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Eddy Current Technique

Marie-Ève Davoust, Laurent Le Brusquet, and Gilles Fleury∗

Abstract

An eddy current technique is used to inspect the interface between air and a conductive material

such as aluminum, which can be covered with a non-conductive material. Hidden corrosion may

appear inside the conductive material. This corrosion leads to flaws whose shape varies greatly

depending of the flaw. The proposed methodology addresses this problem by considering the

potential shapes as realizations of a random process. The goal of the proposed approach is not to

find the exact shape of the corrosion flaw but to estimate some of its dimensional parameters. The

area and the dimension ratio of the shape have been chosen because they depict the importance of

the corrosion damage.

The estimation of the area and the dimension ratio is achieved in a Nondestructive Evaluation

context: An alternating magnetic field is created in the air above the inspected material and the

magnetic field near the air-aluminum interface is measured. It is a typical inverse measurement

problem. Due to the complexity of the shape and of the physical phenomena, no algebraic model

exists to solve this inverse problem. That is why a machine learning approach has been carried

out: A database of observed signals for reference flaws is created (by using FEM tool) and used

to calibrate a relationship giving the estimated area and the estimated dimension ratio from the

observed signal. As the number of flaws in the database cannot be very large, the proposed

approach overcomes the overfitting risk by performing a reduction of the data dimension.
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I. INTRODUCTION

Application fields of eddy currents are numerous, for example nuclear electricity pro-

duction (e.g. pipe testing), aircraft health monitoring (e.g. hidden corrosion), metallurgy

(e.g. material classification, layer measurement). Eddy current techniques are particularly

useful in Nondestructive Evaluation (NDE) to evaluate the dimensions of a flaw existing in

a conductive material. Flaws can be grooves in pipe, cracks in a bulk material, interface

flaws between two layers of aircraft fuselage [1], and so on.

In some NDE problems, the encountered flaw shapes can be represented by simple geo-

metrical forms (e.g. recess, crack, and groove). This paper addresses the hidden corrosion

problem for which a simple form is no longer suitable. That is why we have chosen to model

the corrosion flaws as realizations of a 2D-random process. This representation well matches

the random character and the erratic character of hidden corrosion.

This 2-D flaw is located at the surface of a bulk aluminum material which can be cov-

ered by a non-conductive material (e.g. coat of paint). It is thus non-visible. The eddy

current technique consists in applying an alternating magnetic field above the surface to

be inspected. This magnetic field creates eddy currents in aluminum, and so, the total

magnetic field depends on the unknown flaw. Direct magnetic field measurements using

giant magnetoresistive sensors (GMR) or Hall devices can be used [2, 3] and exploited to

characterize the flaw.

When one is faced with hidden corrosion, estimating global geometrical parameters of the

flaw seems easier than estimating its exact shape. It is nevertheless very useful to evaluate

the damage. The proposed approach focuses on the estimation of the surface area and the

dimension ratio of the flaw. This estimation is a classical inverse problem where the observed

signals are not directly the parameters of interest (surface area and dimension ratio). Three

difficulties arise:

1. The physical phenomena are too complex to be analytically described. This difficulty is

overcome by adopting a machine learning approach: The searched relationship between

observed signal and desired parameters is calibrated with a database of reference flaws.

2. The overfitting risk may lead to bad results. This well-known problem [4] occurs when

the number of objects in the database (here the number of reference flaws) is not very
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large compared to the length of the observed signal. A reduction of the dimension of

the observed signal is used in the proposed approach. It has already been successfully

used for another NDE problem [5, 6].

3. There are an infinite number of possible flaw shapes. This forces us to consider the

variability of these flaws from the design of the inverse problem up to the test of the

proposed estimation procedures.

The use of a random process to generate various flaw shapes is a key-point of the proposed

approach to overcome these difficulties:

• It allows the construction of a database which includes flaw with erratic shapes, and

in this way, flaws similar to the flaws which may be encountered in realistic situations.

• Realizations of the random process will be generated to define flaws used for testing.

The independence of these realizations with the realizations used to calibrate the

searched relationship will be a warrant for robustness.

