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Abstract

In statistical bioinformatics research, different optimization mechanisms potentially lead to “over-optimism” in

published papers. The present empirical study illustrates these mechanisms through a concrete example from

an active research field. The investigated sources of over-optimism include the optimization of the data sets, of

the settings, of the competing methods and, most importantly, of the method’s characteristics.

We consider a “promising” new classification algorithm that turns out to yield disappointing results in terms

of error rate, namely linear discriminant analysis incorporating prior knowledge on gene functional groups

through an appropriate shrinkage of the within-group covariance matrix. We quantitatively demonstrate that

this disappointing method can artificially seem superior to existing approaches if we “fish for significance”. We

conclude that, if the improvement of a quantitative criterion such as the error rate is the main contribution of a

paper, the superiority of new algorithms should be validated using “fresh” validation data sets.

The R codes and preprocessed versions of the data sets as well as additional files can be downloaded from

http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/020
−

professuren/boulesteix/overoptimism/,

such that the study is completely reproducible.

Keywords: Validation, fishing for significance, meta-methodology, KEGG, discriminant analysis, shrinkage

covariance estimator
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1 Introduction

In statistical bioinformatics research, the reported results on the performance of new algorithms

are known to be over-optimistic, as recently discussed in a letter to the editors of Bioinformatics

(Boulesteix, 2010). The current paper aims at illustrating the different mechanisms leading to over-

optimism through a concrete example from an active methodological research field.

The first and perhaps most obvious reason for over-optimism is that researchers sometimes ran-

domly search for a specific data set such that their new method works better than existing approaches.

While a method cannot reasonably be expected to yield “universally better” results in all data sets,

it would be wrong to report only favorable data sets without mentioning and/or discussing the other

results. This strategy induces an optimistic bias. This aspect of over-optimism is quantitatively in-

vestigated in the study by Yousefi et al. (2010) and termed as “optimization of the data set” in this

paper.

The second source of over-optimism, which is related to the optimal choice of the data set men-

tioned above, is the optimal choice of a particular setting in which the superiority of the new algorithm

is more pronounced. For example, researchers could report the results obtained after a particular fea-

ture filtering after they notice that this setting favors the new algorithm compared to existing bench-

mark approaches. This mechanism is termed as “optimization of the settings” in this paper.

The third source of over-optimism is related to the choice of the existing benchmark methods ap-

plied for comparison purposes. Researchers may consciously or subconsciously choose suboptimal

existing methods and exclude the best competing methods from the comparison for any reason, e.g.

because running the software demands very particular knowledge, because previous authors excluded

these methods as well, because the methods induce high computational expense or because they be-

long to a completely different family of approaches and thus do not fit in the considered framework.

Then the new algorithm artificially seems better than competing approaches and over-optimistic re-

sults on the superiority of the new algorithm are reported – because the best competing approaches

are disregarded. This mechanism is termed as “optimization of the competing methods” in this paper.

Finally, researchers often tend to optimize their new algorithms to the data sets they consider dur-

ing the development phase (Boulesteix, 2010). This mechanism essentially affects all research fields

related to data analysis such as statistics, machine learning, or bioinformatics. Indeed, the trial-and-

error process constitutes an important component of data analysis research. As most inventive ideas

have to be improved sequentially before reaching an acceptable maturity, the development of a new

method is per se an unpredictable search process. The problem is that, as stated by the Bioinformat-

ics editorial team (Rocke et al., 2009), this search process leads to an artificial optimization of the

method’s characteristics to the considered data sets. Hence, the superiority of the novel method over

an existing method (as measured, e.g. through the difference between the cross-validation error rates)

is sometimes considerably overestimated. In a concrete medical prediction study, fitting a prediction

model and estimating its error rate using the same training data set yields a downwardly biased er-
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ror estimate commonly termed as apparent error. In the same spirit, computing cross-validation error

rates with different classifiers and systematically selecting the classifier variant with the smallest error

rate yields a substantial optimization bias (Boulesteix and Strobl, 2009). Similarly, developing a new

algorithm (i.e. selecting one of many variants) and evaluating it by comparison to existing methods

using the same data set may lead to optimistically biased results in the sense that the new algorithm’s

characteristics overfit the used data set. This source of over-optimism is termed as “optimization of

the method’s characteristics” in this paper.

