
HAL Id: hal-00491980
https://centralesupelec.hal.science/hal-00491980v1

Submitted on 14 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Target Vectorization With MTPS C++ Generic
Library

Wilfried Kirschenmann, Laurent Plagne, Stéphane Vialle

To cite this version:
Wilfried Kirschenmann, Laurent Plagne, Stéphane Vialle. Multi-Target Vectorization With MTPS
C++ Generic Library. PARA 2010 : State of the Art in Scientific and Parallel Computing, Jun 2010,
Reykjavik, Iceland. 4 p. �hal-00491980�

https://centralesupelec.hal.science/hal-00491980v1
https://hal.archives-ouvertes.fr

Multi-Target Vectorization With MTPS C++ Generic Library

Wilfried Kirschenmann∗ 1,3, Laurent Plagne† 1, and Stéphane Vialle‡ 2,3

1SINETICS Department, EDF R&D, FRANCE
2IMS Research Group, SUPELEC, FRANCE §

3AlGorille INRIA Project Team, FRANCE §

Abstract This article introduces MTPS, a C++ template library

dedicated at vectorizing algorithms for different target architec-

tures. Algorithms written with MTPS benefit from optimized

memory access patterns and show performances close to hard-

ware limits, both on multicore CPU and on GPU.

Keywords GPU, SSE, Vectorization, c++ Template Metapro-

gramming, Performances

1 Introduction
In many scientific applications, computation time is a

strong constraint. Optimizing these applications for the

rapidly changing computer hardware is a very expensive

and time consuming task. Emerging hybrid architectures

tend to make this process even more complex.

The classical way to ease this optimization process is

to build applications on top of High Performance Com-

puting (HPC) libraries that are available on a large vari-

ety of hardware architectures. Such scientific applications,

whose computing time is mostly consumed within such

HPC library subroutines, then automatically exhibit opti-

mal performances for various hardware architectures.

However, most classical HPC libraries implement fixed

APIs (e.g., BLAS) and may be too rigid to match the needs

of all client applications. In particular, classical APIs are

limited to manipulate rather simple data structures like

dense linear algebra matrices. As a more complex issue,

general sparse matrices cannot be represented with a uni-

fied data structure and various formats are proposed by

more specialized libraries. In the extreme case, structured

sparse matrices cannot be efficiently captured by any of

the classical library data structures. Relying on such com-

plex matrices, several neutron transport codes developed at

EDF R&D require another kind of library to be used.

Following the model of the C++ Standard Template

Library (STL), template based generic libraries such as

Blitz++ [11] provide more flexible APIs and extend the

scope of library-based design for scientific applications.

Such generic libraries allow to define Domain Specific

∗Email: wilfried.kirschenmann@edf.fr
†Email: laurent.plagne@edf.fr
‡Email: stephane.vialle@supelec.fr
§Authors want to thank Region Lorraine and ANRT for supporting

this research.

Diagonal Tridiagonal Examples of composition

Figure 1: Matrix pattern composition within Legolas++.

Embedded Languages (DSELs) [2].

Legolas++, a basis for several HPC codes at EDF, is

a C++ DSEL dedicated to structured sparse linear alge-

bra. In order to meet EDF’s industrial quality standards, a

multi-target version of Legolas++, currently under devel-

opment, will provide a unified interface for the different

target architectures available at EDF, including clusters of

heterogeneous nodes (i.e., with both multi-core CPUs and

GPUs). This article presents MTPS (Multi-Target Parallel

Skeletons), a C++ generic library dedicated to multi-target

vectorization that is used to write the multi-target version

of Legolas++. Only developments concerning a single het-

erogeneous node are presented here.

The next section presents the principles of Legolas++

and Section 3 introduces MTPS. Its optimization strategies

and the achieved performances are discussed in Section 4.

Finally, conclusions are drawn in Section 5.

