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Abstract

This paper addresses the problem of sharing
primary frequency control reserves among non-
synchronous AC systems connected by a multi-terminal
HVDC grid. We focus on a control scheme that mod-
ifies the power injections from the different areas into
the DC grid based on remote measurements of the
other areas’ frequencies. This scheme is proposed and
applied to a simplified system in a previous work by
the authors. The current paper investigates the effects
of delays on the control scheme’s effectiveness. The
study shows that there generally exists a maximum
acceptable delay, beyond which the areas’ frequency
deviations fail to converge to an equilibrium point.
This constraint should be taken into account when
commissioning such a control scheme.

1. Introduction

Frequency stability is one of the major concerns for
power system operators [1]. It deals with the power
system’s ability to return to its nominal frequency
after a severe disturbance resulting in a power imbal-
ance. To maintain frequency stability, system operators
have developed frequency control schemes, which are
usually classified according to the time scale of their
actions [2]. The actions corresponding to the shortest
time scale are usually referred to as “primary frequency
control”. It consists of local automatic adjustment,
within a few seconds after the disturbance, of the
generators’ power output based on locally measured
frequency variations. The power margins that a gener-
ator provides around its scheduled output are named
“primary reserves”.

In a synchronous AC system, as the average fre-
quency in the time frame of several seconds can be
considered identical everywhere, the efforts of the gen-
erators participating in primary frequency control sum

up within the area. Therefore, larger systems usually
experience lower frequency deviations and have lower
costs – per MWh – associated to primary frequency
control reserves. This has been a significant motivation
for interconnecting regional and national systems to
create large-scale power systems, such as the UCTE
network.

The development of high voltage direct current
(HVDC) systems for bulk power transmission over
long distances [3] and underground cable cross-
ings opens new perspectives for interconnecting non-
synchronous areas. In this context, it is generally
expected that the power flows through an HVDC
system are set at scheduled values, while frequencies
of the AC areas remain independent. In a previous
paper [4], we discuss the possibility of using the
fast power-tracking capability of HVDC converters to
share primary reserves among non-synchronous areas
connected by a DC grid. In the same paper, a control
scheme for the HVDC converters is also proposed. It
is based on the body of work on consensus problems
and relates the problem of sharing primary reserves
between the different AC areas to the problem of mak-
ing the frequency deviations in these areas converge
rapidly to the same value.

Both the theoretical study and the simulation re-
sults reported in [4] show that, under some restrictive
assumptions, the scheme can allow a reduction of
the requirements in terms of the primary reserves in
every AC area. One of these assumptions is that the
information on the frequency of one area is instanta-
neously available to another area of the HVDC system.
However, in practice, both measurement and commu-
nication introduce delays, which can reach up to a few
seconds [5]. As this may challenge the effectiveness
of the control strategy, this paper aims to extend the
previous findings to more realistic cases by considering
the effects of those delays. The analytical part of
our study proves a unique equilibrium point for the
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Figure 1. A multi-terminal HVDC system connect-
ing N AC areas via converters.

system following a step change in the load of one AC
area. In addition, we provide, under some restrictive
assumptions on the power system, conditions under
which this equilibrium point is reached. We also report
simulation results showing, among others, that delays
can indeed cause stability problems.

The paper is organized as follows. Section 2 de-
scribes a multi-terminal HVDC system model. Section
3 recalls the control scheme proposed in [4] and adds
delays to it. Section 4 analyzes stability of a system
with such dynamics. Section 5 presents a benchmark
system and simulation results.

2. Multi-terminal HVDC system model

We consider a system with N AC areas, as shown
in Fig. 1. The system has three types of components:
a DC grid, N non-synchronous AC areas, and N
converters that interface the AC areas with the DC grid.

The model aims to reproduce the main characteris-
tics of the frequency of every AC area over a period
of several tens of seconds. For notational convenience,
the time dependency of the variables is not explicitly
mentioned in the equations (i.e., we write x instead of
x(t)) where it is not necessary.

2.1. AC area

The model of each AC area consists of two com-
ponents, an aggregated generator and a load, both
connected to the AC side of the HVDC converter.