The current study aims at showing the feasibility and the interest of such an approach.

That is why a Finite Element Method (FEM) is used to create the database and why the

study is restricted to 2D-flaws. The advantage of using FEM in association with the random

process is the automatic generation of magnetic field signals for reference flaws and thus the

possibility to test the method in numerous configurations.

Section II describes the creation of the database. Both the 2D-random process and FEM

are explained. The learning approach carried out on the database is detailed in section III.

It includes the reduction of the data dimension and the validation of the approach. Indeed,

the proposed estimation of the flaw parameters has to remain accurate when it is applied

for any flaw and with noisy signals. Thus, the robustness has been quantified.

At last, some conclusions are given concerning the feasibility of this study including

random contours for flaw modeling.

II. DATABASE CREATION

The aim is to characterize corrosion flaws hidden under an eventual layer of non-

conductive material such as paint (see figure 8 for a geometrical description).
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The principle of the presented eddy current technique is classic: An alternating magnetic

field is created far away from the interface where a flaw may exist and parallel to this

interface. Measurements of magnetic field are carried out in air near the interface in order

to characterize a flaw located at the interface [7].

This section includes the definition of the simulated geometric forms, the FEM procedure,

and the extraction of the observed magnetic field signals. The simulated geometric forms of

flaws are generated with MATLAB while the FEM simulations are achieved with ANSYS.

A. Parameters of interest for the flaw description

The database will be used to calibrate an inverse procedure whose aim will be to char-

acterize the flaw shape from magnetic field measurements. The reconstruction of the exact

shape is illusive in a context where the observed field depends more on the global shape

than the details of the shape. In fact, we focus on 2 global parameters to describe a flaw:

• the surface area a of the defect. This parameter represents the importance of the flaw.

• a form parameter indicating if the flaw is flat or not. We define the dimension ratio

parameter r as the ratio between the x-extension and the y-extension of the flaws (see

figure 7 for a description of the x and y axis). In order to obtain a parameter robust

against small variations of the shape, the x-extension and the y-extension are mean

values defined from standard deviation expression:

r =
σx

σy

with σα =

∫∫
flaw

(α− α0)
2dS∫∫

flaw
dS

, α = x or y (1)

where x0 and y0 are the position of the center of mass of the flaw.

The reasons of choosing a and r are:

• a and r are 2 meaningful parameters in a NDE context.

• It will be seen in section III that a ad r are good candidates for the inverse problem

procedure.

The database is populated by simulating contours for various areas and dimension ratio

values. Ten values logarithmically and equally spaced between 0.05 and 1 for the r parame-

ter, and between 0.1mm2 and 1mm2 for the a parameter have been chosen. The logarithmical
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sampling is justified by the criterion used in the future calibration step (section III B) which

favors small relative errors rather than absolute errors. Thus, the database includes 100 flaw

contours. Figure 1 shows the chosen a and r values.
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FIG. 1: Geometrical parameters (r and a) of the simulated flaw contours. The points with a red

circle represent the flaws that will be used for testing in section III C.

B. Geometric forms of the simulated flaws

The literature about hidden corrosion fraws attention to the complex and erratic character

of the corrosion phenomenon: Even for similar materials used in the same environment,

corrosion flaws are irregular and are not repeatable [8]. That is why we have considered the

geometrical descriptions of the flaws as realizations of a 2D-random process.
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The literature also states that corrosion surfaces can be well described by fractals or

multifractals [9][10]. The random process we choose is created in order to respect the fractal

character of the flaw contours, and thus strives to create realistic flaws. Indeed, a simple

process which permits the generation of a regular shape at an initial scale L0 is repeated at

scales hi =
L0

2i
, i = 0 . . . I to obtain random variations from large scales to small scales.

In fact, the random process we use generates a 2D-function f(M) (M(x, y) is a point of

the x−y plane) which is compared to a threshold fthres to obtain the flaw: M belongs to the

flaw if f(M) ≥ fthres. Suppose a contour Γ obtained from a 2D-function f(M), is already

available:

Γ = {M/f(M) = fthres}

Figure 2 shows an example of a smooth function f(M) and the associated contour Γ. For

y > 0, f(M) is forced to be 0: it corresponds to the space over the material surface where

the corrosion phenomenon does not exist.