The four mechanisms discussed above may lead to over-optimistic conclusions regarding the

superiority of the new method compared to existing methods. The importance of validation with

independent data has recently gained much attention in biomedical literature. For instance, we refer

to the empirical study by Daumer et al. (2008) which points out the usefulness of a pre-publication

validation strategy based on data-splitting. To our knowledge, no such study was performed in the

context of methodological bioinformatics research and this issue has long been underconsidered in

the literature.

The present paper aims at filling this gap. It reviews and illustrates the problem of validation and

false research findings through a concrete example within a hot research field: the incorporation of

prior biological knowledge on gene functional groups into high-dimensional microarray-based clas-

sification. The “promising idea” we originally pursued was to modify the well-established shrinkage

covariance estimator by Schäfer and Strimmer (2005) by incorporating prior knowledge on gene

functional groups with the aim to improve the performance of linear discriminant analysis. This new

approach can be seen as a combination of a simple and well-established statistical method, namely

the shrinkage estimator of the covariance, with a popular concept (the incorporation of prior biolog-

ical knowledge into classification) that has attracted a lot of attention in the last few years (Tai and

Pan, 2007a,b; Rapaport et al., 2007; Li and Li, 2008; Guillemot et al., 2008; Binder and Schumacher,

2009; Jacob et al., 2009; Yousef et al., 2009; Slawski et al., 2010; Hall and Xue, 2010). For these

reasons, we considered this new approach as promising. However, it turned out that this interesting

method does not yield any improvement in terms of prediction error rate.

Based on this concrete example, we show that over-optimistic results can be obtained through

the four mechanisms discussed above. We demonstrate quantitatively that optimization of the data

set, optimization of the settings, optimization of the competing methods and, most importantly, op-

timization of the method’s characteristics can lead to substantially biased results and over-optimistic

conclusions on the superiority of the new method. Note that this study is deliberately of empirical

nature. We neither model the different sources of over-optimism theoretically nor do we derive ana-

lytical expressions of the resulting bias for simplified situations, because we feel it would not reflect

the complexity of the addressed mechanisms. Instead, we stick to concrete observations to illustrate

what consciously or subconsciously happens in virtually all methodological projects – possibly in-

cluding our own projects. We feel that a quantitative demonstration of the optimistic bias affecting

methodological research may perhaps increase awareness on such problems and give researchers food
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for thoughts.

The remainder of this paper is organized as follows. The promising idea is briefly sketched in Sec-

tion 2.1 to make our considerations on validation more understandable. The design of the analysis is

described in Section 2.2, while Section 3 presents the results of the new and existing methods on four

real-life data sets and the different interpretations depending on whether one fishes for significance or

not. Further potential sources of biases and possible explanations for the disappointing results of the

promising idea are discussed in Section 4.

2 Methods

2.1 A “promising idea”

This section briefly sketches the promising idea we originally pursued to make our considerations

and results on over-optimism more understandable. Note, however, that this promising idea is not

the scientific contribution of our paper, but rather a concrete example serving as an illustration for

the four investigated optimization mechanisms. Readers who are not interested in the methodological

details of the promising idea but rather in the quantitative evaluation of the optimization mechanisms

can skip this section.

2.1.1 Discriminant analysis and its regularized variants

Let us consider a high-dimensional data set with continuous predictors such as microarray gene ex-

pression data. The latter are often used to predict a categorical response variable of interest, e.g. the

disease status or the long-term disease outcome.

Discriminant analysis (DA) is a widely used classification method. DA is based on the assumption

that the random vector x of predictors follows a multivariate normal distribution x|(Y = r) ∼

N (µr,Σr) within each class r (for r = 1, . . . , c). A new observation xnew is then assigned to the

class with maximal posterior probability. This decision rule can be formulated in terms of a simple

decision function which is linear in xnew if the covariance matrices Σ1, . . . ,Σc are assumed to be

equal, yielding the so-called Linear Discriminant Analysis (LDA). Most importantly, the decision

function involves the inverse Σ
−1 of the covariance matrix Σ. In standard n > p settings, Σ−1 is

simply estimated through the inverse S̃
−1 of the pooled estimator S̃ of the within-covariance matrix,

which is itself defined as a weighted sum of the unbiased estimators of the within-class covariance

matrices. More technical details on classical LDA are given in the Additional File 1 available from

the companion website.

