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ABSTRACT
This paper addresses the sensitivity of the algorithm proposed by
Andrieu and Doucet (IEEE Trans. Signal Process., 47(10), 1999),
for the joint Bayesian model selection and estimation of sinusoids
in white Gaussian noise, to the values of a certain hyperparameter
claimed to be weakly influential in the original paper. A deeper
study of this issue reveals indeed that the value of this hyperparam-
eter (the scale parameter of the expected signal-to-noise ratio) has
a significant influence on 1) the mixing rate of the Markov chain
and 2) the posterior distribution of the number of components. As
a possible workaround for this problem, we investigate an Empiri-
cal Bayes approach to select an appropriate value for this hyperpa-
rameter in a data-driven way. Marginal likelihood maximization is
performed by means of an importance sampling based Monte Carlo
EM (MCEM) algorithm. Numerical experiments illustrate that the
sampler equipped with this MCEM procedure provides satisfactory
performances in moderate to high SNR situations.

1. INTRODUCTION

In this paper, we address the problem of detection and estimation
of sinusoids in white Gaussian noise, assuming that the number
of component is unknown. A fully Bayesian algorithm, based on
the Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) tech-
nique [8, 9], has been proposed for this problem in [1]. Similar algo-
rithms have also been used for other applications such as polyphonic
signal analysis [3], array signal processing [12], and nuclear emis-
sion spectra analysis [10]. However, to the best of our knowledge,
the sensitivity of the algorithm to the value of its hyperparameters
has never been clearly discussed.

Let y= (y1, y2, . . . , yN)
t be a vector ofN observations of an

observed signal. We consider the finite family of embedded mod-
els{Mk, 0≤ k ≤ kmax}, whereMk assumes thaty can be written
as a linear combination ofk sinusoids observed in white Gaussian
noise. Letωk =

(

ω1,k, . . . ,ωk,k
)

be the vector of radial frequencies
in modelMk, and letDk be the correspondingN×2k design matrix
defined by

Dk(i+1,2 j−1), cos(ω j,ki), Dk(i+1,2 j), sin(ω j,ki)

for i = 0, . . . ,N − 1 and j = 1, . . . ,k. Then the observed signaly
follows underMk a normal linear regression model:

y =Dk.ak +n ,

wheren is a white Gaussian noise with varianceσ2. The unknown
parameters are assumed to be the number of componentsk andθk =
{ak,ωk,σ2}.

Assuming that no (or little) information is available about the
vector of amplitudesak, the conditionally conjugateg-prior is usu-
ally recommended as a default prior in the Bayesian variable selec-
tion literature [14, 21]. Under this prior, the distribution ofak con-
ditionally to σ2, k andωk is Gaussian withσ2/g (Dt

kDk)
−1 as its

covariance matrix, whereg is a positive parameter. Following [1],
a zero-meang-prior for ak will be used in this paper. Our results,
however, are likely to remain relevant for any covariance matrix of
the formσ2/g Σk (with Σk possibly depending onk andωk).

The parameterδ 2 = 1/g, called the Expected SNR (ESNR),
controls the expected size of the amplitudes. Owing to its influence
on the performance of the algorithm, and assuming again that no (or
little) information is available, the hyperparameterδ 2 is given in [1]
a conjugate inverse gamma prior with parametersαδ 2 andβδ 2, that
we denote byIG (αδ 2,βδ 2). Such a hierarchical Bayes approach is
usually hoped to increase the robustness of the statistical analysis;
see [18, Section 10.2] for more information. The first parameter is
set toαδ 2 = 2, in order to have an heavy-tailed “weakly informa-
tive” prior (with infinite variance). It is claimed in [1, Section V.D]
that the value ofβδ 2 has a weak influence on the performance of the
algorithm.

The contribution of this paper, which can be seen as a contin-
uation of [1], is twofold. First, on the basis of extensive numerical
experiments, we argue that the value ofβδ 2 can have a strong in-
fluence on 1) the mixing rate of the Markov chain and 2) the poste-
rior distribution of the number of components. Second, instead of
using a fixed value for the hyperparameterβδ 2, we investigate the
capability of an Empirical Bayes (EB) approach to estimate it from
the data, in the spirit of the approach used in [2, 6] to estimateδ 2.
More precisely, since the marginal likelihood ofβδ 2 is not avail-
able in closed form, we implement an Importance Sampling (IS)
based Monte Carlo Expectation Maximization (MCEM) algorithm
[13, 20] to maximize it numerically.