Let us give details about the elementary process which adds details to a regular flaw

contour. Suppose Γ must to be completed by details at scale h. A new 2D-function is

obtained by adding local perturbations around points of the contour Γ in order to slightly

change the contour shape.:

f(M) ← f(M) +
∑

{Mk∈Γ}k=1...K

αkN

(‖M −Mk‖
h

)
(2)

where:

• N is a centered function.

• αk are coefficients randomly chosen with a zero mean.

• K is the number of added local perturbations.

Many functions N(‖M‖) and many probability density functions (for α and for the points

Mk) may be used since the aim of these functions is to create a local perturbation and not

really to model the flaw shape. Indeed, the resulted flaw shapes depend more on the global

approach (macroscopic aspect) than the parameter of the local perturbation (microscopic

aspect). This point may be linked with the choice of a wavelet for the signal decomposition:

Many choices exist. Nevertheless, some rules seem coherent:
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FIG. 2: Example of function f(M) (left) with the associated contour (right)

.

• N has to be smooth since the high frequency variations will be created by the scale

change. A commonly used type of RBF has been chosen: N(‖M‖) = exp (−‖M‖2).

• K depends on the influence radius of the RBF function, i.e. hi. It is chosen approxi-

mately equal to
li
hi

where li is the length of the contour at step i.

• No region of the contour is prefered over another and the K points Mk are randomly

chosen along the contour with an uniform density in the curvilinear abscissa space.

• As N > 0, the sign of the local variation around Mk (see equation (2)) is the sign of
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αk. Thus αk < 0 locally shrinks the flaw (and inversely αk < 0 expands it). There is

no reason to favor shrinkage or expansion and thus a symmetric probability function

is chosen for αk. A Gaussian density has been chosen.

Figure 3 is an illustration of a more refined contour obtained from the smooth contour

of figure 2. The process is repeated I times at scales hi =
L0

2i
, i = 1 . . . I. Figure 4 shows

both final and intermediary contours. Examples of flaw contours are shown in figures 5

and 6.
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FIG. 3: Function f(M) of the figure 2 completed with smaller details (left) and the new associated

contour (rigth).
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FIG. 4: Contours obtained after several applications of the elementary random process: level 0

stands for the initial smooth contour (figure 2 with details at scale h0) and level i stands for detailed

contour with details at scales h0 → hi.

Finally, a uniform sampling of the contour is performed in order to lead to a mesh adapted

for the FEM, i.e. a regular mesh with a number of nodes as small as possible.

C. Finite element model

Let us recall that a FEM tool is used because it is convenient for a feasibility study. The

ANSYS software is used to solve the PDE for the magnetic vector potential.

The simulation of the experimental process carried out to characterize the desired flaws

of section II B needs 4 regions to be defined. Figures 7 and 8 show these different regions.

Region B simulates aluminum, region D simulates the flaw whose contour points are im-

ported from MATLAB calculations. Regions A and C represent non-conductive materials.

The largest one (region A) represents air. The thinnest one (region C), above aluminum,
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FIG. 6: Simulated flaw contours for r = 0.19 and various area values.

simulates a layer of non-conductive material.

The physical properties of aluminum and aluminum oxide are considered to be homo-

geneous. The aluminum electrical conductivity is assumed to be 3.7 × 107 (Ωm)−1. The
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FIG. 8: Zoom on the flaw of the figure 7.

electrical conductivity of aluminum oxide is negligible in comparison to the electrical con-
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ductivity of aluminum. So its exact value is of no significance.

It is supposed in this feasibility study that the sensor is small enough not to perturb the

magnetic field. This is the reason why the FEM simulations do not include the sensor: The

magnetic field values are picked up at a constant distance from the interface.

The alternating magnetic field is created by an alternating current applied at nodes

located at the top of the air region in a direction perpendicular to the top edge of the air

region. The current density of the alternating current is assumed to be 4 × 106 A/m2. (It

may be noted that the results of these calculations is linear with this excitation).