In the high-dimensional setting considered here the pooled covariance estimator S̃ mentioned

above is singular, thus not invertible. The concept of Regularized Linear Discriminant Analysis

(RLDA) aims at solving the singularity problem by modifying S̃ such that the resulting estimator

becomes invertible. See for instance the seminal paper on Regularized (Fisher’s) Discriminant Anal-
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ysis by Friedman (1989) and the work by Guo et al. (2007) on Shrunken Centroids Regularized

Discriminant Analysis (SCRDA) which are both based on the widely employed shrinkage principle

(Stein, 1955; Efron and Morris, 1977).

2.1.2 Regularized LDA with KEGG

An increasingly popular approach is to regularize the within-class covariance by incorporating ex-

ternal biological knowledge from databases like the Kyoto Encyclopedia of Genes and Genomes

(KEGG) (Kanehisa and Goto, 2000). The underlying motivation of this approach is to improve both

the prediction accuracy and the results’ interpretability.

KEGG is a freely available database of biological systems consisting of multiple sub-databases.

KEGG PATHWAY as one of these sub-databases contains a collection of pathway maps representing

recent knowledge on molecular interaction and reaction networks for metabolism, various cellular

processes and human diseases (Kanehisa and Goto, 2000). More precisely, pathways are represented

as graphs in which the edges stand for the chemical reactions or relations and the vertices stand for

the genes involved.

In the context of microarray-based classification, Tai and Pan (2007a) assume that a KEGG path-

way forms a gene functional group. They postulate that genes from the same functional group tend

to be more correlated than genes from different functional groups, and that information from KEGG

can thus be used to improve the modelling of between-genes correlation in the context of classifica-

tion. Starting from these attractive ideas, we propose an alternative simple approach to incorporate

prior knowledge from KEGG into the estimation of the correlation, with applications to LDA. The

promising idea can be seen as a further variant of RLDA incorporating biological knowledge on gene

functional groups extracted from KEGG via a modified shrinkage estimator of the covariance matrix,

as outlined in Sections 2.1.3 and 2.1.4.

2.1.3 The shrinkage estimator Σ̂SHIP incorporating prior knowledge

To address the methodological challenges arising from the n ≪ p data situation (the pooled estimate

S̃ of the covariance matrix is not invertible), we now propose a covariance estimation procedure we

refer to as SHIP standing for SHrinking and Incorporating Prior knowledge. The resulting covariance

estimator Σ̂SHIP is based on the shrinkage estimator introduced by Ledoit and Wolf (2003, 2004) and

applied by Schäfer and Strimmer (2005) in the context of high-dimensional genomic data. Addition-

ally, the new estimator incorporates prior biological knowledge on gene functional groups extracted

from the KEGG database.

In a few words, the shrinkage estimator originally proposed by Ledoit and Wolf is the asymp-

totically optimal convex linear combination Σ̂
∗ = λT + (1 − λ)S, where λ ∈ [0, 1] denotes the

analytically determined optimal shrinkage intensity, T stands for a structured covariance target, and

S is the unstructured standard unbiased empirical covariance matrix. The resulting “shrinkage estima-
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tor” of the covariance matrix Σ is then invertible (provided T is chosen adequately) and stabilized.

The optimal shrinkage intensity λ is determined with respect to a quadratic loss function which is

common and intuitive in statistical decision theory, resulting in a simple analytical formula (Schäfer

and Strimmer, 2005). See Additional File 1 for more details on the computation of λ.

The covariance target T plays an essential role in the computation of the shrinkage estimator by

Ledoit and Wolf. Its choice, however, turns out to be very complex. On the one hand, T is required

to be positive definite and to involve only a small number of free parameters. On the other hand, it

should reflect important characteristics of the covariance structure between the variables (genes). An

overview of commonly used covariance targets A to F is given in Schäfer and Strimmer (2005). In

this paper, we consider target D and target F with constant correlation as reference methods (see Table

1, left and middle).

