cycle for the network. Fig. 5(a)
shows the time against the number of nodes, Fig. 5(b) the
time against the number of parXXL processes.

We see that both series show an optimal speedup in
the range of 2–8 processes, and up to 16 processes the
speedup is still reasonable. From thereon the addition of
additional processes / nodes doesn’t accelerate the compu-
tation. So for the given problem, a number of about 2000
cells is a reasonable minimal requirement per parXXL pro-
cess. Fig. 5(a) also demonstrates that this setting is well
suited to take advantage of the two cores in each node.

6 Conclusion and perspectives
In this paper we presented InterCell, an open, oper-
ational software suite published under the GPL, see
http://ims.metz.supelec.fr/spip.php?rubrique13.
This development tool is currently used by researchers in
in optics, photonics, and cortical inspired neural nets. The
later models are generally large and require interactive
execution on large parallel systems. InterCell allows them
an easy-to-use model implementation on a large, realistic
scale, the automatic generation of the code and parallel in-
teractive simulation. First performance measurements are
satisfying and show a good potential to attack problems

on a larger scale.
The next step in the development of InterCell will thus

be to tackle applications of a larger scale: complex mod-
els are under investigations and large scale simulations are
being implemented. Therefore, the Sage program that is
currently used to specify the cellular automaton (which is
still sequential) has to be parallelized to be able to process
large problems rapidly. Also, some serial optimizations
remain possible in the parXXL cell management.

References
[1] J. Gustedt, S. Vialle, and A. De Vivo, “The parXXL envi-

ronment: Scalable fine grained development for large coarse
grained platforms,” in PARA-06, vol. 4699. Umeå, Sweden:
Springer, 2007, pp. 1094–1104.

[2] B.-N. Jiang, The Least-squares Finite Element Method: The-
ory and Applications in Computational Fluid Dynamics and
Electromagnetics. Springer, 1998.

[3] W. A. Stein et al., Sage Mathematics Software (Version 4.3),
The Sage Development Team, 2009. [Online]. Available:
http://www.sagemath.org

[4] D. Boumba Sitou, S. Ould Saad Hamady, N. Fressengeas,
H. Frezza-Buet, S. Vialle, J. Gustedt, and P. Mercier, “Cellu-
lar based simulation of semiconductors thin films,” in ITFPC
09, France Nancy, 2009.

[5] N. Fressengeas, H. Frezza-Buet, J. Gustedt, and S. Vialle,
“An interactive problem modeller and PDE solver, dis-
tributed on large scale architectures,” in DFMA ’07. France
Paris: IEEE, 2007.

http://ims.metz.supelec.fr/spip.php?rubrique13
http://www.sagemath.org

	Introduction
	Fine grained parallel computations
	Interactive parallel computations
	Examples of InterCell usage
	Experimental performances
	Conclusion and perspectives