The paper is outlined as follows. Section 2 recalls the hierar-
chical Bayesian model and the RJ-MCMC sampler proposed in [1].
Section 3 discusses the influence ofβδ 2 on both the mixing rate of
the Markov chain and the posterior distribution of the numberk of
components. Section 4 explains the fundamentals of the MCEM al-
gorithm, which is used for estimatingβδ 2. Section 5 presents the
results of our numerical experiments and discusses the pros and
cons of the Empirical Bayes approach in estimatingβδ 2. Finally,
Section 6 concludes the paper and gives directions for future work.

2. BAYESIAN FRAMEWORK

This section describes the prior distribution and the RJ-MCMC
sampler considered in this paper, following [1] unless explicitly
stated otherwise.

2.1 Prior distributions

The joint prior distribution of the unknown parameters is chosen to
have the following hierarchical structure:

p
(

k,θk,δ 2
)

= p
(

ak | k,ωk,σ2,δ 2) p
(

ωk | k
)

× p
(

k
)

p
(

σ2) p
(

δ 2) .
(1)
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Figure 1: Truncated negative binomial prior onk corresponding
to αΛ = 1.0 (upper plot) andαΛ = 0.5 (lower plot), withkmax= 32
andβΛ = 0.001.

The conditional distribution ofak is theg-prior distribution already
described in the introduction. Conditional onk, the components
of ωk are independent and identically distributed, with a uniform
distribution on(0,π). The noise varianceσ2 is endowed with Jef-
frey’s improper prior, i.e.p(σ2) ∝ 1/σ2, where the symbol∝ de-
notes proportionality.

The prior distribution ofk is defined in [1] in two steps, follow-
ing once again the hierarchical Bayes philosophy. First,k is given
a Poisson distribution with meanΛ, truncated to{0,1, . . . ,kmax}.
Then, to increase the robustness of the inference in a context of
weak prior information onk, the hyperparameterΛ is given a con-
jugate Gamma prior, with shape parameterαΛ ≈ 1

2 and scale param-
eterβΛ ≈ 0. This is equivalent to using fork a (truncated) negative
binomial prior1 that puts a strong emphasis on small values. In this
paper, we setαΛ = 1 in order to have an almost flat prior fork
over{0, . . . ,kmax}; see Figure 1 for a comparison of the two prior
distributions.

2.2 Sampling structure

The hierarchical structure and prior distributions just described
make it possible to integrate parametersak andσ2 out of the poste-
rior distribution analytically. Thismarginalization step [17] yields
the following marginal posterior distribution:

p
(

k,ωk,δ 2,Λ |y
)

∝ (ytPky)
−N/2 Λkπ−k

k! (δ 2+1)k

× p(δ 2) p(Λ)1(0,π)k (ωk) ,

(2)

with
Pk = IN −

δ 2

1+δ 2 Dk
(

Dt
kDk

)−1
Dt

k

whenk ≥ 1 andP0 = IN .
The joint posterior distribution (2) is the target distribution of

the RJ-MCMC sampler. In the following, different steps for sam-
pling from the target distribution are briefly described. For more
detailed expressions please refer to [1, 8].

The RJ-MCMC sampler, that leaves the target density (2) in-
variant, consists of a Metropolis-Hastings (MH) move for updating

1Indeed, the marginal prior distribution ofk is given by

p(k) =
Γ(k+αΛ)

Γ(αΛ) k!

(

βΛ
βΛ +1

)αΛ
(

1
βΛ +1

)k

,

which is a negative binomial distribution. See, e.g., [5, Section 2.7 and 17.2],
where the negative binomial distribution is advocated as a robust alternative
to the Poisson distribution.

the value ofk andωk, followed by a sequence of Gibbs moves to
updateδ 2 andΛ. (The conditional distribution ofδ 2 givenk, ωk, Λ
andy is sampled from by firstdemarginalizing [17] σ2 andak and
then sampling from the full conditional distribution.)

