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ON THE JOINT BAYESIAN MODEL SELECTION AND ESTIMATION OF SINUSOIDS
VIA REVERSIBLE JUMP MCMC IN LOW SNR SITUATIONS

Alireza Roodaki, Julien Bect and Gilles Fleury

Department of Signal Processing and Electronic Systems,
SUPELEC, Gif-sur-Yvette, France.

ABSTRACT

This paper addresses the behavior in low SNR situations
of the algorithm proposed by Andrieu and Doucet (IEEE
T. Signal Proces., 47(10), 1999) for the joint Bayesian
model selection and estimation of sinusoids in Gaussian
white noise. It is shown that the value of a certain hyper-
parameter, claimed to be weakly influential in the origi-
nal paper, becomes in fact quite important in this context.
This robustness issue is fixed by a suitable modification
of the prior distribution, based on model selection consid-
erations. Numerical experiments show that the resulting
algorithm is more robust to the value of its hyperparame-
ters.

Index Terms— Bayesian model selection; reversible
jump MCMC; prior calibration; Bayesian sensitivity anal-
ysis; spectral analysis.

1. INTRODUCTION

Detection and separation of signals in low SNR conditions
has many applications in various fields such as communi-
cation, radar and sonar—to name but a few. Moreover, si-
nusoids are one of the most common kind of signals used
in these applications. The problem of joint detection and
estimation of sinusoids in low SNR situations, assuming
unknown number of components, is therefore of general
importance.

A fully Bayesian algorithm based on Reversible Jump
Markov Chain Monte Carlo (RJ-MCMC) technique [1]
for handling this problem, not specifically in low SNR
situations, has been proposed in [2]. This algorithm, of
course with appropriate modifications, has been used for
other applications such as polyphonic signal analysis [3],
array signal processing [4], and nuclear emission spectra
analysis [5]. However, to the best of our knowledge, the
behavior of this algorithm in low SNR situations has never
been studied. To present the problem more explicitly, in
the following we will introduce the notations used in the
algorithm.

Let y = (y1, y2, . . . , yN )
t be a vector ofN indepen-

dent observations. Based on the modelMk (for k =
0, 1, . . . , kmax), y can be represented by summation ofk
sinusoids together with a white Gaussian noise. Defining
theN × 2k matrix containing the sinusoids with different
radial frequencies,Dk, as below

Dk(i+1, 2j−1) , cos(ωj,ki),Dk(i+1, 2j) , sin(ωj,ki)

for i = 0, . . . , N − 1 andj = 1, . . . , k, one can write the
normal linear regression model for the current problem

with k components:

y = Dk.ak + n,

wheren is the white Gaussian noise of varianceσ2. The
unknown parameters are assumed to be the number of
componentsk andθk = {ak, ωk, σ2}.

As in many Bayesian model selection approaches for
normal linear regression problem, the well-known con-
ditionally conjugateg-prior [6, 7, 8], which provides
tractable computations, has been assigned as a prior over
the amplitudes in the model proposed in [2]. Theg-
prior is a zero mean multivariate normal distribution with
σ2/g(Dt

kDk)−1 as its covariance matrix. The variable
calledg controls the expected size of the amplitudes. This
parameter has been substituted byδ−2 in [2] and δ2 has
been called the Expected SNR (ESNR).

Owing to the influence of the ESNR on the per-
formance of the algorithm, particularly in the Bayesian
model selection part, several approaches for setting or
estimating it have been proposed in the variable selec-
tion literature; see [7, 8, 9] and references therein. To
keep the Fully Bayesian spirit, a vague conjugate Inverse-
Gamma (IG) prior has been assigned over ESNR in [2],
i.e. p

(

δ2|αδ2 , βδ2

)

= IG ( · |αδ2 , βδ2). Although it was
mentioned that the performance of the proposed algorithm
is not sensitive to the value of the scale parameterβδ2 , our
experiments have shown that this parameter becomes in-
fluential when dealing with low SNR signals.

