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Abstract—This paper deals with the stability of so-called $elf-
sampled” digital phase-locked-loops (PLLs). Theseystems are
meant to be used as the nodes of autonomous clodktdbution
networks, where clock signals are locally generateid each node
and each node is synchronized with its neighbour®espite the
absence of an absolute reference clock, it is pdisi to use the
local irregular clock to trigger the operations ofthe digital loop
filter. In this paper, we show that, in this mode 6 operation,
PLLs can be modeled as autonomous piecewise-linegystems.
We investigate what filter coefficients to chooseni order to
ensure stability and, hence synchronization. Two ntkods are
explored, the first based on transient simulationsthe second on
linear matrix inequalities. It is shown that the seond method
yields much more conservative results than the fitsbut that it
cannot apply to all design options of self-samplelLLs.

l. INTRODUCTION

Networks of synchronized oscillators are an altivea
approach to classical tree-like clock distributimethods in
large-scale synchronous systems-on-chips (SOCsh &ade
of the network may for example consist of a phaskdd
loop (PLL) trying to match the phase of its nearesghbors.
If neighbour-to-neighbour phase synchronizationeiached,
even the most distant parts of the SOC see the stook
signal and, hence,
advantages of this approach are that it requiresibswmlute
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approach to circumvent the absence of an absaifiteence
clock in non-synchronized autonomous networks
oscillators. The main characteristic of SS-PLLsppgosed to
classical ones [4], is that their dynamics are guose by two
linear equations (as opposed to only one in thesidal case),
depending on whether the local clock is laggindeading. It
is not possible to use the tools of linear analiysidetermine
whether an SS-PLL is stable (and, hence, syncteshar not.
In [3], the stability of an SS-PLL was investigateg means
of transient simulations. In this paper, we compémis
approach with a more rigorous but more conservative
approach, based on piecewise-quadratic Lyapunostituns
(PQLFs), which requires solving linear matrix inefiies
(LMIs). The governing equations of SS-PLLs are give
section Il. The theory of PQLFs is addressed itigedIl. In
section 1V, the two approaches are compared aridrtiative
advantages and shortcomings are discussed.
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Figure 1. Block-diagram of a digital self-sampled PLL.

reference clock and that it imposes much less desig

constraints than tree-based distribution methotiss doncept
was introduced in [1] and an implementation wagpsed in
[2]. However, this architecture had little succegsth

.  GENERAL MODEL OFSS-PLLs
An SS-PLL is represented in Fig. 1. It is composéd

designers of digital circuits, probably becauseds based on digital phase detector (DPD), a proportional-ingtg(PI)

analog techniques. The HODISS project, funded ByANR
ARFU program, aims at pursuing the seminal worklpfand
[2] into the digital domain, in order to benefibfn the noise-
immunity and the greater flexibility of digital cqronents.

This work come in the wake of a previous paper fnictv
so-called “self-sampled” PLLs (SS-PLLs) were intioed
[3]. An SS-PLL is a digital PLL whose loop-filteperations
are triggered by the (rising) edges of the locatk] i.e. the
clock output by the PLL itself. This mode of opéatis an

French National Agency of Research (ANR)

filter and a digitally controlled oscillator (DCOyhe PI filter
is driven by the rising edges of the output of B€O. The
DPD is linear and outputs the time difference betwé¢he
moment when arrives a rising edge of the referetmek and
those of the local clock. Supposing that the fregyeof the
DCO is not far from that of the master clock (theat the PLL
is in the lock-in domain), the self-sampled PLL cha
described by the following model.



Let t [n] (respectively[n]) be the time when the" e;[n+1=2e;[n]- [+ K, +K,)e;[n-1] (5)
rising edge of the reference clock (respectivelytredf DCO
output) occurs. These quantities are governed by: is that of an unstable autonomous system. In [8mes
sufficient stability conditions orK; and K, were established

for (4-b) but transient simulations showed that sthe
conditions, based on analytical considerationsmseevery
_ _ conservative. However, transient simulations cantet
whereT, (resp.T,) is the period of the reference (resp. locaBompletely trusted, because the behaviour of a Ry
clock, v, is the control voltage of the DCO and all quaesiti depend on its initial state and all possible ihisi@tes cannot
are non-dimensional. The error output by the DPDirae be tested. To circumvent this shortcoming, it isgiole, in

t [n] depends on whether thé" rising edge of the referenceSOMe cases, to use the approach introduced irettiesaction.
clock has occurred or not. In other words, if . PIECEWISEQUADRATIC STABILITY OF PLSs

i [n] =t,[n] -t n]<0 ,.the error is correctly output by the DPD_ A classical approach to the determination of thbitty of
at time t;[n] . Otherwise, the error cannot be calculated andibnlinear systems is via Lyapunov functions. A Lyapv
must be replaced by a predictia®,[n] . The control voltage is function is a positive function of the states afyatem whose
then governed by: value decreases along all the possible trajectaniestate-
space of the system. The existence of a Lyapunastifun is a
sufficient condition for proving the stability ohautonomous
Ve[n]=V [n-1]+K,é&[n]+ K £[n-1] (2-a) system. Except in the most trivial cases, therestexno
generic method to construct or check for the emtsteof such
or a function. However, in the particular case of PL8®
problem of finding a Lyapunov function can be brokiwn
into several sub-problems. The main results [5r6]sammed
V, [n] =V, [n —1] + Kls[n] +K,e, [n —1] , (2-b)  up hereafter.

tined=tle, gh+d=tnl+movn] @)

where A discrete-time PLS can be represented for itsyaimby:

. x[n+1=A,x[n], xO§, (6)
)= {eri [n] ife [n]<0 3

&.[n] otherwise where xOR" is the state of the systenfs}, OR" is a
partition of the state-space in a number of clgselyhedral

and a simple choice for the predicted erroé,i{h] =g, [n —1]. subspaces] is the set of the indices of the subspacesand