2 Towards a Multi-Target Linear Algebra Li-
brary

Legolas++ is a C++ DSEL developed at EDF R&D to build

structured sparse linear algebra solvers. Legolas++ pro-

vides building bricks to describe structured sparse matrix

patterns and the associated vectors and algorithms.

Legolas++ is based on the observation that most struc-

tured sparse matrix patterns can be described as the com-

position of simpler patterns. Figure 1 shows how to com-

pose two simple patterns to create new patterns. Figure 2

shows an example of matrix pattern issued from a neutron

transport code written with Legolas++ (GLASS in [8]).

The explicit GPU parallelization of one of our neutron

transport code resulted in speed-ups around 30 over the se-

quential Legolas++ CPU implementation [5]. To general-

ize this gain of performances to other Legolas++ based ap-

plications, a parallel and multi-target version of Legolas++

is being developed. As the parallel CPU and GPU ver-

sions exhibit strong similarities, Legolas++ developments

wilfried.kirschenmann@edf.fr
laurent.plagne@edf.fr
stephane.vialle@supelec.fr

Figure 2: A matrix pattern built with Legolas++.

for the different targets are factorized into an intermediate

layer between Legolas++ and the different hardware archi-

tectures, namely MTPS (see Figure 3).

3 Introduction to MTPS

3.1 Related Work

Many libraries parallelize for different architectures from

a single source code. A complete bibliography is beyond

the scope of this abstract; only some examples based on

C++ meta-programming techniques are discussed.

Some libraries, like TrilinosNode [1], Quaff [3] or Intel

TBB [9], require their users to explicitely express the par-

allelism within the application by using parallel skeletons.

This expression of available parallelism can be encap-

sulated into specialized and implicitely parallel STL-like

containers and algorithms, as in Thrust1 and Honei [10].

Our goal is to provide implicit parallelism within Lego-

las++ containers and algorithms. To ease the writing of

its containers and algorithms, Legolas++ relies on MTPS

which follows a parallel skeletons based approach. Then

MTPS optimizes the code for the different architectures.

As this article presents MTPS, only code for MTPS is

shown. For Legolas++ users, MTPS details are hidden in

its containers and algorithms.

3.2 Collections and Vectorizable Algorithms

This section introduces the notions of collection and vec-

torizable algorithm on which MTPS relies.

In C++, a Plain Old Data (POD) is a type whose mem-

ory representation pattern can be changed without altering

its value [4]. POD members can be either integral types

or PODs. In the following code snippet, MyPOD is a POD

with three float data members:

1 struct MyPOD{ float a , b , c ; } ;

Let a collection be a data structure containing different

instances of the same POD and f be a pure function (i.e.,

f has no side effects). An algorithm applying f to all ele-

ments of a collection is said to be vectorizable. To paral-

lelize such algorithms, MTPS provides two parallel skele-

tons optimized for different target architectures: map and

fold which correspond to a parallel for loop and to a par-

allel reduction respectively.

An algorithm is vectorizable in reference to a given col-

lection. For instance, an algorithm operating on a matrix

can be either vectorizable or not depending on whether the
1Thrust: http://code.google.com/p/thrust/

MTPS

Structured Sparse Linear Algebra Legolas++

CPU (thread + SSE) GPUDifferent hardware targets

Multi-target layer

Scientific application

Different parallelizations TBB, CUDA, ...

Neutron Transport

Figure 3: Our hourglass software architecture to achieve

a multi-target Legolas++: a minimal MTPS library

adapts the code for different hardware architectures.

matrix is considered as a collection of columns or as a col-

lection of rows. Two algorithms vectorizable in reference

to the same collection are said to be in the same vectorial

context. On the contrary, if two consecutive algorithms are

not vectorizable in reference to the same collection, a con-

text switch is required. In a distributed memory system,

context switches correspond to communications.