The structure of this article is as follows. Section 2
briefly recalls the Bayesian algorithm proposed in [2].
Section 3 discusses first the “dimensionality penalty” in-
duced by the hyperparameterδ2 and then the effect ofβδ2

on the posterior distribution ofk andδ2. Section 4 dis-
cusses solutions to the problem of choosingβδ2 : since
the usual data-driven approaches fail in low SNR situa-
tions, we propose to use a truncated Jeffrey prior instead.
Section 5 presents numerical results that support the pro-
posed method and discusses its sensitivity to the lower
boundδ2

min of the truncated prior. Finally, Section 6 con-
cludes the article and addresses possible future works.

2. BAYESIAN FRAMEWORK

The full joint distribution of the observed signal and the
unknown parameters, in the model proposed by [2], has
the following hierarchical structure:

p(y, k, θk, δ2) = p(y | k, θk) p(θk | k, δ2)

× p(k) p(δ2).
(1)



2.1. Prior distributions

As proposed by [2], the prior overk is a Poisson distribu-
tion with meanΛ, truncated to{0, 1, . . . , kmax}. Condi-
tional onk, theωk’s are independent and identically dis-
tributed, with a uniform distribution on(0, π). The noise
varianceσ2 is endowed with Jeffrey’s uninformative prior,
i.e. p(σ2) ∝ 1/σ2, where the symbol∝ denotes propor-
tionality.

Furthermore, they have suggested to assign a conju-
gateIG(αδ2 , βδ2) prior over ESNR and to setαδ2 to two
for having an infinite variance. However, as it can be seen
in Figure 1, the posterior overδ2 is severely sensitive to
the value ofβδ2 .
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Figure 1: CDFs of priors overδ2 for different values ofβ
δ2 .

The hyperparameterΛ has been assigned in [2] a
Gamma prior, i.e.p(Λ) = G(αΛ, βΛ), with αΛ ≈ 1

2 as
a shape parameter andβΛ ≈ 0 as a scale parameter. This
is equivalent to using a negative binomial prior overk that
puts more emphasis on small values. In this paper, in or-
der to have an almost flat prior overk, the parameterαΛ

is set to a value close to1.

2.2. Sampling structure

Based on (1) and Bayes Theorem, after simply integrating
ak andσ2 out, the joint posterior distribution ofk andωk,
up to a normalizing constant, can be written as

p
(

k, ωk, δ2, Λ |y
)

∝ (ytPky)−N/2 Λkπ−k

k! (δ2 + 1)k

× 1(0,π)k(ωk) p(δ2) p(Λ) ,

(2)

with

Pk = IN −
δ2

1 + δ2
Dk

(

Dt
kDk

)−1
Dt

k. (3)

In the following, different steps for sampling from the
above distribution are briefly described. For more detailed
expressions, please refer to [1, 2].

The sampler consists of a Metropolis-Hastings (MH)
move for the target density (2), which updates the values
of k andωk, followed by a sequence of Gibbs moves to
updateδ2 andΛ. The proposal kernel, in the MH step,

is a mixture of within-model moves, which update the ra-
dial frequencies without changingk, and between-models
moves, which change the value ofk by adding or remov-
ing a component (so-called birth/death move). The Gibbs
move forδ2 if performed by demarginalization ofσ2 and
ak and then sampling from the “uncollapsed” posterior
of δ2.

Except for a modification in the birth/death ratio, the
moves implemented in our sampler are the same as in [2].
In the birth move, after proposing a new component by
sampling its radial frequency fromU(0, π), it is randomly
located among the previous components. Then, the move
is accepted with probabilityαbirth = min{1, rbirth},
where

rbirth =

(

ytPk+1y

ytPky

)−N/2
1

1 + δ2
. (4)

One should note that the birth ratio (4) differs from the
one reported in [2] by a multiplicative factor of1/(k+1).
A similar mistake for a similar algorithm has been found
in the field of genetics [10]. Note that using the ratio given
in [2] amounts to changing the prior distribution onk.
This issue will be dealt with in greater detail in a forth-
coming paper. In the meantime, the reader is referred to
[11] for more information on the role of permutations and
sorting in the computation of RJ-MCMC ratios.

3. SENSITIVITY TO THE VALUE OF βδ2

In this section, the effect ofβδ2 on the performance of the
algorithm in low SNR situations is discussed.