In order to incorporate information from KEGG PATHWAY, we propose a modified version

of target F where pairs of connected genes (i.e. genes from the same gene functional group) have

non-zero common correlation r̄. This correlation is simply given as the mean correlation of all pairs

of connected genes. In case a gene does not occur in any gene functional group, we assume this

gene forming its own group with group size one as in Tai and Pan (2007a). The resulting target

G is displayed in Table 1 and yields the novel estimator Σ̂SHIP = λT + (1 − λ)S, where T is

defined according to target G and the optimal shrinkage intensity λ can be computed analytically

(see Additional File 1). The shrinkage covariance estimator Σ̂SHIP is implemented in the R package

‘SHIP’ which is publicly available from the companion website.

Target D Target F Target G

tij =

{

sii if i = j

0 if i 6= j
tij =

{

sii if i = j

r̄
√
siisjj if i 6= j

tij =











sii if i = j

r̄
√
siisjj if i 6= j, i ∼ j

0 otherwise

Table 1: Overview of targets D (diagonal, unequal variance), F (constant correlation) and G (where r̄

is the average of sample correlations). The notation i ∼ j means that genes i and j are connected, i.e.

genes i and j are in the same gene functional group. The term sij denotes the entry of the unbiased

covariance matrix in row i, column j.

2.1.4 Linear discriminant analysis using Σ̂SHIP

The resulting estimator Σ̂SHIP of the covariance matrix can then simply be used in the context of

LDA. In a nutshell, we compute the shrinkage estimators Σ̂
(r)
SHIP separately for each class r = 1, ..., c

and subsequently pool these within-class shrinkage estimators according to the standard procedure

known from LDA. See Additional File 1 for more details. Note that the resulting pooled estimator

is not necessarily positive definite, because the target is not always positive definite. However, it

is typically much better conditioned than S̃. To cope with this problem, we simply compute the

well-known Moore-Penrose pseudoinverse (Penrose, 1955).

6



Our initial conjecture was that this variant of RLDA borrowing prior knowledge from KEGG may

lead to an improvement of prediction accuracy. This conjecture is intentionally formulated rather

imprecisely. Of course, one may ask for a more concrete explanation of the term “improvement”.

This is indeed an important question we address in Section 3.

2.2 Design of the study

Since our quantitative study on the four optimization mechanisms is actually the real contribution of

our paper, the design of the study is presented as a part of the Methods section, following the four

optimization mechanisms outlined in the introduction.

2.2.1 Data sets

In this study, we successively consider four publicly available microarray data sets to illustrate the

potential optimization of the data set and demonstrate the importance of validation on different data

sets. Golub’s leukemia data set (n = 72, p = 7129) is part of the R package ‘golubEsets’ (Golub,

2010), while the CLL data set (n = 22, p = 12625) is available from the package ‘CLL’ (Whalen,

2010). The prostate data set by Singh et al. (2002) (n = 102, p = 12625) and the breast cancer data

set by Wang et al. (2005) (n = 286, p = 22283) are available from GEO. We normalized them using

the GCRMA method. The resulting data matrices are available from the companion website. All data

sets include a binary outcome variable which has to be predicted based on gene expression data. A

brief overview of the data sets is given in Additional File 1.

2.2.2 Settings

Prediction accuracy is estimated using the well-established 10 × five-fold cross-validation evaluation

scheme. Five-fold cross-validation is repeated 10 times in order to achieve more stable results (Braga-

Neto and Dougherty, 2004; Boulesteix et al., 2008). We focus on the average misclassification rate

as a measure of prediction accuracy, i.e. the average test error obtained over all 10× 5 = 50 test sets.

In order to limit the computational effort and to reduce the influence of noise we do not employ

all available genes of a data set, but perform variable selection (for each learning set successively, as

commonly recommended). We use three variable selection criteria: the standard t-test, the Limma

procedure by Smyth (2004) and the standard rank-based Wilcoxon test, each with four different num-

bers of selected genes (p∗ = 100, 200, 500, 1000). Hence, we obtain 3 × 4 = 12 combinations of

selection procedures and numbers of selected genes.

2.2.3 Competing methods

For comparison purposes, we furthermore apply the Diagonal Linear Discriminant Analysis (DLDA),

the Nearest Shrunken Centroids method (NSC) by Tibshirani et al. (2002) that is also called Prediction

Analysis with Microarrays (PAM), and Support Vector Machines (SVM) as competing approaches.
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We perform variable selection for DLDA with p∗ = 100, 200, 500, 1000 and three selection methods

successively, Following common practice, we skip the variable selection for NSC and SVM where

the influence of irrelevant genes is reduced automatically. Tuning parameters for NSC (shrinkage

parameter) and SVM (cost) are optimized via internal three-fold cross-validation.

