Wilfried Kirschenmann
email: wilfried.kirschenmann@edf.fr

Laurent Plagne
email: laurent.plagne@edf.fr

Stéphane Vialle
email: stephane.vialle@supelec.fr

Multi-Target Vectorization With MTPS C++ Generic Library

Keywords: GPU, SSE, Vectorization, c++ Template Metaprogramming, Performances

This article introduces MTPS, a C++ template library dedicated at vectorizing algorithms for different target architectures. Algorithms written with MTPS benefit from optimized memory access patterns and show performances close to hardware limits, both on multicore CPU and on GPU.

Introduction

In many scientific applications, computation time is a strong constraint. Optimizing these applications for the rapidly changing computer hardware is a very expensive and time consuming task. Emerging hybrid architectures tend to make this process even more complex.

The classical way to ease this optimization process is to build applications on top of High Performance Computing (HPC) libraries that are available on a large variety of hardware architectures. Such scientific applications, whose computing time is mostly consumed within such HPC library subroutines, then automatically exhibit optimal performances for various hardware architectures.

However, most classical HPC libraries implement fixed APIs (e.g., BLAS) and may be too rigid to match the needs of all client applications. In particular, classical APIs are limited to manipulate rather simple data structures like dense linear algebra matrices. As a more complex issue, general sparse matrices cannot be represented with a unified data structure and various formats are proposed by more specialized libraries. In the extreme case, structured sparse matrices cannot be efficiently captured by any of the classical library data structures. Relying on such complex matrices, several neutron transport codes developed at EDF R&D require another kind of library to be used.

Following the model of the C++ Standard Template Library (STL), template based generic libraries such as Blitz++ [START_REF] Veldhuizen | Arrays in blitz++[END_REF] provide more flexible APIs and extend the scope of library-based design for scientific applications.

Such generic libraries allow to define Domain Specific

Diagonal Tridiagonal

Examples of composition Embedded Languages (DSELs) [START_REF] Czarnecki | Dsl implementation in metaocaml, template haskell, and c++[END_REF]. Legolas++, a basis for several HPC codes at EDF, is a C++ DSEL dedicated to structured sparse linear algebra. In order to meet EDF's industrial quality standards, a multi-target version of Legolas++, currently under development, will provide a unified interface for the different target architectures available at EDF, including clusters of heterogeneous nodes (i.e., with both multi-core CPUs and GPUs). This article presents MTPS (Multi-Target Parallel Skeletons), a C++ generic library dedicated to multi-target vectorization that is used to write the multi-target version of Legolas++. Only developments concerning a single heterogeneous node are presented here.

The next section presents the principles of Legolas++ and Section 3 introduces MTPS. Its optimization strategies and the achieved performances are discussed in Section 4. Finally, conclusions are drawn in Section 5.

Towards a Multi-Target Linear Algebra Library

Legolas++ is a C++ DSEL developed at EDF R&D to build structured sparse linear algebra solvers. Legolas++ provides building bricks to describe structured sparse matrix patterns and the associated vectors and algorithms.

Legolas++ is based on the observation that most structured sparse matrix patterns can be described as the composition of simpler patterns. Figure 1 shows how to compose two simple patterns to create new patterns. Figure 2 shows an example of matrix pattern issued from a neutron transport code written with Legolas++ (GLASS in [START_REF] Plagne | Generic programming for deterministic neutron transport codes[END_REF]).

The explicit GPU parallelization of one of our neutron transport code resulted in speed-ups around 30 over the sequential Legolas++ CPU implementation [START_REF] Kirschenmann | Massively parallel solving of 3D simplified P N equations on graphic processing units[END_REF]. To generalize this gain of performances to other Legolas++ based applications, a parallel and multi-target version of Legolas++ is being developed. As the parallel CPU and GPU versions exhibit strong similarities, Legolas++ developments Some libraries, like TrilinosNode [START_REF] Baker | A light-weight api for portable multicore programming[END_REF], Quaff [START_REF] Falcou | Quaff: efficient c++ design for parallel skeletons[END_REF] or Intel TBB [START_REF] Reinders | Intel threading building blocks[END_REF], require their users to explicitely express the parallelism within the application by using parallel skeletons. This expression of available parallelism can be encapsulated into specialized and implicitely parallel STL-like containers and algorithms, as in Thrust 1 and Honei [START_REF] Van Dyk | Honei: A collection of libraries for numerical computations targeting multiple processor architectures[END_REF].

Our goal is to provide implicit parallelism within Lego-las++ containers and algorithms. To ease the writing of its containers and algorithms, Legolas++ relies on MTPS which follows a parallel skeletons based approach. Then MTPS optimizes the code for the different architectures.