To better understand the importance ofβδ2 , the role
of δ2 will be discussed first, following the ideas intro-
duced in [9, 12] to make a connection between Bayesian
algorithms and model selection criteria. Let us assume,
for the sake of simplicity, a flat prior over the number of
components. Then, the log-posterior can be written as

log p
(

k, ωk |y, δ2
)

= −
N

2
log (ytPky) − F · k + C,

(5)
whereF = log

(

π
(

1 + δ2
))

andC is a constant which
does not depend onk andωk. F can be interpreted as
a dimensionality penalty, which penalizes complex mod-
els. Therefore, large values ofδ2, which result in large
values ofF , cause the algorithm to neglect small compo-
nents with respect to the noise. Conversely, “small” val-
ues ofδ2 result in an algorithm which does not penalize
enough “small” components and leads to overfitting.

In addition to—and partly because of—its role in the
model selection properties of the algorithm, the value
of δ2 has a strong influence on the behavior of the result-
ing algorithm. For low values ofδ2, the Markov chain
has to visit much more often regions of the state space
corresponding to high values ofk, where the algorithmic
complexity of running the chain is much higher. For high
values ofδ2, the posterior distribution has sharper peaks
and valleys, which makes it much more difficult for the
chain to explore, resulting in a slower convergence rate.

Turning to the role ofβδ2 , first, one should note that
theIG prior used in [2], although chosen to be weakly in-
formative, is not really “vague” (see Figure 1). In fact, it



has a mode atβδ2/(αδ2 + 1). By changing its scale pa-
rameter the behavior of the algorithm can be controlled
just like changing the values ofδ2 itself, esp. in the
low SNR situations where likelihood does not provide
much information aboutδ2. Figure 2 displays the sen-
sitivity of the posteriors ofk andδ2 to the hyperparam-
eterβδ2 in an experiment of signal detection underM1

with SNR = −1 dB, which is not very low. In this
study, SNR is defined as‖Dkak‖

2 /
(

Nσ2
)

. It can be
seen in this figure that the posterior ofδ2 is moving to
the right by increasing the value ofβδ2 . Moreover, if
one is interested in model selection based on the maxi-
mum of the posterior of the number of components, i.e.
argmaxk∈{0,··· ,kmax} p(k |y), the selected models under
βδ2 = 1, βδ2 = 10, andβδ2 = 100 would beM2, M2,
andM1, respectively. The differences in the results for
Bayesian model averaging (not shown in this paper) are
even more important.
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Figure 2: The posteriors ofk andδ2 under the experiment of signal de-
tection withSNR = −1dB and different values ofβδ2 . In the second
row, the gray dotted lines show the prior and the black lines show the
posterior ofδ2 . The length of the chain was set to 100k, with a burn-in
period of 20k samples.

4. PROPOSED METHODS

In the following possible methods for either estimating a
reasonable value forβδ2 from the observed data or stabi-
lizing the algorithm by modifying the prior are introduced.

4.1. Data-driven methods

In order to estimate a proper value forβδ2 the first two
approaches that may come to mind are the Fully Bayesian
and the Empirical Bayes (EB) methods. The former one is
constructed by assigning a vague conjugate Gamma prior
overβδ2 , that is,βδ2 ∼ G(a, b). Then, one can update it
by performing a Gibbs move withG(a + αδ2 , b + δ−2) as
proposal distribution. On the other hand, the EB method
is a data-driven approach in which the marginal likeli-
hood of the parameter given the data, i.e.p (y |βδ2), is
maximized. This idea has been used in [7, 9, 12] for es-
timating δ2. However, since in this problem,p (y |βδ2)

does not exist in closed form, one should use Monte Carlo
methods to estimateβδ2 as in [13].

4.2. Using a truncated Jeffrey prior over δ2

The idea of using an improper Jeffrey prior over ESNR,
which provides a flat prior over thelog

(

δ2
)

in contrary
to the current prior, has been mentioned in [2] but it is not
used asδ2 = 0 would become an absorbing state of the
Markov chain. Here, we propose to truncate the Jeffrey
prior using a lower boundδ2

min and an upper boundδ2
max.