2.2.4 Method’s characteristics

When developing a new algorithm, researchers often adapt their method sequentially depending on

their experiences with example data sets and preliminary results. Many variants that are tried out at

this stage finally turn out to yield bad results or fail for any other reason. In contrast to the aspects

of the analysis design discussed above, this aspect often remains unmentioned when writing a paper,

except perhaps a few remarks in the discussion. However, the variants that are tried out during the

development of the new algorithms are in a broad sense part of the design of the analysis. Indeed, they

are often assessed using the same procedures as the final new algorithm that is eventually published.

When assessing the promising idea described in Section 2.1, we also thought of possible variants

of the proposed RLDA incorporating prior knowledge. In contrast to standard practice, we publicly

mention all these variants in the present paper and demonstrate what happens when one systematically

tries to optimize the new algorithm with regard to its characteristics.

Henceforth, the promising idea outlined in Section 2.1 is referred to as rlda.TG unless otherwise

emphasized. More precisely, the term rlda.TG specifies the regularized linear discriminant analysis

with the shrinkage estimators of the within-class covariance matrices being based on the knowledge-

based covariance target G as introduced in Section 2.1.3. During the development phase, we succes-

sively considered the ten following variants of rlda.TG termed as rlda.TG(1), . . . , rlda.TG(10). These

ten variants can be divided into two groups. The first group comprises rlda.TG(1) to rlda.TG(7) which

differ in the assignment of ambiguous genes (genes that are in no functional group or genes that are

in at least two different functional groups). While rlda.TG(1) excludes genes that are not in any gene

functional group (about 50 % in each data set) from the analysis, rlda.TG(2) eliminates genes occur-

ing in multiple gene functional groups. Both rlda.TG(3) and rlda.TG(4) proceed similarly to Tai and

Pan (2007a): if a gene occurs in multiple gene functional groups, the gene is kept in the gene func-

tional group with the smallest (largest) number of genes and ignored in the other ones. In case the

smallest (largest) gene functional group is not unique, one of these is chosen by chance. The meth-

ods rlda.TG(5) to rlda.TG(7) are obtained by combining rlda.TG(1) with rlda.TG(2), rlda.TG(3) and

rlda.TG(4). The second group comprises rlda.TG(8), rlda.TG(9) and rlda.TG(10) which are based on a

re-definition of the covariance target G. Variant rlda.TG(8) involves two parameters for the correlation

(a positive and a negative one) instead of the single parameter r̄, in order to account for negatively

correlated genes within the same pathway. The variant rlda.TG(9) completely ignores negative cor-

relations and computes the mean correlation using the positive ones. Finally, rlda.TG(10) tests the

correlations (with a level of 0.05) and sets the non-significant correlations to zero before the mean

correlation is computed.
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3 Results

3.1 General approach

This section presents different interpretations of the results of the new methods rlda.TG,

rlda.TG(1), . . . ,rlda.TG(10) and existing methods on four real-life data sets. While Section 3.2

presents the performance of the new algorithm(s) from an over-optimistic point of view (i.e. after

fishing for significance), Section 3.3 follows a less biased approach based on validation with indepen-

dent data sets.

The four optimization mechanisms are introduced sequentially and independently of each other

for clarity’s sake in Section 1. However, they are in fact tightly embedded in practice, thus making a

perfectly realistic study very difficult. In Section 3.2, we consider a simplified optimization process

mimicking one of many possible optimization scenarii for illustration purposes. We are aware of the

many other potential schemes, but an exhaustive study would go beyond this paper’s scope. We feel

that the chosen example reflects the influence of the four mechanisms reasonably well. In addition to

the results provided in this section, a more extensive report of the results is given in Additional File 2

available from the companion website.

In this study, all four data sets are first analysed independently of each other in Section 3.2 to

mimick what would happen if researchers did not try to validate their results on different data sets. It

is then shown in Section 3.3 that a proper validation strategy, in which researchers do not use the same

data sets to develop and to evaluate their new algorithm, leads to much less favorable results. The

whole analysis is completely reproducible using the R codes available from the companion website.