A last parameter is the alternating magnetic field frequency. Since the electrical conduc-

tivity of aluminum oxide is much more than that of aluminum, magnetic flux lines penetrate

into the flaw region even if the excitation frequency is very high. For example, for 100 MHz,

magnetic flux lines are concentrated in the air and some flux lines go down inside the flaw.

In addition, the extension of the magnetic field variation is located near the flaw. Regarding

low frequencies, the variation of magnetic field magnitude due to the flaw becomes less. A

large range of frequencies can be used to detect the flaw. For a real experiment, some addi-

tional factors could reduce this range: the dimensions of the magnetic sensor, its resolution,

the magnitude of measured signals, and so on. In short, the choice of frequency results in a

trade-off between the sensitivity and the extension of the field variation due to the flaw.

For this feasibility study, the frequency has been assumed to be 10 kHz.

The whole dimension of the studied domain is: 22 mm × 10 mm. x-length and y-length

of the domain were decided upon by assuming that far from the flaw, the magnetic field

does not depend on the flaw. The chosen lengths are the smallest ones which satisfy this

assumption at the domain boundary, even for the largest flaws. These lengths are coherent

with the chosen frequency for the alternating magnetic field: At 10 kHz the skin depth in

aluminium is about 0.8 mm and the x-length of 22 mm is appropriate to the region where

variations of the x-component of the magnetic field exist.

The domain is automatically discretized with a triangular mesh by the ANSYS software.

The mesh has been refined enough to obtain magnetic field values independent from the

mesh. An example of mesh in the vicinity of a flaw is shown in figure 9.

Figure 10 shows the real part and the imaginary part of flux lines near the flaw. These

illustrations show that the eddy current technique used can reveal the presence of a flaw.

Without the flaw, these flux lines are parallel to the x-axis because the magnetic field created
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FIG. 9: Triangular mesh near flaw (flaw of the figure 7).

by the injected current is parallel to the x-axis.

D. Observed data

The FE calculations give the real part and the imaginary part of the two magnetic field

components. As the y-component Hy is zero when there is no flaw in aluminum, this physical

quantity is chosen to characterize the flaw. Magnetic field measurements are possible using

an Hall device. It may be noted that the measurement of Hx is also possible by means of

GMR.

Figures 11 and 12 show examples of real part and imaginary part (quantities calculated
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FIG. 10: Real part and imaginary part of the flux lines (flaw of the figure 7).

by the Ansys FEM software) of Hy for some flaws. The magnitude and phase of Hy, which

are more significant data regarding magnetic field measurements, are calculated from these

quantities.
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In addition, when using FEM, the location of the flaw is known. This knowledge no

longer exists with real flaws. The location of the flaw is estimated from the magnetic field

values alone. The x-center of mass for the magnitude of Hy for each flaw is used as an

estimator of location. A few examples of observed data (magnitude and phase) are shown

in figure 13 and figure 14.
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FIG. 11: Real part and imaginary part of Hy for 4 flaws with the same dimension ratio (r = .19).

E. Relevance of the surface area and dimension ratio

The relevance of the proposed sensor is related to its capacity to deliver observed signals

which are more affected by the variations of the dimension parameters (area, dimension
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FIG. 12: Real part and imaginary part of Hy for 3 flaws with the same area (a = .28mm2).

ratio) than by the erratic variations of the contour flaw.

A criterion representing the variation level between the contours, whatever its origin is

(parameter change or erratic character of the corrosion phenomenon) is required to quantify

this point. Let Γ1 and Γ2 denote two contours to be compared. A natural criterion is using

the ratio of the unshared area:

dΓ(Γ1, Γ2) = 1− S12√
S1S2

where S1 and S2 are the areas of the 2 flaws and S12 is the shared area. Figure 15 illustrates

this criterion.
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FIG. 13: Magnitude and phase of Hy (shifted with the barycenter of the magnitude of Hy for each

flaw) for 3 flaws with the same dimension ratio (r = .19).