The mechanical dynamics of the generator for area
i,∀i ∈ {1, . . . , N} is described by the equation of
motion

2πJi
dfi
dt

=
Pmi − Pei

2πfi
− 2πDgi(fi − fnom,i) (1)

where fi is AC area i’s frequency, and fnom,i its
nominal value; Pmi and Pei are the mechanical power
input and the electrical power output of the generator

of area i, respectively; and Ji and Dgi are the moment
of inertia and the damping factor of this generator. The
power balance within this area requires

Pei = Pli + P dci (2)

where Pli is the load demand of area i and P dci is the
power injection from this area into the DC grid.

The AC area’s frequency is regulated by the speed
governor of the generator, which observes the rotat-
ing speed of the shaft and adjusts Pmi accordingly,
following

Tsmi
dPmi
dt

= P omi − Pmi −
Pmax
mi

σi

fi − fnom,i
fnom,i

(3)

where σi is the generator droop, Tsmi the time constant
of the servomotor, Pmax

mi the maximum mechanical
power available from the turbine, and P omi the refer-
ence value for Pmi when fi = fnom,i. In practice, P omi
is refreshed by the secondary frequency controller at a
relatively low pace. For instance, its time constant is a
few minutes in the UCTE network [5]. Consequently,
we assume in this paper that P omi remains constant.

A static load model is used to represent the load

Pli = P oli · (1 +Dli(fi − fnom,i)) (4)

where P oli is the power demand at fnom,i and Dli the
frequency sensitivity factor.

2.2. DC network

As the electrical time constant of a DC grid is of the
order of several milliseconds [6], transient dynamics of
the DC grid is not considered in our model.

To take into account the general case where there
exist nodes that are not connected to any AC area,
we suppose that there are in total M ≥ N nodes
in the DC grid and that node i is connected to AC
area i via converter i, ∀i ∈ {1, . . . , N}. Then, the
power transferred from node i to node j within the
DC network, denoted by P dcij , can be expressed as:

P dcij =
V dci (V dci − V dcj )

Rdcij
(5)

where V dci and V dcj are the voltages at nodes i and j,
respectively, and Rdcij is the resistance between these
two nodes. If nodes i and j are not directly connected,
Rdcij is considered equal to infinity. Note that there must
be either a direct or an indirect connection between any
two nodes, otherwise the DC grid would be made of
several parts which are not connected to each other.
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The power balance at node i satisfies
M∑
j=1

P dcij =
{
P dci for i ≤ N ,
0 for i > N . (6)

Replacing P dcij by (5), we can write (6) in matrix
form as the nonlinear relation

Pdc = diag(V dc1 , . . . , V dcM )AVdc (7)

where

• Pdc is a vector of length M with the first N
components equal to P dc1 , . . . , P dcN and the last
M −N components equal to 0.

• Vdc is a vector containing the DC voltages
V dc1 , . . . , V dcM .

• the components of matrix A are defined as

[A]ij =


− 1
Rij

for i 6= j ,∑
j

1
Rij

for i = j .

2.3. HVDC Converter

Since a converter is capable of tracking a power
reference signal with a time constant of several tens of
milliseconds [7], its transient dynamics is not consid-
ered here.

Conventionally, in an MT-HVDC system, only one
of the converters (indexed by k) regulates the DC
voltage, while all the others control the real power
exchanged between the AC and the DC sides [8]–[10].
In fact, converter k plays the role of the slack bus
that maintains the power balance within the DC grid,
and the DC grid can be considered as a real power
exchange center between different AC areas. Without
loss of generality, we assume an area numbering such
that k = N .

Formally, with the notations introduced in Section
2.2, P dc1 , . . . , P dcN−1 can be used as control variables
to influence the frequencies of the different AC areas,
whereas P dcN is determined by the DC grid load flow
to maintain the power balance within the DC grid.

3. Coordinated primary frequency con-
troller

This section first recalls the coordinated control
scheme proposed in [4]. Then, the delays potentially
involved in the application of this control scheme are
discussed and their influence on the system dynamics
is modeled.