The sensitivity of the algorithm toδ2
max can be reduced by

setting it to a large value, say 10000. However, choosing
the value of the lower bound is less trivial, since it controls
the minimal dimensionality penalty induced by the prior;
a numerical sensitivity analysis will be carried out in the
next section.

5. SIMULATION RESULTS AND DISCUSSION

In this section, we study the performance of the proposed
solutions for reducing the sensitivity of the Bayesian al-
gorithm to the prior overδ2. Simulations are carried out
with the observed signal of lengthN = 64. In this pa-
per, the problem of signal detection in low SNR situation
is considered. The parameters of the single sinusoid are
as follows:ω1,1 = 0.2π, − arctan(as1

/ac1
) = π/3, and

a2
s1

+a2
c1

= 20. The length of chain in all simulations was
100k, with a burn-in period of 20k samples.

The data-driven approaches estimate a reasonable
value for the hyperparameterβδ2 in high SNR situations
but do not perform satisfactorily in low SNR situations.
In fact, in these situations, our numerical experiments
showed thatβδ2 is estimated to be very close to0, which
imposes too smallδ2, using both methods. It has also been
reported in [7] that the EB method tends to estimateδ2 as0
under the null model in a similar framework.

On the other hand, in the case of using a truncated Jef-
frey prior overδ2, the value ofδ2

min determines the mini-
mal dimensionality penalty. One should note that, a rea-
sonable range of values for the lower bound is restricted,
since having a high minimal penalty is not suitable. More-
over, settingδ2

min to a large value might cause convergence
issues. Thus, up to now, we have translated the problem
of estimating a proper value for the hyperparameterβδ2 to
the problem of finding a reasonable value forδ2

min. In the
sequel, the sensitivity of the algorithm to the variations of
this parameter is studied.

Figure 3 shows the posterior distributions fork andδ2

for the same observed signal as Figure 2. As depicted
in this figure, the sensitivity of the algorithm to the vari-
ations ofδ2

min is much less than that ofβδ2 . In fact no
matter what the value ofδ2

min is, the modelM1 would be
selected based on the MAP ofk. For further studying the
sensitivity of the algorithm to the parameterδ2

min, the prob-
abilities of selected models based onarg max p(k |y) in
100 realizations of the sampler for different values of SNR
were estimated. Figure 4 shows the sensitivity of the algo-
rithm to this parameter for the cases ofSNR = −3 dB and
SNR = −4 dB. In this figure, the algorithm was run with
δ2

min = 0.5. The probabilities for other values ofδ2
min were



obtained using importance sampling. This method has al-
ready been used for the sensitivity analysis of Bayesian
algorithms to their priors; see for instance [14]. It can
be concluded from figure 4 that the probabilities are not
very sensitive to the choice ofδ2

min. However, as the value
of the lower bound increases,P2 decreases whileP0 in-
creases: this was predictable, asδ2

min controls the minimal
dimensionality penalty.

6. CONCLUSION

The main contribution of this paper has been to explain
the lack of robustness, in low SNR situations, of the al-
gorithm proposed in [2] and to propose solutions for fix-
ing it. Simulation results showed that a truncated Jeffrey
prior over δ2 significantly improves the performance of
the sampler in situations where the usual data-driven ap-
proaches (Empirical Bayes and Fully Bayes) fail. Sensi-
tivity analyses, which are efficiently carried out using im-
portance sampling, reveal that the resulting algorithm is
rather robust to variations of the lower boundδ2

min in a rea-
sonable range. A natural direction for future work would
be to propose a data-driven approach for the automatic se-
lection of this threshold and to assess more systematically
the performances of this algorithm.
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Figure 3: The posteriors ofk and δ2 under the experiment of signal
detection withSNR = −1 dB and different values ofδ2
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Figure 4: Probabilities ofarg max p(k |y) = 0, arg max p(k |y) =
1, andarg max p(k |y) ≥ 2 are denoted, respectively, byP0, P1, and
P2 in 100 realization of the algorithm usingδ2

min = 0.5. The probabil-
ities for other values ofδ2

min, i.e. δ2

min ∈ (0.5, 20], are estimated using
the importance sampling method.