As this article presents MTPS, only code for MTPS is shown. For Legolas++ users, MTPS details are hidden in its containers and algorithms.

Collections and Vectorizable Algorithms

This section introduces the notions of collection and vectorizable algorithm on which MTPS relies.

In C++, a Plain Old Data (POD) is a type whose memory representation pattern can be changed without altering its value [START_REF]Programming languages -C++. International Organization for Standardization[END_REF]. POD members can be either integral types or PODs. In the following code snippet, MyPOD is a POD with three float data members:

1 struct MyPOD { float a , b , c ; } ;
Let a collection be a data structure containing different instances of the same POD and f be a pure function (i.e., f has no side effects). An algorithm applying f to all elements of a collection is said to be vectorizable. To parallelize such algorithms, MTPS provides two parallel skeletons optimized for different target architectures: map and fold which correspond to a parallel for loop and to a parallel reduction respectively.

An algorithm is vectorizable in reference to a given collection. For instance, an algorithm operating on a matrix can be either vectorizable or not depending on whether the matrix is considered as a collection of columns or as a collection of rows. Two algorithms vectorizable in reference to the same collection are said to be in the same vectorial context. On the contrary, if two consecutive algorithms are not vectorizable in reference to the same collection, a context switch is required. In a distributed memory system, context switches correspond to communications.

Linear Algebra Hello World of MTPS: saxpy

This section presents the MTPS implementation for the saxpy operation whose implementation in C is:

1 float * X , * Y , a ; 2 for (int i = 0 ; i<N ; ++i) Y [i]+= a * X [i] ;
First, the iteration-dependent data are gathered in a POD XYData whose members correspond to

X[i] and Y[i].
The types of the two members (float) are passed as template arguments to MTPS::POD and their names (x and y) are given in the Fields enum: Second, a collection of XYData elements, xyCol, can be built using MTPS containers. A class type for optimized container is provided as member of the class corresponding to the target architecture. Two levels of parallelism are available on CPUs: thread parallelism and SIMD parallelism. The choice for each level is made by passing two arguments to the CPU template class. Thread can be one of MTPS::Sequential, MTPS::OMP (openMP) or MTPS::TBB (Intel TBB). SIMD can be one of MTPS::Scalar or MTPS::SSE. On CUDA-enabled GPUs, only the SIMD parallelism is used.

1 / / t y p e d e f MTPS : : GPU : : CUDA T a r g e t ; 2 typedef MTPS : : CPU<Thread , SIMD> Target ; Third, the function that is to be applied to all elements of the collection must be written as a functor class AxpyOp which contains the value a internally: As XYData elements may not be stored identically on different target architecture, AxpyOp::operator() does not take an XYData as argument. A View is provided instead. XYData members can be accessed with the operator() of the View which takes an int as argument. Elements of the Fields enum can be used either to initialize an int (line 7) or directly (line 8). The declaration of AxpyOp::operator() must be preceeded by the INLINE macro which defines target-dependent keywords (e.g. device for CUDA).

Finally, the functor can be passed to the map and fold parallel skeletons provided by the collection container:

Optimization of performances

For each architecture, the specific optimizations required to enable good performances will be presented. The implementation of an example will then be discussed.

Multi-Target Performance Optimizations

Parallelizing a vectorizable algorithm is straightforward. However, achieving good performances is not: modifications of the collection storage pattern may be required. Indeed, achieving efficient usage of memory bandwidth on a given hardware architecture requires specific access patterns [START_REF] Kirschenmann | Multi-target c++ implementation of parallel skeletons[END_REF]. Figure 4 shows how a matrix of 8 TriDiagonal Symmetric (TDS) blocks of size 4 is stored on three different architectures to optimize the memory access pattern.

Performances achieved thanks to this optimization will be shown in Section 4.3. As this optimization is made in MTPS collection container, MTPS user must define both the size per POD-element of each field (4 for the diagonal field on Figure 4) and the number of POD-element in order to construct a collection. Using these two information, MTPS optimizes the storage for each target architecture.

A context switch imply a data reordering. For instance, switching a collection of matrix rows to a collection of matrix columns modifies the effective storage (i.e. the matrix is transposed). This part of MTPS is under development.

Implementation of a Linear System Resolution

The example presented in this section corresponds to a basic operation that represents the major part of the execution time of a neutron transport code [START_REF] Kirschenmann | Massively parallel solving of 3D simplified P N equations on graphic processing units[END_REF]. Let A be a blockdiagonal matrix with TDS blocks. smaller problems. The AX = B linear system can be seen as a collection of smaller block systems ax = b that can be solved independently. To solve one ax = b system, the matrix a is factorized in-place with a LDL T factorization and a forward and backward substitution is then applied on x. Only the code for the factorization is shown here.