3.3 Linear Algebra Hello World of MTPS: saxpy

This section presents the MTPS implementation for the

saxpy operation whose implementation in C is:

1 float ∗X , ∗Y , a ;

2 for (int i=0; i<N ; ++i) Y [i]+=a∗X [i] ;

First, the iteration-dependent data are gathered in a POD

XYData whose members correspond to X[i] and Y[i].

The types of the two members (float) are passed as tem-

plate arguments to MTPS::POD and their names (x and y)

are given in the Fields enum:

1 struct XYData

2 : public MTPS : : POD<float , float>{
3 enum Fields{x , y } ;

4 } ;

Second, a collection of XYData elements, xyCol, can

be built using MTPS containers. A class type for opti-

mized container is provided as member of the class cor-

responding to the target architecture. Two levels of par-

allelism are available on CPUs: thread parallelism and

SIMD parallelism. The choice for each level is made

by passing two arguments to the CPU template class.

Thread can be one of MTPS::Sequential, MTPS::OMP

(openMP) or MTPS::TBB (Intel TBB). SIMD can be one of

MTPS::Scalar or MTPS::SSE. On CUDA-enabled GPUs,

only the SIMD parallelism is used.

1 / / t y p e d e f MTPS : : GPU : : CUDA T a r g e t ;

2 typedef MTPS : : CPU<Thread , SIMD> Target ;

3

4 Target : : collection<XYData> xyCol (N) ;

Third, the function that is to be applied to all elements

of the collection must be written as a functor class AxpyOp

which contains the value a internally:

1 struct AxpyOp{
2 float a_ ;

3 template <template <class> class View>

4 INLINE void operator () (View<XYData> xy)

5 const {

http://code.google.com/p/thrust/

6 typedef View<XYData> XYV ;

7 int x = XYV : : x ;

8 xy (XYV : : y) +=a_∗xy (x) ;

9 }
10 } ;

As XYData elements may not be stored identically on

different target architecture, AxpyOp::operator() does

not take an XYData as argument. A View is provided

instead. XYData members can be accessed with the

operator() of the View which takes an int as argument.

Elements of the Fields enum can be used either to ini-

tialize an int (line 7) or directly (line 8). The declara-

tion of AxpyOp::operator() must be preceeded by the

INLINE macro which defines target-dependent keywords

(e.g. device for CUDA).

Finally, the functor can be passed to the map and fold

parallel skeletons provided by the collection container:

1 AxpyOp axpyOp ; axpyOp . a_ = . . . ;

2 xyCol . map (axpyOp) ;

3 . . .

4 DotOp dotOp ;

5 float dot = xyCol . fold (dotOp) ;

4 Optimization of performances

For each architecture, the specific optimizations required

to enable good performances will be presented. The im-

plementation of an example will then be discussed.

4.1 Multi-Target Performance Optimizations

Parallelizing a vectorizable algorithm is straightforward.

However, achieving good performances is not: modifica-

tions of the collection storage pattern may be required. In-

deed, achieving efficient usage of memory bandwidth on

a given hardware architecture requires specific access pat-

terns [6]. Figure 4 shows how a matrix of 8 TriDiagonal

Symmetric (TDS) blocks of size 4 is stored on three differ-

ent architectures to optimize the memory access pattern.

Performances achieved thanks to this optimization will

be shown in Section 4.3. As this optimization is made in

MTPS collection container, MTPS user must define both

the size per POD-element of each field (4 for the diagonal

field on Figure 4) and the number of POD-element in or-

der to construct a collection. Using these two information,

MTPS optimizes the storage for each target architecture.

A context switch imply a data reordering. For instance,

switching a collection of matrix rows to a collection of ma-

trix columns modifies the effective storage (i.e. the matrix

is transposed). This part of MTPS is under development.