Since the problem under consideration is trans-dimensional,
the proposal distribution for the MH move updatingk and ωk
is in fact a mixture of proposal distributions performing within-
model moves (updating radial frequencies without changingk) and
between-models moves (“birth” and “death” moves, which respec-
tively add and remove components). Except for a modification de-
scribed below, the moves implemented in our sampler are the same
as in [1].

2.3 Correction of the birth ratio in [1]

In the birth move proposed in [1], and also used in this paper, the
insertion of a new sinusoid is proposed as follows: first a new radial
frequency is sampled from the uniform distribution on(0,π) and,
then, it is inserted at a random location2 among the existing ones.
According the theory of RJ-MCMC samplers [8] and using the same
proportion of birth and death moves as in [1], the move is accepted
with probabilityαbirth = min{1,rbirth}, where

rbirth =

(

ytPk+1y

ytPky

)−N/2 1
1+δ 2 · (3)

One should note that the birth ratio computed in [1] differs from (3)
by a 1/(k+1) factor. A similar mistake in computing RJ-MCMC
ratios has been reported in the field of genetics [11]. Note that this
additional factor is equivalent to using a different prior distribution
over k. A detailed justification of (3) will be provided in a forth-
coming paper.

3. SENSITIVITY OF THE ALGORITHM TO βδ 2

This section first reviews related work concerning the role ofδ 2

in the Bayesian variable selection literature, and then proceeds to
describing the role ofβδ 2 in the present problem.

3.1 Review of related work in Bayesian variable selection

It has been highlighted in the variable selection literature that the
parameterδ 2, which controls the expected relative size of the am-
plitudes with respect toσ , implicitly defines a “dimensionality
penalty” from the model selection point of view [2, 6]. Indeed,
considering thatp(k) is approximately constant fork ∈ [0, kmax],
we have

log p
(

k,ωk |y,δ 2
)

≈ −
N
2

log(ytPky)−F · k+C, (4)

whereF = log
(

π
(

1+δ 2
))

andC is a constant which does not de-
pend onk andωk. F can be interpreted as a dimensionality penalty,
which penalizes complex models. Thus,δ 2 plays the role of a reg-
ularization parameter, “large” values of which favor sparse signal
representations at the expense of detection sensitivity. Conversely,
“small” values ofδ 2 typically lead to the selection of overfitting
models (i.e., in terms of detection performance, false positives).

In the Bayesian variable selection literature, many researchers
have tried to either set an appropriate fixed value toδ 2 or estimate
it using different approaches. In [4], several fixed values forδ 2 are
compared in a model averaging framework, andδ 2 = max{N, p2}
is recommended as a default (“benchmark”) value, wherep denotes
the number of variables. Several approaches for the estimation
of δ 2, both EB or fully Bayesian, have been proposed and compared

2Note that the same ratio would be obtained if the radial frequency were
sorted instead [16].
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Figure 2: Mixing of the chain for different values ofβδ 2. The true
model isM15, and the sampler is initialized inM0.

in [2, 6, 14]. It is concluded in [2] that the Maximum Marginal Like-
lihood (MML) approach is superior to the others (in terms of mean
square error), but the conclusions of [14]—in a slightly different
setting—suggest that some fully Bayesian approaches can perform
just as well.

3.2 Role of βδ 2

Our numerical experiments have revealed that the value ofβδ 2 can
have a significant influence on 1) the posterior distribution of the
number of components and 2) the convergence rate of the Markov
chain.

The former fact can be understood in light of Section 3.1 where
the role ofδ 2 as a dimensionality penalty has been highlighted. In-
deed, sinceβδ 2 is a scale parameter for the prior distribution ofδ 2,
it can be expected that, probably to a lesser extent,βδ 2 should play
a similar role. In other words, high values ofβδ 2 are expected to
favor sparse solutions, with a risk of omitting low SNR compo-
nents, whereas low values ofβδ 2 are expected to allow solutions
with many components (high values ofk). This point will be fur-
ther discussed in Section 5 on the basis of numerical results.