3.2 An (over-)optimistic view

3.2.1 Optimization of the settings

We first consider the new promising method rlda.TG while ignoring its variants

rlda.TG(1),. . . ,rlda.TG(10). The four data sets are analysed completely independently of each

other. For a given data set, someone “fishing for significance” may look for the variable selection

scheme and number p∗ of selected variables yielding the lowest error rate. In this spirit, Table 2

gives the classification error rates obtained with the 3× 4 combinations of variable selection scheme

and number p∗ of selected variables in each of the four investigated data sets. The bold numbers

indicate the minimal error rate for each data set. The standard errors of the error rates over the

cross-validation iterations range from 0.005 to 0.024 for the Golub data, from 0.022 to 0.031 for

the CLL data, from 0.009 to 0.012 for the Wang data, and from 0.008 to 0.021 for the Singh data.

Obviously, the classification error rates strongly depend on the variable selection settings. Moreover,

there is no universally better setting performing best for all data sets, although settings with small p∗

tend to yield smaller error rates in general.
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Selection procedure p∗ Golub CLL Wang Singh

t-test 100 0.029 0.234 0.382 0.081

200 0.029 0.269 0.375 0.133

500 0.032 0.220 0.383 0.166

1000 0.049 0.222 0.380 0.211

Limma 100 0.031 0.237 0.383 0.081

200 0.028 0.274 0.375 0.125

500 0.039 0.233 0.384 0.182

1000 0.060 0.225 0.376 0.224

Wilcoxon test 100 0.090 0.192 0.384 0.135

200 0.170 0.159 0.379 0.178

500 0.168 0.185 0.409 0.158

1000 0.124 0.221 0.402 0.197

Table 2: Overview of the CV errors obtained for rlda.TG where p∗ denotes the number of selected

genes. The bold values indicate the minimum values.

A researcher who “fishes for significance” would select the setting yielding the minimal error

rate for the data set (s)he considers, thus inducing an optimistic bias through “optimization of the

settings”.

3.2.2 Optimization of the method’s characteristics

Moreover, (s)he would certainly try to further improve the new algorithm’s performance by consid-

ering the additional variants rlda.TG(1), . . . , rlda.TG(10). Figure 1 displays the CV error rates of

rlda.TG and its variants in the selected setting(s) for each data set. Especially for the CLL and the

Wang data set, it can be clearly seen that some of the variants decrease the error rate substantially

compared to rlda.TG. All in all, we achieve the error rates 0.025 for the Golub data (with rlda.TG(5)),

0.129 for the CLL data (with rlda.TG(5)), 0.342 for the Wang data (with rlda.TG(6)), and 0.078 for

the Singh data (with rlda.TG(8)). This represents an improvement compared to the bold optimal

error rates from Table 2, illustrating the mechanism denoted as “optimization of the method’s

characteristics”.

3.2.3 Optimization of the competing approaches

Another mechanism of the optimization process is the choice of the competing approaches that are

compared to the new algorithm. For each of the four data sets, Table 3 shows the difference between

the error rate of the optimal method in the optimal setting and the error rate of rlda.TD (shrink-

age covariance with the diagonal target D), rlda.TF (shrinkage covariance with target F), and DLDA

(classical diagonal linear discriminant analysis). These competing approaches are applied after vari-

able selection following the optimal setting identified from Table 2. Further, results are shown for

two good standard methods without preliminary variable selection: the Nearest Shrunken Centroids

method (NSC) and the Support Vector Machines (SVM). Obviously, these competing approaches
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Figure 1: Overview of the CV error rates of the different variants of rlda.TG, obtained for all data

sets within the corresponding optimal settings sopt. The dashed line indicates the value obtained for

rlda.TG within the data-specific sopt. Note that for both the Wang and the Singh data the optimal

setting is not unique. The considered settings are: sopt = (200, Limma) for the Golub data, sopt = (200,

Wilcoxon test) for the CLL data, sopt
1 = (200, t-test) (left bar) and sopt

2 = (200, Limma) (right bar) for

the Wang data, and sopt
1 = (100, t-test) (left bar) and sopt

2 = (100, Limma) (right bar) for the Singh

data.

perform very differently. Hence, the new algorithm’s performance appears more or less impressive

depending on the competing methods shown in the comparison study.