For a fixed set of dimension parameters (a, r), the dispersion level between flaw contours

is evaluated by the following expected value:

σ = E
Γ of dimension (a,r)

{
dΓ(Γ, Γ(a, r))

}

where Γ(a, r) is defined as a mean contour over all the realizations of the random process

with area a and dimension ratio r . More precisely, if (x(s), y(s)) is the x− y description in

the curvilinear coordinates of a contour Γ, Γ(a, r) is obtained by calculating the means of

x(s) and y(s) over many realizations. Figure 16 shows the obtained Γ for a unity area and

an unity dimension ratio.
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FIG. 14: Magnitude and phase of Hy (shifted with x-center of mass for the magnitude of Hy for

each flaw) for 3 flaws with the same area (a = .28mm2).

As the random process for two sets of dimension parameters only differ from proportional

transformations, Γ(a, r) for any set of dimension parameters (a, r) is obtained from the

previous Γ(1, 1) with the same transformations. This also justified the independence of σ

with a and r.

The first rows of Table I gives the dispersion value σ. It represents the effect of erratic

variations of the contour shape. Similar dispersion values are reached by perturbing the

dimension of the flaw (second and third rows of Table I). ∆a = 29.2% and ∆r = 39.5% are

the increments used to build the database in section II B.
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FIG. 16: Contour Γ0(r, a): Mean contour for a given set of dimension parameters (r = 1, a = 1).

The consequences of the contour variations on the observed signals are quantified in the

second column of Table I. The used criterion is the same as that used for the dispersion
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TABLE I: Dispersion values, in the geometrical space (shape of the flaw) and in the signal space

(magnetic field variations) for erratic changes of the flaw contour (Γ vs. Γ(a, r)) and for dimensional

changes of the flaw (Γ(a, r) vs. Γ(a, r + ∆f) and Γ(a, r) vs. Γ(a + ∆a, r)). ∆a = 29.2% and

∆r = 39.5% are the increments used to build the database in section II B.

Geometry Observed magnetic field

dΓ dH

σ : Γ vs. Γ(a, r) 17.0% 2.1%

Γ(a, r) vs. Γ(a, r + ∆r) 20.5% 21.9%

Γ(a, r) vs. Γ(a + ∆a, r) 21.6% 8.4%

level in the geometrical space:

dH(H1, H2) = 1−

∫ xmax

xmin

|H1(x)−H2(x)|dx

√∫ xmax

xmin

|H1(x)|dx

∫ xmax

xmin

|H2(x)|dx

where H1 and H2 are the magnitudes of the magnetic field due to the two flaws (Hy).

Table I shows that the observations are more influenced by changes in area a and in

dimension ratio r than by the erratic shape of the contour. Using this point, we can feel

confidence that we will be able to recover a and r, even for perturbed contours.

III. INVERSE PROBLEM

The number of calibrated flaws (100) does not allow the direct use of the magnetic field

observations (Hy) in the inverse problem step: An extraction of features using the Principal

Component Analysis is conducted in order to reduce the data dimension. After this step, the

two unknown parameters r and a must be estimated from the sets of the components retained

for each flaw. We have used in this second step, a bilinear relationship to link components

to r and a. Previous studies [5, 6], concerning the robust estimation of groove dimensions

existing in ferromagnetic pipes using Remote Field Eddy Current technique, have shown that

the proposed method is accurate for estimating the two dimensions of grooves. Moreover

these studies compare two approaches of dimension reduction as parameter modeling of
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observed data and the PCA technique performed on the same observed data. This study

shows that using the PCA approach gives better results in terms of accuracy and robustness.

So, we have chosen to solve the inverse problem by using PCA approach to reduce the

data dimension, and the same bilinear relationship to estimate r and a.

A. Principal Components Analysis

The advantage of such a reduction dimension method is that no precise prior knowledge

is required. This well-known method [11] generates a new set of uncorrelated variables

sorted by decreasing variances. In this way, it is possible to reduce the dimension of the

observed data space while controlling the loss of information. In addition, since the new

variables are uncorrelated, no redundant information is taken into account. This property

will be of great interest in the regression step. Indeed, it allows a favorable trade-off between

accuracy and robustness because it respects the parsimony principle (the information has

to be represented by a small number of values in order to reduce the overfitting risk).