Let us now discuss the influence ofβδ 2 on the mixing of the
sampler. We have found that large values ofβδ 2 lead to a sam-
pler that has severe mixing issues and often gets trapped in local
modes of the target distribution. This issue is illustrated in Fig-
ure 2, which shows the mixing of the chain for different values of
βδ 2 in a case where the true model isM15, the number of samples
N = 64, and the sampler is initialized inM0. The mixing issue of
the chain whenβδ 2 > 100 is highlighted in this figure, which causes
the sampler to get stuck for many iterations at a local mode. In fact,
whenβδ 2 = 1000 the sampler cannot escape from the local mode af-
ter 100k iterations. This convergence issue might similarly happen
when the true signal is near null model and the sampler is initial-
ized near full model. So, for large values ofβδ 2, the algorithm is
sensitive to the initialized state. On the other hand, too small values
of βδ 2 which corresponds to assuming low ESNR, would cause the
algorithm to explore many regions of low probability of the space in
low SNR situations which can be really computationally expensive
and causes convergence problems.

A possible solution to the mixing issue would be to use a com-
bination of simulated annealing and MCMC sampler as is done, for
example, in [7]. In the next section we follow a different path and
use an EB approach to estimateβδ 2 from the data.

4. IMPORTANCE SAMPLING BASED MCEM
ALGORITHM

Hierarchical models are commonly used in Bayesian model (or vari-
able) selection problems. However, this hierarchy should stop at
some point with all remaining parameters assumed fixed. Then,
based on some prior beliefs, these parameters can be set. However,
for some parameters which no information is provided beforehand,
rather than setting them to a fixed value, the EB approach uses the
observed data to estimate them. It avoids using arbitrary choices
which may be at odds with the observed data.

In this method, one tries to estimateβδ 2 such that the marginal
likelihood is maximized. In other words,

β̂δ 2 = argmaxβδ2
p(y|βδ 2).

This is similar to MML method proposed in [6] for estimatingδ 2.
The maximum likelihood may be easier to compute when the data is
augmented by a set of latent variables,u say. These latent variables,
in our case, are{ωk,k,δ 2,Λ}. Then, one can use the EM algorithm
that entails, at iterationr+1, an E-step for computing the expected
log-likelihood

Q(βδ 2|β̂ r
δ 2) = Eβ̂ (r)

δ2

{

ln p(y,u|βδ 2)|y
}

(5)

and, an M-step, for maximization ofQ(βδ 2|β̂ r
δ 2) overβδ 2 in order

to obtain the MLE of it,β̂ r+1
δ 2 .

However, in our case, computing the E-step is not possible an-
alytically. Therefore, here, we propose to use Monte Carlo approx-
imation of (5), which is called MCEM [13, 15], by simulating sam-
ples fromp(u|y, β̂ r

δ 2). Moreover, the Monte Carlo estimation of (5)
can be implemented in a more efficient way using the idea of Impor-
tance Sampling (IS). As is explained in [13, 15], in this framework,
samples are just generated fromp(u|y, β̂ 0

δ 2), whereβ̂ 0
δ 2 is the initial

value. Then, form number of generated samples, the E-step can be
written as

Q(βδ 2|β̂ r
δ 2) =

m

∑
t=1

wt ln p(y,ut |βδ 2)
/

m

∑
t=1

wt (6)

where

wt =
p(ut |y,β

(r)
δ 2 )

p(ut |y,β
(0)
δ 2 )

are the weights which in our case would simplify to

wt =





β (r)
δ 2

β (0)
δ 2





αδ2

exp



−
β (r)

δ 2 −β (0)
δ 2

δ 2
t



.

Since the RJ-MCMC sampler introduced in Section 2 can easily
generatem samples fromp(u|y, β̂ 0

δ 2), these samples can be used to
perform the IS based MCEM procedure. So, in each MCEM itera-
tion, a batch ofm samples is generated from the RJ-MCMC sampler
in order to compute (6). The computationally efficient point of this
procedure is that once the IS based MCEM algorithm is stopped,
the generated samples are not discarded. They can be used to gen-
erate the desired posterior distribution of the unknown parameters
by using the importance weights.

However, one should note that this procedure is sensitive to the
value ofβ̂ 0

δ 2. In order to reduce the variations ofwt , it is proposed in
[13] to run a few burn-in iterations using a simple MCEM method
without importance reweighting.
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Figure 3: Estimated values ofβδ 2 using the IS-based MCEM algo-
rithm. The signal is generated underM1 with N = 64,ω1,1 = 0.2π,
for several values of the SNR (see legend). The vertical line indi-
cates the burn-in period.