3.1. Control scheme

The control scheme proposed in [4] is distributed in
nature. It is composed of N − 1 subcontrollers, one
for each HVDC converter except converter N which
maintains the voltage of the DC grid. The subcontroller
assigned to converter i ∈ {1, . . . , N − 1} modifies the
value of P dci such that

dP dci (t)
dt

=α
N∑
j=1

bij(∆fi(t)−∆fj(t))

+ β

N∑
j=1

bij

(
dfi(t)
dt
− dfj(t)

dt

)
(8)

where
• ∆fi(t) = fi(t)− fnom,i.
• α and β are analogous to integral control gain

and proportional control gain, respectively. The
influence of their value on the system dynamics
will be discussed later in this paper.

• bij is the coefficient representing the communica-
tion graph of the system. The value of bij equals 1
if subcontroller i receives frequency information
on area j, and 0 otherwise.

3.2. Effects of delays

Equation (8) should in principle determine the evo-
lution of P dci , which represents the power injected by
area i into the HVDC grid. However, a subcontroller
based on (8) would lead in a real power system to a
variation of P dci that may differ significantly from the
one defined by this equation.

We believe indeed that the sum of the time necessary
to measure the frequencies of the AC areas, transmit
these values to subcontroller i, compute a reference
value for P dci , and apply it to the converter may
be significant. This may in turn lead to an effective
variation of P dci that is delayed with respect to the
one predicted by (8).

To give numerical values for these delays, let us note
that it takes at least one period, which is around 20ms
(resp. 17ms), to measure a frequency close to 50Hz
(resp. 60Hz). Concerning the time necessary to encode,
transmit, and decode the frequency information from
one AC area to another, it is of the order of several
hundreds of milliseconds if not one or two seconds. By
way of example, the UCTE does not guarantee delays
less than 2 seconds for transmitting information from
a substation to a remote SCADA system [5]. As to
the time necessary for a converter to effectively inject
into the HVDC grid a power setting computed by its
subcontroller, it can reach up to tens of milliseconds.
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In the following, we will study the properties of
the control scheme in the presence of such delays. To
simplify the study, we will assume that the overall
delays are the same regardless of the subcontroller
considered and we denote it by τ .

We will also assume that τ affects the power injected
by converter i into the HVDC grid in such a way that
the dynamics of P dci is now given by the following
equation:

dP dci (t)
dt

=α
N∑
j=1

bij(∆fi(t− τ)−∆fj(t− τ))

+ β

N∑
j=1

bij

(
dfi(t− τ)

dt
− dfj(t− τ)

dt

)
.

(9)

4. System stability

This section reports a theoretical study on the stabil-
ity properties of the system in the presence of a delay
τ . We prove that for a system subjected to a small step
change in the load, there exists a unique equilibrium
point, at which the frequency deviations are equal in all
AC areas. Then, we study the conditions under which
the system converges to that equilibrium point, and we
provide a Nyquist stability criterion for the special case
where all the AC areas have identical parameters.

The theoretical analysis relies on the following as-
sumptions:

Assumption 1: The losses within the DC grid do not
vary with time, i.e.,

N∑
i=1

dP dci
dt

= 0 . (10)

Assumption 2: The communication graph that rep-
resents the frequency information availability at differ-
ent subcontrollers has the following properties:
• If the subcontroller of one area has access to the

information on another area’s frequency, then the
subcontroller of this second area also has access
to the information on the first area’s frequency,
i.e., if bij = 1, then bji = 1,∀i 6= j, i, j ∈
{1, . . . , N − 1}. Observe that this property, to-
gether with Assumption 1, implies that the time
derivative of P dcN also satisfies (9), where bNi =
biN ,∀i ∈ {1, . . . , N}.

• The communication graph can not be made of
several parts which are not connected to each
other, i.e., if bij = 0, then there must exist
some intermediate indices k1, . . . , km such that
bik1 = bk1k2 = . . . = bkmj = 1.

• It is constant in time.
Assumption 3: The nonlinear equation (1) can be

linearized around fi = fnom,i as:

2πJi
dfi
dt

=
Pmi − P oli − P dci

2πfnom,i
− 2πDgi(fi − fnom,i) .

(11)
In the following, the HVDC system is modeled

by the linear model, where the dynamics of area
i ∈ {1, . . . , N} is defined by (3), (9), and (11).

4.1. Equilibrium point

Proposition 1: Consider that the HVDC system, op-
erating at its nominal equilibrium, is suddenly sub-
jected to a step change in the load of one of its
AC areas. Then, under Assumptions 1, 2, and 3, the
(linearized) HVDC system has a unique equilibrium
point, at which frequency deviations in all AC areas
are equal.