Otherwise, to keep all the information given by the database, a PCA is conducted on the

magnitude of Hy concatenated with the phase of Hy for each flaw. The PCA technique is

carried out after the magnitude data and the phase data are normalized. Figure 17 shows

the variability of the first 10 components.

The dimension reduction is performed by keeping Npc principal components. The choice

of Npc is a key-point of the approach since this parameter controls the trade-off between

precision and robustness. This choice is detailed in the section III C.

Figure 18 shows an example of observed data and the resulting PCA modeled data with

6 kept components (which explain 97.2% of variability of the observed data.)

B. Flaw parameter estimation

In order, to estimate the dimension ratio r and the area a of a flaw, a relationship between

the PCA components and the flaw parameters have to be chosen. The simplest choice is a

linear function of the PCA components but a previous study [12] proved that to improve
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FIG. 17: Variability of the initial observed data explained by the first principal components.

the overall accuracy of the method, the bilinear one given by (3) is suitable.

r = gr(θ) = cr
0 +

∑
i,j cr

ijθiθj +
∑

i c
r
i θi,

a = gs(θ) = ca
0 +

∑
i,j ca

ijθiθj +
∑

i c
a
i θi.

(3)

The vector θ is the vector of the retained PCA components. By using matrix expressions,

these equations may be written for all simulated defects as: r = Θcr and a = Θca, where

the matrix Θ contains PCA components for each flaw; each line of Θ is composed of the

terms of the bilinear form for one flaw, as defined in (3). The cij coefficients are contained

in vectors cr and ca, and vectors r and a contain the exact flaw parameters of the database.

The cij coefficients may be calculated by solving the system of equations (3) in the least

squares sense. As the error will be given in terms of relative errors, a relative criterion is

used. The calibration phase (or learning phase) of the model building consists in calculating

vectors cr
opt and ca

opt for a given number of flaws noted k. The vectors cr
opt and ca

opt are given
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FIG. 18: Normalized observed data (.) and PCA normalized modeled data (−), a = .28 mm2 and

r = .19.

by:

cr
opt = arg min

cr

k∑
i=1

(
θ>i cr − ri

ri

)2

,

ca
opt = arg min

ca

k∑
i=1

(
θ>i ca − ai

ai

)2

.
(4)

23



Then, the estimated values of r and a can be calculated according to:

r̂ = Θcr
opt,

â = Θca
opt.

The calibration error is defined as the minimum of the criteria in equation (4), i. e.√√√√
k∑

i=1

(
r̂i − ri

ri

)2

for the dimension ratio and

√√√√
k∑

i=1

(
âi − ai

ai

)2

for the surface area.

Equations (3) show that if n stands for the number of coefficients cij for r and a, n is

given by:

n = 1 + Npc + (Npc(Npc + 1))/2.

n ,which depends on Npc cannot be greater than the number of equations of the rectangular

systems (equation (3)) because the mean square criterion is no longer adapted (for 100 flaws,

max(Npc) = 12).

The overfitting phenomenon can appear when n is too large, so, to avoid the overfitting risk,

smallest possible Npc should be chosen.

C. Choice of the number of components

The robustness of the obtained estimators is evaluated as a function of Npc. The aim is

to find estimators that are robust with:

1. noisy observations,

2. flaws which do not exist in the training database.

Both kinds of robustness are evaluated by using a cross-validation technique performed on

noisy observations.

A leave-one-out cross-validation is performed: 99 calibrated flaws are used to estimate

cr
opt and ca

opt and the left one is used to generate noisy observations that are used for testing.

The flaws whose surface area is a = .28 mm2 or whose dimension ratio is r = .19 have

been tested. These ntest = 19 selected flaws are marked with a red circle in figure 1. For

each of these flaws, nnoise = 100 noisy observations have been built by considering them as

observations associated with several erratic flaw shapes with a constant surface area and a

constant dimension ratio.
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FEM calculations are then carried out for each realization. Figure 19 shows some realiza-

tions of the same flaw. Figure 20 shows the observations corresponding to these realizations.