5. SIMULATION RESULTS AND DISCUSSION

In this section, we will investigate the capability of the IS based
MCEM algorithm for assessingβδ 2 in different situations. More-
over, we will compare the performance of the sampler with several
fixed values ofβδ 2. Simulations are performed on two different
sample sizesN = 64 andN = 256 generated according toM1 with
different SNRs. The SNR is defined as

SNR,
‖Dkak‖

2

Nσ2 .

The parameters of the single sinusoid are as follows:ω1,1 = 0.2π,
−arctan(a2,1/a1,1) = π/3, anda2

11+a2
2,1 = 20.

In the IS based MCEM algorithm, first, 20 burn-in iterations
with m = 100 samples were carried out. Then, the 20 IS based
MCEM procedure iterations withm = 5000 were performed to es-
timateβδ 2. So, finally, in addition to an approximate estimate of
βδ 2, 100k samples from the RJ-MCMC sampler are obtained and
can be used to produce the posterior distributions of the unknown
parameters, of course by using the importance weights. Figure 3
shows the performance of the IS based MCEM algorithm in esti-
mating the value ofβδ 2 for different observed signals. This relation
between the value ofβδ 2 and SNR, that is illustrated in figure 3, is
remarkably consistent with expectations. It is worthwhile to note
that variation of the estimated values ofβδ 2 is substantially reduced
after the burn-in period, as it is shown in figure 3, which illustrates
the convergence of the algorithm.

Table 1 presents the probabilities of argmaxp(k|y) in 100 re-
alizations of the algorithms. In each realization, 100k samples were
generated and the first 20k samples were discarded as the burn-in
period. The results are presented for different fixed values ofβδ 2

together with the results obtained by applying the IS based MCEM
algorithm for estimatingβδ 2.

First, let us consider the case of fixedβδ 2. From the results
presented in Table 1, it can be concluded that the value ofβδ 2 has
a strong influence on the posterior distribution of the number of
components. Indeed choice ofβδ 2 would become more critical as
the SNR decreases. Though the sampler produces reasonable re-
sults for a wide range of values ofβδ 2, i.e. 10≤ βδ 2 ≤ 1000, in
high SNR situations (not shown here), the behavior of the sam-
pler significantly varies by changing the value of this parameter
in low SNR situations. For instance, when SNR= −5 dB, while
the probability of detecting one component is almost the same for
the mentioned interval, settingβδ 2 = 10 provides a sampler which

overestimates the number of components. On the other hand, larger
values ofβδ 2 leads to a sampler that underestimates the number of
components. According to the obtained results, choosing a very
small value forβδ 2, one say, is not suitable. For the values of
SNR< 0 dB, it makes convergence problems for the sampler by
accepting most of proposed birth or death moves. More precisely,
it leads to a sampler which explores all possible regions, even low
probable ones, which would be really computationally expensive
whenkmax is large. However, one should note that for all simula-
tions the samplers were initialized near null model, otherwise for
values ofβδ 2 > 100 the results would definitely changed. In the
case thatN = 256, the sensitivity of the sampler to the choice of
βδ 2 is less critical. This may be caused by the fact that the ob-
served signal is more informative in this case. Finally, a fixed value
of βδ 2 ∈ [50,100] provides a sampler with more reasonable perfor-
mance for most values of SNR.

Turning to the results of the EB approach used here to automati-
cally estimate the value ofβδ 2 from the data, it can be seen from the
table that the sampler equipped with the IS-based MCEM algorithm
has a quite satisfactory behavior in moderate to high SNR situations
(0 dB,−2 dB, and even−5 dB for N = 256). However, it is clear
that the algorithm fails to select an appropriate value forβδ 2 in low
SNR situations (−10 dB, and−5 dB forN = 64): the selected value
is typically much too small, leading to severe overfitting. A similar
behavior is observed in experiments under the null modelM0 (not
shown here).

In fact, based on Table 1, it seems that usingβδ 2 = 50 gives,
in all the situations considered here, results that are similar to or
better than the results of the EB approach. Additional experimental
results under various configurations and sample sizes are required,
however, to issue a general recommendation regarding the choice of
an appropriate fixed value forβδ 2 (possibly depending onN) and,
also, to confirm the capability of the EB approach to automatically
select such a value in moderate to high SNR situations.