A possible (critical) strategy could be to select the competing approaches depending on the

tested “research hypothesis”. If the hypothesis is that the new algorithm generally improves the

performance of state-of-the-art approaches, we would consider as many approaches as possible.

If the hypothesis is that it performs better than other LDA approaches, we would consider all

LDA-based competitors. If the hypothesis is that the incorporation of correlations is useful, we

would consider rlda.TD. If the hypothesis is that the incorporation of correlations becomes better

through KEGG-pathways, we would consider rlda.TF. This strategy may seem good at first view, but

yields some problems. First, the tested hypothesis should not be chosen a posteriori by the researcher

based on the results. Indeed, it can be seen from Table 3 that this also yields a kind of optimization.

Second, it may also lead to spurious results. For example, one may conclude from the negative

differences D(Mopt,rlda.TF) that KEGG is useful in this context. Another more realistic explanation

is that rlda.TG is better than rlda.TF because the estimated correlation matrix is sparser – and not

because of the KEGG pathways.

3.2.4 Optimization of the data set

Some researchers may also “optimize the data set” and choose to show only the results that are more

favorable to their method. For an extensive study on this problem including theoretical considerations,

see Yousefi et al. (2010). It can be clearly seen from Table 3 that the results on the CLL data are much
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Mopt D(Mopt,rlda.TD) D(Mopt,rlda.TF) D(Mopt,DLDA) D(Mopt,NSC) D(Mopt,SVM)

Golub rlda.TG(5) - 0.003 - 0.003 - 0.010 0.004 - 0.029

CLL rlda.TG(5) - 0.017 - 0.083 - 0.055 - 0.204 - 0.269

Wang rlda.TG(6) - 0.026 - 0.026 - 0.033 - 0.034 0.001

Singh rlda.TG(8) - 0.008 - 0.003 - 0.048 - 0.052 - 0.022

Table 3: Overview of the differences D between the error rates of the data-specific optimal variant

Mopt of rlda.TG and the methods rlda.TD, rlda.TF, DLDA, NSC and SVM within the data-specific

optimal setting sopt.

more favorable to our new method than the other three data sets. This is probably due to the very small

size (n = 22) implying a high variability and thus stronger optimization effects. The optimization of

the data set and the optimization of the settings may thus be tightly connected.

3.3 On the usefulness of validation with fresh data

Until now, the four data sets were analysed independently of each other. For each data set, we obtained

an optimal variant combined with an optimal setting, that seemingly performed better than existing

approaches, see Table 3. As previously discussed, these figures are the result of different optimization

processes. One of them – the optimization of the method’s characteristics – is an inherent component

of biostatistics/bioinformatics research and cannot be avoided. Up to a point, the optimization of the

settings can also be considered as inherent to data analysis research: for example, nobody expects

researchers to focus on settings in which all methods turn out to perform equally bad. So how should

we evaluate new methods and report their performance?

In this section, we show the importance of a proper validation using data sets that were not used for

the algorithm’s development. Table 4 shows the cross-validation error rates of the four combinations

of optimal settings and optimal variant when applied on the four data sets. Whereas the error rates

in the diagonal are the optimal error rates already mentioned in the previous section, the error rates

outside the diagonal can be seen as “validation error rates” computed on independent fresh data sets.

They are obviously much higher than the optimal error rates, illustrating the consequences of the

optimization processes.

In the same vein, Figure 2 displays the number of variable selection settings (out of 3× 4 = 12)

in which each of the variants rlda.TG,rlda.TG(1), . . . ,rlda.TG(10) yields the lowest error rate, for each

data set separately. It can be seen that the “optimal variant” strongly depends on the data set (because

the four rows are very different) and on the setting (because we have many intermediate values like

2,3,4,5 < 12). There is no clear winner, but readers may have the impression that there is a clear

winner if they do not see all the results (i.e. not all data sets or/and not all settings).

In conclusion, validation using fresh independent data that were not used in the development

phase would have avoided over-optimistic conclusions on the new algorithm’s superiority. This kind

of validation automatically corrects the bias induced by the optimization of the settings and the

optimization of the method’s characteristics.
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Mopt sopt CVEMopt Golub CVEMopt CLL CVEMopt Wang CVEMopt Singh

Golub rlda.TG(5) sopt = (200, Limma) 0.025 0.180 0.345 0.152

CLL rlda.TG(5) sopt = (200, Wilcoxon test) 0.079 0.129 0.363 0.141

Wang rlda.TG(6) sopt = (200, t-test) 0.029 0.221 0.342 0.115

Singh rlda.TG(8) sopt = (100, Limma) 0.033 0.274 0.384 0.078

Table 4: Performance of the optimal variants Mopt of rlda.TG within the optimal settings sopt selected

in each of the four data sets. The figures outside the diagonal can be understood as “validation error

rates”.