Proof: Prior to the step change in the load of
one of the AC areas, each AC area is considered in
steady state with its frequency regulated at fnom,i. We
denote the steady-state values by the variables with a
bar overhead. After the step change in the load, the
variables start to change. We introduce the following
incremental variables:

xi(t) = fi(t)− fnom,i ,
yi(t) = Pmi(t)− P̄mi ,
ui(t) = P dci (t)− P̄ dci ,

vi(t) = Pli(t)− P̄ oli .

By introducing these variables, (3), (9), and (11) be-
come
dxi(t)
dt

=− a1ixi(t) + a2iyi(t)− a2iui(t)− a2ivi(t) ,

(12)
dyi(t)
dt

=− a3ixi(t)− a4iyi(t) , (13)

dui(t)
dt

=α
N∑
j=1

bij(xi(t− τ)− xj(t− τ))

+ β

N∑
j=1

bij

(
dxi(t− τ)

dt
− dxj(t− τ)

dt

)
(14)

where a1i = Dgi/Ji, a2i = 1/(4π2fnom,iJi), a3i =
Pmax
mi /(Tsmiσifnom,i), and a4i = 1/Tsmi. Note that
a1i, a2i, a3i, and a4i are all positive constants.

Equations (12), (13), and (14) describe the closed-
loop dynamics of AC area i,∀i ∈ {1, . . . , N}, where
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the state variables are xi(t), yi(t), and ui(t) and the ex-
ternal input is vi(t). Initially, all the state variables are
equal to zero, since they are defined as the incremental
values with respect to the initial nominal equilibrium.
At t0, a step change in load occurs in area m such
that:

vi(t) =
{
v̄m for i = m and t > t0 ,
0 otherwise . (15)

We now search for equilibrium points of the system
following the step change in the load. Let (xei , y

e
i , u

e
i )

characterize the state of area i at such an equilibrium
point. At this point,

dxi(t)
dt

=
dxi(t− τ)

dt
=
dyi(t)
dt

=
dui(t)
dt

= 0 . (16)

Thus, (12), (13), and (14) become algebraic equations

0 = −a1ix
e
i + a2iy

e
i − a2iu

e
i − a2ivi(t > t0) , (17)

0 = −a3ix
e
i − a4iy

e
i , (18)

0 = α

N∑
j=1

bij(xei − xej) . (19)

Equation (19) can be written in matrix form for
the entire HVDC system. Define the vector xe =
[xe1, . . . , x

e
N ]T and let 0N (resp. 1N ) denote the col-

umn vector of length N with all components equal to
0 (resp. 1). Then, (19) becomes

0N = αLxe (20)

where L is the Laplacian matrix of the communication
graph. It is defined by

[L]ij =
{
−bij for i 6= j ,∑
j bij for i = j . (21)

The Laplacian matrix L of a communication graph
satisfying Assumption 2 is symmetric positive semidef-
inite and its only zero eigenvalue corresponds to
eigenvector 1N . Therefore equilibrium requires that
the frequency deviations in all AC areas are equal.
Let xe be the value of the frequency deviations at the
equilibrium point.

From (17) and (18), we obtain

yei = −a3i

a4i
xe, (22)

uei = −
(
a1i

a2i
+
a3i

a4i

)
xe − vi(t > t0)

=

 −
(
a1i

a2i
+ a3i

a4i

)
xe − v̄m for i = m ,

−
(
a1i

a2i
+ a3i

a4i

)
xe otherwise .

(23)

We see in (23) that if xe can be uniquely determined,

then the equilibrium point exists and is unique. As-
sumption 1 implies that

∑N
i=1 ui(t) is a constant. The

initial conditions yield that
∑N
i=1 ui(0) = 0. Thus,∑N

i=1 u
e
i = 0. From (23), we see that xe is uniquely

determined as

xe = −v̄m ·

(
N∑
i=1

a1ia4i + a2ia3i

a2ia4i

)−1

. (24)

Remark 1: The equilibrium point, which is a static
quantity, is of course independent of delay τ . However,
delays play a crucial role in the system’s convergence
towards the equilibrium or not, which we study next.