6. CONCLUSION

In this paper, first, the sensitivity of the RJ-MCMC algorithm pro-
posed in [1] for detection and estimation of sinusoids to the hyper-
parameterβδ 2 has been investigated. Then, an IS-based MCEM
algorithm has been used to estimate this parameter given the data,
following an empirical Bayes (EB) approach. The IS-based MCEM
method has proved able to automatically estimate an appropriate
value forβδ 2 in moderate to high SNR situations.

The main limitation of the EB approach is that it cannot esti-
mate a proper value forβδ 2 in very low SNR situations. This limita-
tion was, however, predictable as in such cases the observed signal
carries very little information about the parameter of interest. To
overcome this limitation and avoid the problem of choosing ascale
for p(δ 2), a truncated Jeffrey prior has been proposed in [19] and
very promising results have been obtained.

As mentioned in Section 1, this model and RJ-MCMC sampler
have also been used in other applications such as polyphonic sig-
nal analysis [3], array signal processing [12], and nuclear emission
spectra analysis [10]. The contributions of this paper are likely to
be useful in these applications as well.
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N βδ 2 P0 P1 P2 P3 P4

64

1 0.25 0.04 0.04 0.03 0.64
10 0.64 0.13 0.05 0.02 0.16
50 0.81 0.09 0.00 0.00 0.10
100 0.87 0.11 0.00 0.01 0.01
1000 0.97 0.02 0.01 0.00 0.00
EB 0.05 0.04 0.02 0.06 0.83

256

1 0.01 0.05 0.16 0.18 0.60
10 0.08 0.45 0.25 0.12 0.10
50 0.18 0.76 0.04 0.02 0.00
100 0.22 0.73 0.05 0.00 0.00
256 0.35 0.63 0.02 0.00 0.00
1000 0.48 0.51 0.01 0.00 0.00
EB 0.00 0.22 0.16 0.12 0.50

N βδ 2 P0 P1 P2 P3 P4

64

1 0.03 0.09 0.13 0.06 0.69
10 0.09 0.56 0.12 0.07 0.16
50 0.27 0.57 0.11 0.00 0.05
100 0.31 0.60 0.08 0.00 0.01
1000 0.54 0.45 0.01 0.00 0.00
EB 0.01 0.22 0.25 0.12 0.42

256

1 0.00 0.71 0.22 0.05 0.02
10 0.00 0.79 0.18 0.01 0.02
50 0.00 0.92 0.06 0.00 0.02
100 0.00 0.93 0.07 0.00 0.00
256 0.00 0.99 0.00 0.01 0.00
1000 0.00 0.99 0.01 0.00 0.00
EB 0.00 0.92 0.05 0.02 0.01

N βδ 2 P0 P1 P2 P3 P4

64

1 0.00 0.32 0.32 0.14 0.22
10 0.00 0.68 0.23 0.07 0.02
50 0.02 0.84 0.10 0.02 0.02
100 0.01 0.93 0.04 0.01 0.01
1000 0.02 0.97 0.01 0.00 0.00
EB 0.00 0.69 0.22 0.04 0.05

256

1 0.00 0.89 0.10 0.01 0.00
10 0.00 0.95 0.05 0.00 0.00
50 0.00 0.95 0.04 0.00 0.01
100 0.00 0.95 0.05 0.00 0.00
256 0.00 1.00 0.00 0.00 0.00
1000 0.00 1.00 0.00 0.00 0.00
EB 0.00 0.94 0.04 0.02 0.00

N βδ 2 P0 P1 P2 P3 P4

64

1 0.00 0.72 0.17 0.07 0.04
10 0.00 0.86 0.08 0.05 0.01
50 0.00 0.87 0.11 0.02 0.00
100 0.00 0.95 0.05 0.00 0.00
1000 0.00 0.98 0.02 0.00 0.00
EB 0.00 0.88 0.09 0.02 0.01

256

1 0.00 0.91 0.09 0.00 0.00
10 0.00 0.95 0.05 0.00 0.00
50 0.00 0.98 0.02 0.00 0.00
100 0.00 0.94 0.06 0.00 0.00
256 0.00 0.98 0.02 0.00 0.00
1000 0.00 1.00 0.00 0.00 0.00
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