Let us introduce TData which represents a TDS block. TData elements are stored in two vectors corresponding to the diagonal and the lower diagonal: The Shape type of line 5 contains the effective sizes of the two fields. All elements of a collection have the same shape. As both the number of TData elements and their shape is known, tCol storage pattern can be optimaly stored according to the target architecture (see Figure 4):

1 TData : : Shape s=TData : : createShape (size) ; 2 Target : : collection<TData> tCol (N , s) ;

The following code snippet corresponds to TLDLtOp which factorize the matrix a in-place using a LDL T decomposition:

1 struct TLDLtOp { 2 template <template <class> class View> The elements of a field can be accessed by passing their index as the second argument of the view operator(). If this index is not provided, its default value is 0. Line 7 shows how the type of a field elements can be retrieved.

int i = 1 ; i < size ; i ++) { 10 l=a (low , i-1) / a (diag , i-1) ; 11 a (low , i-1)=l ; 12 a (diag , i)-=a (diag , i-

Performances

Table 1 shows the performances obtained to solve the AX = B system with A having 10 5 blocks of size 100. Speed-ups are given compared to the sequential scalar CPU version. CPU tests are run on a machine with two 2 GHz Intel E5504 quad-core processors. GPU tests are run on a Nvidia Quadro FX5800 card. Both architectures were launched at the end of 2008. Computation performances are given in GFlops. Data throughput is given in GB/s and takes into account the data transfers to and from the memory: on CPU, an element remaining in cache between two loads is considered to have been loaded only once. The achieved performances are compared to the measured peak performances. Peak computational power is measured with large BLAS matrix-matrix multiplications (sgemm): 55 GFlops on CPU and 348 GFlops on GPU. Peak memory throughputs are measured with the stream benchmark [START_REF] Mccalpin | Memory bandwidth and machine balance in current high performance computers[END_REF] on CPU (24 GB/s) and with the CUDA SDK bandwidth benchmark on GPU (74 GB/s).

On both CPU and GPU, parallel performances are limited by the memory bandwidth and our approach reaches more than 95% of the peak memory bandwidth utilization.

Figure 1 :

 1 Figure 1: Matrix pattern composition within Legolas++.

Figure 2 :

 2 Figure 2: A matrix pattern built with Legolas++.

3

 Introduction to MTPS 3.1 Related Work Many libraries parallelize for different architectures from a single source code. A complete bibliography is beyond the scope of this abstract; only some examples based on C++ meta-programming techniques are discussed.

1Figure 3 :

 3 Figure 3: Our hourglass software architecture to achieve a multi-target Legolas++: a minimal MTPS library adapts the code for different hardware architectures.

1 struct XYData 2 :

 12 public MTPS : : POD<float , float>{ 3 enum Fields {x , y } ; 4 } ;

3 4

 3 Target : : collection<XYData> xyCol (N) ;

Figure 4 :

 4 Figure 4: The storage of the diagonal is adapted by MTPSfor the target architecture.

1 struct TData 2 : 6 7 8 Shape out ; 9 out

 12689 public MTPS : : POD<float , float>{ 3 enum Fields {diag , low } ; 4 typedef MTPS : : POD<float , float> Base ; 5 typedef typename Base : : Shape Shape ; static Shape createShape (int size) { [diag] = size ; 10 out [low] = size -1; 11 } 12 } ;

3 INLINE 5 typedef

 35 void operator () (View<TData> a) 4 const { View<TData> TV ; 6 int low = TV : : low , diag = TV : : diag ; 7 typename TV : : template Type<low > : : Type l ; 8 int size = a . shape () [diag] ; 9 for (

Table 1 :

 1 Performances of MTPS for the TDS example. Computation are carried out in single precision floating point. The smallest time over 1000 executions is given.

	1) * l * l ;

Conclusions and perspectives

We have presented MTPS, a C++ generic library simplifying the parallelization and the optimization of vectorizable algorithms for different architectures. In particular, one can program an algorithm once, compile it for execution on the SSE units of multicore CPUs or on CUDA-enabled GPUs and obtain performances close to hardware limits: 95% of peak performances were achieved.

For further developments of MTPS, two main directions are considered. On the one hand, having an efficient implementation of context switches between different vectorizable algorithms is essential to write complex applications. On the other hand, targeting other architectures, including distributed memory architectures, will add more opportunities to increase the performances. These two directions of research will be investigated in a near future.