4.2 Implementation of a Linear System Resolution

The example presented in this section corresponds to a ba-

sic operation that represents the major part of the execution

time of a neutron transport code [5]. Let A be a block-

diagonal matrix with TDS blocks. smaller problems. The

AX =B linear system can be seen as a collection of smaller

1 20 3 4 5 6 7 CPU

b ca d a b c d

0-3 4-7
CPU (SSE)

b d GPU

1

2

0

3

4

5

6

7

a
b
c
d

ca

Figure 4: The storage of the diagonal is adapted by

MTPSfor the target architecture.

block systems ax = b that can be solved independently. To

solve one ax = b system, the matrix a is factorized in-place

with a LDLT factorization and a forward and backward

substitution is then applied on x. Only the code for the

factorization is shown here.

Let us introduce TData which represents a TDS block.

TData elements are stored in two vectors corresponding to

the diagonal and the lower diagonal:

1 struct TData

2 : public MTPS : : POD<float , float>{
3 enum Fields{diag , low } ;

4 typedef MTPS : : POD<float , float> Base ;

5 typedef typename Base : : Shape Shape ;

6

7 static Shape createShape (int size) {
8 Shape out ;

9 out [diag] = size ;

10 out [low] = size−1;

11 }
12 } ;

The Shape type of line 5 contains the effective sizes

of the two fields. All elements of a collection have the

same shape. As both the number of TData elements and

their shape is known, tCol storage pattern can be optimaly

stored according to the target architecture (see Figure 4):

1 TData : : Shape s=TData : : createShape (size) ;

2 Target : : collection<TData> tCol (N , s) ;

The following code snippet corresponds to TLDLtOp

which factorize the matrix a in-place using a LDLT de-

composition:

1 struct TLDLtOp{
2 template <template <class> class View>

3 INLINE void operator () (View<TData> a)

4 const{
5 typedef View<TData> TV ;

6 int low = TV : : low , diag = TV : : diag ;

7 typename TV : : template Type<low> : : Type l ;

8 int size = a . shape () [diag] ;

9 for (int i = 1 ; i < size ; i++){
10 l=a (low , i−1) / a (diag , i−1) ;

11 a (low , i−1)=l ;

12 a (diag , i)−=a (diag , i−1)∗l∗l ;

13 }
14 }
15 } ;

16 TLDLtOp op ;

17 tCol . map (op) ;

Thread SIMD
Time Speed GFlops

% peak
(ms) up GB/s

sequential

scalar 184.1 1.0
0.5 0.8

1.0 4.2

SSE 48.8 3.8
1.7 3.1

3.8 15.9

intel TBB

scalar 23.3 7.9
3.6 6.5

8.0 33.3

SSE 8.5 21.6
9.9 17.9

21.9 91.3

openMP

scalar 23.1 8.0
3.6 6.6

8.0 33.6

SSE 8.1 22.7
10.3 18.8

23.0 95.8

CUDA C 4.2 43.9
20.0 5.7

71.0 95.9

Table 1: Performances of MTPS for the TDS example.

Computation are carried out in single precision floating

point. The smallest time over 1000 executions is given.

The elements of a field can be accessed by passing their

index as the second argument of the view operator(). If

this index is not provided, its default value is 0. Line 7

shows how the type of a field elements can be retrieved.

4.3 Performances

Table 1 shows the performances obtained to solve the

AX = B system with A having 105 blocks of size 100.

Speed-ups are given compared to the sequential scalar

CPU version. CPU tests are run on a machine with two

2 GHz Intel E5504 quad-core processors. GPU tests are

run on a Nvidia Quadro FX5800 card. Both architectures

were launched at the end of 2008. Computation perfor-

mances are given in GFlops. Data throughput is given in

GB/s and takes into account the data transfers to and from

the memory: on CPU, an element remaining in cache be-

tween two loads is considered to have been loaded only

once. The achieved performances are compared to the

measured peak performances. Peak computational power

is measured with large BLAS matrix-matrix multiplica-

tions (sgemm): 55 GFlops on CPU and 348 GFlops on

GPU. Peak memory throughputs are measured with the

stream benchmark [7] on CPU (24 GB/s) and with the

CUDA SDK bandwidth benchmark on GPU (74 GB/s).