Remark 2: We assumed above that the step change
in the load occurs in only one AC area. However, for
the general case where vi(t) changes in more than
one area and eventually settles at v̄i different from
0, it is straightforward to extend the above results to
reach a similar conclusion on the existence of a unique
equilibrium point, with xe given by

xe = −

(
N∑
i=1

v̄i

)
·

(
N∑
i=1

a1ia4i + a2ia3i

a2ia4i

)−1

. (25)

4.2. Stability of the system with identical AC
areas

Theoretically proving stability of the control scheme
is not an obvious question. We present a result only
for the case where all AC areas are assumed identical.

In this subsection we drop AC area index i when
referring to the parameters of these areas. We also
define the transfer function

h(s) =
a2(s+ a4)

(s+ a1)(s+ a4) + a2a3
(26)

where a1 = Dg/J , a2 = 1/(4π2fnomJ), a3 =
Pmax
m /(Tsmσfnom), and a4 = 1/Tsm.
Proposition 2: Consider that all AC areas of the

HVDC system have identical parameters, and that
Assumptions 1, 2, and 3 are satisfied. Denote by λN
and λ2, respectively the largest and smallest non-
zero eigenvalues of the Laplacian associated to the
communication graph (see (21)). Then the system is
stable, and following a step change in the load it
asymptotically converges to the unique equilibrium
point of Proposition 1, if the net encirclement of any
point on the segment (−1/λ2,−1/λN ) by the Nyquist
plot of h(s)(α+ βs)e−τs/s is zero.

Proof: Applying the Laplace transform to (12) and
(13), we have

xi(s) =
a2

s+ a1
yi(s)−

a2

s+ a1
(ui(s) + vi(s)) , (27)
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yi(s) = − a3

s+ a4
xi(s) . (28)

Eliminating yi(s) from (27) yields

xi(s) =
−a2(s+ a4)

(s+ a1)(s+ a4) + a2a3
(ui(s) + vi(s)) ,

(29)
which, written in matrix form, is

x(s) = −h(s)IN (u(s) + v(s)) . (30)

By following the same procedure, the dynamics of
P dci defined by (14) can be expressed in the frequency
domain as:

ui(s) = (
α

s
+ β)e−τs

N∑
j=1

bij(xi(s)− xj(s)) , (31)

which can be written in matrix form as:

u(s) = (
α

s
+ β)e−τsLx(s) . (32)

By replacing u(s) in (30) by (32), we have

x(s) = −s h(s) (sIN + h(s)(α+ βs)e−τsL)−1v(s) .
(33)

Define

Gτ (s) = −s h(s) (sIN + h(s)(α+ βs)e−τsL)−1 .
(34)

Then, Gτ (s) is the MIMO transfer function between
v(s), the load change vector, and x(s), the frequency
deviation vector.

The system defined by (33) is asymptotically stable
if all the poles of its transfer function Gτ (s) are on
the open left half-plane. Since h(s) is itself a stable
transfer function because of the positiveness of a1, a2,
a3, and a4, we only have to investigate the zeros of
Zτ (s) = sIN + h(s)(α+ βs)e−τsL.

Under Assumption 2, the Laplacian L of the com-
munication graph is positive semidefinite and has a
single zero eigenvalue. Thus, L = V DV T where V
is an orthogonal matrix (containing eigenvectors of
L) and D is diagonal (containing eigenvalues 0 =
λ1 < λ2 ≤ λ3 ≤ . . . ≤ λN ). Now V TZτ (s)V =
sIN+h(s)(α+βs)e−τsD has the same zeros as Zτ (s).
A single zero at s = 0 is obtained with eigenvector of
λ1 = 0. The latter however cancels with the zero at
s = 0 in the numerator1 of Gτ (s). To ensure input-
output stability, Zτ (s) must be positive definite in the
subspace spanned by all other eigenvectors (which we

1. This does not correspond to the pole cancellation control. As
a matter of fact, the “s” factors in denominator and numerator also
cancel for the open-loop system, which is stable. The factors “s”
come from rewriting our dynamics, so the pole and zero at s = 0
always cancel exactly.

denoted by ωk), for s in the closed right half-plane.
This means that

(sIN + h(s)(α+ βs)e−τsL)ωk
=sωk + λkh(s)(α+ βs)e−τsωk
=(s+ λkh(s)(α+ βs)e−τs)ωk
=0N (35)

with k > 1 may not have solutions in the closed right
half-plane. The Nyquist criterion says that this holds
if the net encirclement of the point (−1/λk, 0) by the
Nyquist plot of h(s)(α+βs)e−τs/s is zero. Hence the
proposition’s requirement. Because the whole system’s
state is observable from the frequency deviation sig-
nals, output (i.e., frequency deviation) stability implies
stability of the whole state.