For each tested flaw, the coefficients cr
opt and ca

opt in equations (4) are used to calculate esti-
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FIG. 19: Some realizations of contours for a = .28mm2 and r = .19 (flaw #45).
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FIG. 20: Noisy centered observations (magnitude of Hy)) for a = .28mm2 and r = .19 (flaw #45).

mates of r and a and so, the ntest×nnoise relative estimation errors. The cross-validation error
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eCV is defined as the mean error (in the least-squares sense) calculated over the ntest×nnoise

tested observations.

Figure 21 gives both calibration and cross-validation errors and shows the effect of over-

fitting. For both parameters r and a, the optimal number of components Npc is equal to

6 regarding the minimum of the mean cross-validation error. That is why this value was

chosen for the evaluation of the method.
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FIG. 21: Calibration errors (cal) and Cross-validation errors (CV) on r and a versus the number of

components. It could be noted that the calibration error ecal (dashed line) decreases with increasing

the number of Principal Components.
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D. Results

Figures 22 and 23 gives for each tested flaw the histograms of the cross-validation errors

for the dimension ratio and for the surface area. The largest errors are often reached for

flaws at the limit of the discretized (a, r) domain. It is particularly true for flaw #41 and

#95 (see the (a, r) domain in figure 1). This point may be linked with the fact that the

overfitting risk increases when data used in the testing step are far from the data used in

the calibration step.
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FIG. 22: Histograms of the cross-validation errors (%) on the dimension ratio for the tested flaws

marked with a red circle in figure 1. The y-axis for errors ≤ −25% has been compressed in order

to reach more readable histograms. The blue points are the mean errors.

Table II summarizes the results for the 19 tested flaws. The table shows that even if the

maximum errors are much larger than mean errors, errors are less than 14% for r and than

3% for a in 95% (eCV95%
) of all cases. It could also be noted that the cross-validation errors,

even for tests on noisy observations obtained from perturbed flaw shapes, are barely greater

than the calibration errors. This robustness is reached thanks to the use of appropriate global

shape parameters and thanks to the control of the overfitting risk (achieved by the choice

of the number of PCA components). The choice of the surface area a and the dimension

ratio r as global shape parameters to be recovered is a key-point because these parameters

are meaningful for the addressed problem (they well show the extensiveness of the corrosion
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FIG. 23: Same caption than in figure 22 but for the surface area. The y-axis for errors ≥ 12% has

been compressed.

TABLE II: Calibration and cross-validation errors (%).√〈
e2
cal

〉
7.71√〈

e2
CV

〉
7.90

Dimension ratio (r) eCV95%
13.65

max |eCV| 79.80

Npc 6
√〈

e2
cal

〉
1.39√〈

e2
CV

〉
1.57

Area (a) eCV95%
2.58

max |eCV| 20.95

Npc 6

damage) and because the use of integral expressions in their definition (see equation (1))

leads to robust estimations.
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IV. CONCLUSION

The paper proposes a full approach, i.e. both the non-destructive measurement device

and the associated signal processing, to estimate geometrical parameters of hidden corrosion

flaws. The major part of the work is dedicated to robustness: The geometrical parameters

have to be correctly estimated for a large range of flaw contours. However, the shapes of

the corrosion flaws are erratic and may lead to poor estimates if the erratic character is not

considered. Erratic contours have been generated and the proposed estimator is built by

considering a cross-validation technique in order to address this problem. Results attest to

the correct behavior of the estimator since a parameter regarding the corrosion level (the

area has been chosen to consider this level) is estimated with mean errors less than 2% and

a parameter regarding the flaw shape (the dimension ratio has been chosen) is estimated

with mean errors less than 10%.

The proposed methodology has been tested on simulated flaws to show its feasibility and

its benefits. Simulation is a convenient approach to generate a number of hidden corrosion

flaws as large as required to test the approach. Combining a FEM tool with a procedure

which automatically generates erratic flaw shapes is in this work the key to reach the required

robustness.
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