Figure 2: Frequency distribution of the variants of rlda.TG yielding the lowest error rates. The fre-

quencies f are summed over three variable selection methods (t-test, Limma, Wilcoxon test) and four

numbers of genes (100, 200, 500, 1000). Note that the “best” variant is not necessarily unique, i.e.

the sum of the row-specific frequencies can be > 12.

4 Discussion

As illustrated in Section 3 based on the example of regularized LDA, the four investigated sources

of over-optimism may yield substantially over-optimistic results. Beyond the four mechanisms out-

lined in this paper, various other sources of over-optimism may also affect the reported results. For

instance, one might optimize the evaluation criterion: the sensitivity and specificity may yield other

results than the error rate, especially in case of strongly unequal class sizes. Both prediction measures

are reported in Additional File 2. The applied normalization technique may also affect the results and

yield optimization potential. Another indirect source of over-optimism is related to technical prob-

lems: if an implementation problem occurs with the competing approaches and slightly worsens their

results, researchers often tend to spontaneously accept these inferior results. Conversely, they would

probably obstinately look for the error if such problems occur with their new algorithm.

In our study, the optimistic results obtained with the selected variants of RLDA in the selected

settings turn out to break down when validated based on “fresh” validation data sets. This indicates

that the seemingly favorable results were rather the consequence of intense optimization than the
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illustration of a real superiority of the new method. In a nutshell, let us point out possible reasons

explaining the disappointing performance of the initially promising idea. A general finding of Bickel

and Levina (2004) is that the DLDA highly outperforms the standard LDA in “huge-dimensional”

data situations. Assuming independence between the predictor variables hence does not impair the

classification performance, but rather yields improvement when n ≪ p. This phenomenon has often

been reported in the literature (Dudoit et al., 2002; Domingos and Pazzani, 1997), and it is shown

under broad conditions by Bickel and Levina (2004). Our results confirm this finding in the sense that

incorporating between-genes correlations tends to yield higher error rates with increasing p∗.

Another aspect to be considered is whether the assumptions underlying the new approach do ap-

ply, i.e. whether these assumptions are consistent (at least not evidently inconsistent) with intrinsic

properties of the investigated data. Our own method postulates that genes from the same pathway tend

to be more correlated than genes from different pathways. From the current point of view, however,

the assumption that the between-genes correlation structure is reflected in KEGG pathways and vice

versa is a widespread but dubious assumption on the part of (bio)statisticians. More precisely, this

assumption is dubious for the correlation, which is a measure of linear association. Hence, consider-

ing non-linear association measures might help to uncover the interrelation between KEGG pathways

and the between-genes association structure, and might thus lead to a more adequate modelling of the

latter.

Taken together, these aspects might explain why RLDA based on Σ̂SHIP does not improve the clas-

sification accuracy in terms of prediction error rate. Note, however, that this negative finding could

merely be made through an appropriate validation of the new algorithm. Without proper validation,

we could have obtained a “false positive result”. That said, the proposed shrinkage estimator based on

target G could lead to interesting applications in other contexts like, e.g. canonical correlation analy-

sis. The “disappointing results” reported in this article refer solely to the combination between target

G, KEGG, and linear discriminant analysis – not to the individual components of the combination.

5 Conclusion

In this paper, we demonstrate quantitatively that a combination of various interrelated optimization

mechanisms may yield substantially biased results and over-optimistic conclusions on the superiority

of a new method. Of course, the content of a methodological article should not be reduced to the

effective improvement of accuracy on real data sets. Other aspects of new methods need to be consid-

ered, such as their conceptual simplicity, computational efficiency, interpretability, flexibility, ability

to generalize or fit in a global framework, the absence of strong assumptions or, most importantly, the

originality of the addressed research question. Still we claim that, when improvement of accuracy is

presented as the major contribution, it should be validated using independent data sets that were not

used during the development of the new method.
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