The output corresponding to zero initial conditions
and a step input

v(t) =
{

0 for t < 0,
v̄ for t > 0,

is then given by

x(s) = Gτ (s)v(s) = 1
sGτ (s) v̄ . (36)

As before, we can diagonalize (36) in the basis
of eigenvectors of L. From the previous analy-
sis/conditions, components corresponding to λk, k >
1, have negative poles and therefore, according to
linear systems theory, exponentially decay to zero.
The term 1/s in (36) introduced by v(s) is the only
term that does not decay away in the output, and in
time-domain it corresponds to a step change which
represents the shift by xe of all frequency deviations
at equilibrium.

Remark 3: The above criterion yields that the sys-
tem defined by (33) is always stable for τ = 0, which
is consistent with the theoretical results in [4].

To show this, we denote the argument of f(s) by
arg(f(s)) and define

J(s) = λkh(s)(α+ βs)/s

=
λka2(s+ a4)(βs+ α)

s[(s+ a1)(s+ a4) + a2a3]
. (37)

The argument of J(s) can be calculated as:

arg(J(s)) = arg(s+ a4) + arg(βs+ α)− 90◦

− arg((s+ a1)(s+ a4) + a2a3) .

With the definition of all the coefficients in J(s), we
have

arg((s+ a1)(s+ a4) + a2a3)
< arg((s+ a1)(s+ a4))
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= arg(s+ a1) + arg(s+ a4) ,

from which

arg(J(s)) > arg(βs+ α)− 90◦ − arg(s+ a1)
>− 180◦ .

On the other hand, it is straightforward to see that
arg(J(s)) < 180◦. Thus, the Nyquist plot of J(s)
can not intersect with the negative real axis as s grows
from j0 to j∞, where j =

√
−1. Therefore, the points

on the segment (−1/λ2,−1/λN ) are never encircled,
which, according to Proposition 2, implies that the
system is always stable for τ = 0.

5. Simulations

To analyze the effects of the delays on the perfor-
mances of our control scheme, simulations are con-
ducted on an HVDC system with five non-identical
non-synchronous areas, which is described in the first
part of this section.

5.1. Benchmark system

The benchmark system consists of a multi-terminal
HVDC grid connecting five non-synchronous areas.
The converter of area 5 is chosen to regulate the DC
voltage, whose setting is 100kV. The topology of the
DC network is represented in Fig. 2. The commu-
nication graph coincides with the network topology,
i.e., each edge in the figure also represents a bi-
directional communication channel between the two
areas it connects. The resistance of the DC links
are: R12 = 139Ω, R15 = 417Ω, R23 = 278Ω,
R25 = 695Ω, R34 = 278Ω, and R45 = 278Ω. In
our simulations, we consider that individual AC areas
significantly differ from each other, see the parameters
in Table 1.

To observe the system’s response to a step change in
the load, we assume that all the areas operate originally
in steady state at their nominal frequency. Then at time
t = 2s, a 5% increase of the value of P ol2 (see (4)) is
modeled.

The continuous-time differential equations (3), (9),
and (11) are integrated in this paper using an Euler
method with a time-discretization step of 1ms.

5.2. Effects of the delays

Simulations reported in [4] show that for τ = 0s, the
control scheme (8) drives the frequency deviations of
all the areas to the same value. Additionally, when the
frequencies are stabilized, the frequency in area 2 is

1

2

3 4

5

Figure 2. DC grid topology. The circle numbered
i represents the point in the DC grid to which
converter i is connected. An edge between two
circles represents a DC line.
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Figure 3. Frequency of AC area 1 for τ = 0s,
τ = 0.35s, and τ = 0.37s when α = β = 4.44×106.
The two horizontal lines draw the band of the
convergence criterion, which is ±50mHz around
∆fe.

equal to a value which is closer to fnom,2 than when
the DC converters are operated with constant power
injection.