On both CPU and GPU, parallel performances are lim-

ited by the memory bandwidth and our approach reaches

more than 95% of the peak memory bandwidth utilization.

5 Conclusions and perspectives
We have presented MTPS, a C++ generic library simplify-

ing the parallelization and the optimization of vectorizable

algorithms for different architectures. In particular, one

can program an algorithm once, compile it for execution

on the SSE units of multicore CPUs or on CUDA-enabled

GPUs and obtain performances close to hardware limits:

95% of peak performances were achieved.

For further developments of MTPS, two main directions

are considered. On the one hand, having an efficient imple-

mentation of context switches between different vectoriz-

able algorithms is essential to write complex applications.

On the other hand, targeting other architectures, including

distributed memory architectures, will add more opportu-

nities to increase the performances. These two directions

of research will be investigated in a near future.

References
[1] C. G. Baker, H. Carter Edwards, M. A. Heroux, and A. B.

Williams. A light-weight api for portable multicore pro-

gramming. In PDP 2010: Proceedings of The 18th Euromi-

cro International Conference on Parallel, Distributed and

Network-Based Computing, Washington, DC, USA, 2010.

IEEE Computer Society.

[2] K. Czarnecki, J. T. Odonnell, J. Striegnitz, Walid, and

Taha. Dsl implementation in metaocaml, template haskell,

and c++. LNCS: Domain-Specific Program Generation,

3016(2):51–72, 2004.

[3] J. Falcou, J. Sérot, T. Chateau, and J.-T. Lapresté. Quaff:

efficient c++ design for parallel skeletons. Parallel Com-

puting, 32(7-8):604–615, 2006.

[4] ISO. ISO/IEC 14882:2003: Programming languages

— C++. International Organization for Standardization,

Geneva, Switzerland, 2003. (§3.9).

[5] W. Kirschenmann, L. Plagne, S. Ploix, A. Ponçot, and

S. Vialle. Massively parallel solving of 3D simplified PN

equations on graphic processing units. In Proceedings of

Mathematics, Computational Methods & Reactor Physics,

May 2009.

[6] W. Kirschenmann, L. Plagne, and S. Vialle. Multi-target

c++ implementation of parallel skeletons. In POOSC

’09: Proceedings of the 8th workshop on Parallel/High-

Performance Object-Oriented Scientific Computing, pages

1–10, New York, NY, USA, 2009. ACM.

[7] J. D. McCalpin. Memory bandwidth and machine bal-

ance in current high performance computers. IEEE Com-

puter Society Technical Committee on Computer Architec-

ture (TCCA) Newsletter, pages 19–25, dec 1995.

[8] L. Plagne and A. Ponçot. Generic programming for de-

terministic neutron transport codes. In Proceedings of

Mathematics and Computation, Supercomputing, Reactor

Physics and Nuclear and Biological Applications, Palais

des Papes, Avignon, France, September 2005.

[9] J. Reinders. Intel threading building blocks. O’Reilly &

Associates, Inc., Sebastopol, CA, USA, 2007.

[10] D. van Dyk, M. Geveler, S. Mallach, D. Ribbrock,

D. Göddeke, and C. Gutwenger. Honei: A collection of li-

braries for numerical computations targeting multiple pro-

cessor architectures. Computer Physics Communications,

180(12):2534 – 2543, 2009.

[11] T. L. Veldhuizen. Arrays in blitz++. In ISCOPE ’98: Pro-

ceedings of the Second International Symposium on Com-

puting in Object-Oriented Parallel Environments, pages

223–230, London, UK, 1998. Springer-Verlag.

	Introduction
	Towards a Multi-Target Linear Algebra Library
	Introduction to MTPS
	Related Work
	Collections and Vectorizable Algorithms
	Linear Algebra Hello World of MTPS: saxpy

	Optimization of performances
	Multi-Target Performance Optimizations
	Implementation of a Linear System Resolution
	Performances

	Conclusions and perspectives