In contrast, with delays, simulations show that the
frequency deviations may fail to converge to each
other. In particular, for given values of α and β,
there generally exists a maximum acceptable delay
beyond which the AC areas’ frequencies exhibit oscil-
lations of increasingly large magnitude. For example,
when the controller gains are empirically chosen to be
4.44×106, f1 still converges despite oscillations when
τ = 0.35s and fails to converge when τ = 0.37s, as
shown in Fig. 3. For comparison, the evolution of f1
when τ = 0s is also shown in the same figure.

To determine whether the frequency deviations of
all the AC areas converge to each other, we define the
following criterion, similar to the error band used in

7



Table 1. Parameter values for the AC areas.

Parameter Area Unit1 2 3 4 5
fnom 50 50 50 50 50 Hz
P om 50 80 50 30 80 MW
Pmax
m 100 160 100 60 160 MW
J 2026 6485 6078 2432 2863 kg/s2

Dg 30.5 92.0 88.0 34.5 59.7 kW · s/rad
σ 0.05 0.10 0.15 0.10 0.075
Tsm 1.5 2.0 2.5 2 1.8 s
P ol 100 60 40 50 30 MW
Dl 0.01 0.01 0.01 0.01 0.01 s

10
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10
810

-2

10
-1

10
0

α, β

τ m
ax

 (
s)

Figure 4. Values of τmax for several values of α =
β.

the definition of settling time in control theory [11].
Let us denote by ∆fe the common value to which the
frequency deviations of all AC areas converge when
τ = 0s. We classify the system as convergent as long as
after t > 22s, i.e., 20 seconds after the step change in
the load, all the AC areas’ frequency deviations remain
within ± 50mHz around ∆fe, i.e.,

|∆fi(t)−∆fe| ≤ 50mHz, ∀i and ∀t > 20s . (38)

We define τmax as the largest value of the delay for
which (38) is satisfied and we search for a relation that
may exist between τmax and the controller gains. To
ease the analysis, we impose that α = β. We compute
τmax for different α = β ∈ [1 × 106, 1 × 108] by
a binary search in τ ∈ [0, 4]s. The points in Fig. 4
represent values of τmax corresponding to different
α = β. We can see that by decreasing the values of the
controller gains, the harmful oscillations introduced by
delays can be curbed. For example, if τ is around two
seconds for our system, then we have to decrease the

controller gains to a value around 1 × 106 to avoid
convergence problems. However, as pointed out in [4],
with lower values of the controller gains, more time
is needed for the frequency deviations to converge to
similar values.

This phenomenon is illustrated here in the context of
a power system with delays by the two sets of curves
of Fig. 5 that represent the evolution of the frequencies
in the five areas of the system for α = β = 1 × 106

and for α = β = 1 × 105. Note that we have also
represented in these figures the evolution of f2 when no
control scheme is implemented (i.e., when the power
injections into the DC network remain constant).

6. Conclusions

This paper focuses on a previously proposed control
scheme to share primary frequency control reserves
among non-synchronous systems connected by a multi-
terminal HVDC grid. We have studied here the ef-
fects of delays on the effectiveness of this control
scheme. The study is both analytical and empirical.
In particular, we have derived, under some restrictive
assumptions on the power system, a stability criterion
that may be used to compute the maximum acceptable
value for the delay so as to ensure that the control
scheme does not lead to stability problems. We have
also reported simulation results showing that for delays
above a threshold value, the control scheme may
cause undamped frequency oscillations. Additionally,
as shown by these simulations, these undamped fre-
quency oscillations are more likely to appear when
using high values of the controller gains.

As future work, we suggest to extend the theoretical
study of the control scheme, notably to the case of
non-identical AC areas. We also believe that it would
be interesting to test this control scheme on more
sophisticated power system benchmarks such as those
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Figure 5. Frequencies of the five AC areas when τ = 2s for α = β = 1 × 106 (on the left) and for
α = β = 1 × 105 (on the right). Both figures also include the evolution of f2 when the power injections into
the DC network remain constant.

that would not neglect for example voltage regulation
in the AC areas.
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