V. is governed by (2-a) or (2-b) depending on whether the matrix of thei® local model of the system. Let us also
predicted error is propagated in the filter or rd. define Q the set representing all the possible transitfoms
SubstitutingV, in (1) by (2-a), respectively (2-b), one carPne region to another, such as:

show that the error is respectively governed Hyeeit
a={i, j/xn|0s . n+10S;, j i} )
ei[n+1]=2e, [n]-K,[n|-e, [n-1]-K,e[n-1] (4-9)
In some cases, it is possible to prove the stglofitPLSs by
or finding a common quadratic Lyapunov function (CQLE.
a functionv(x)=x"Px, P=P" >0, such that

euln+1=20, - Koelnl- 00 K ey -1 @) [ o

Note that (4-a) (resp. (4-b)) may be recast as fmsap. two) . ) )
separate linear equations where ondy[n+1 and its past Determining the existence of a CQLF can be donedbying

. . . the set of linear matrix inequalities (LMIs) (8)hish can be
values appear, each equation corresponding tosibp@salue achieved with software such as Matlab. However,yrROSs
of &n] and gn-1. The SS-PLL synchronizes whes [n] ;

- _ i are stable, even though no CQLF exists. It may then
goes to zero or, equivalently, when the piecewiseal possible to prove stability by constructing piecevguadratic
systems (PLSs) defined by (4-a) and (4-b) are &tabjyan,noy functions [5-6]V,(x)=x"Px, i0l, so that the
Determining the stability of such systems is a riotsly followi laxed stabilit ditions:

difficult task: for example [3], for certain valued K, and ollowing refaxed stability conditions:

K,, an SS-PLL governed by (4-b) may be stable eveugin
the equation corresponding &q[n]>0: ATPA -P +M, <0, TiOl 9)



Stability domain of S5-PLL (4-a)

Figure 2. Stability domain of SS-PLL (4-a) given by PQLF (@Keaarea) and
transient simulation (grey area).

are satisfied. In (9)M, is a matrix such thak™™;x>0,
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Stability domain of S5-PLL (4-b)
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Figure 3. Stability domain of SS-PLL (4-b) given by [3] (blkaarea) and

transient simulation (grey area).

IV. SYNCHRONIZATION OFSS-PLIs

OxOs , which can be constructed as follows. Since tis ce | ¢t ys define the “stability domain” of an SS-PL& the
S are polyhedral, it is easy to build for each @fitha matrix set of values of, and K, for which the SS-PLL is stable
E; such that,0xOS;, E;x has non-negative entries. Then, foand, thus, synchronizes. In this section, we trylétermine

any positive matrixU; (i.e. any matrix with non-negative the stability domain of SS-PLLs governed by (4-a)(4b)
associated with the predictiod [n]=e, [n-1]. Equation (4-a)

entries):
can be recast into the canonical form (6) by sgttin
x"E[U,E;x=20, OxOS, (10)
xn]= (&[] eln-1 efn-2, (13)
and M; can be chosen a§l; =E] U,E. The main result of
Feng's work [6] applied to discrete-time PLSs with@n ) .
affine term is summarized in the following theorem. 2-K;, -1-K, O
Theorem (Feng) A=l 1 0 0] if g[n| ande;[n-1<0, (14)
0 1 0
Consider the discrete-time PLS (6). If there exsime - -
symmetric matrice®, , U;, W, andQ;;, i, jd!I such thatu,,
W;, and Q; are positive and the following LMis are 2 -1-K,-K, 0]
respected! A,=|1 0 0| if e;n]>0 ande,[n-1<0,(15)
0 1 0
0<P -EJUE, ,iOl
ATPA, -P +ETWE, <0,i0l (12) _
ATPA -P +EIQ,E <0, {i,j}0Q 2 1K oK
PR b Ag=|1 0 0 if e;[n] ande;[n-1]>0, (16)
then the origin of the PLS is asymptotically sta®reover, 0 ! 0
the function:
V(X)=x"Px, xOS (12) 2-K 1 K,
A,=| 1 0 o0 | if eln<0anden-1>0. (17)
is a Lyapunov function for the system. L 0 1 0




Equation (4-b) can be recast into canonical formgug\, if

e,[2] = cosa, we obtain the basins of attraction shown in Fig.

e;[n]<0 and A, if e[n]>0. Now, it must be noted that it is4. Depending on the initial conditions, this SS-Phiay

not possible to find a PQLF for a system which stimy more
than one time-step in an unstable cell (i.e. a &eliwhose

synchronize or not. However, for small valuesegfn|, the
system may easily switch from a stable behaviouramo

matrix A, has a singular value larger than 1). Since, frojn [3/nstable one (because of round-off errors, for @ten

A, is always unstable, it is impossible to find a Ffar an
SS-PLL governed by (4-b) and,[n]=¢,[n-1]; on the other
hand, some sufficient conditions ok, and K, can be
derived analytically [3]. If the SS-PLL is governég (4-a)

V. CONCLUSION

SS-PLLs, the basic building blocks of clock disftibn
networks based on digital PLLs, were describedhis paper.
We showed that SS-PLLs can be modeled as piecdiwese-

and &, [n]=e, [n-1], the PQLF approach can be used, becaus¥stems and tested two approaches in order tondetetheir
by construction, the system can only stay for ame-step in St@Pility domains. None of these approaches is very

S, (and in ;). The matrix inequalities can be solved wit
Matlab.

Ky=18K,=-14

8, [2]
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Figure 4. Basins of attraction of an SS-PLL. The white (ré8pck) domain
corresponds to initial conditions leading to stglbésp. unstable) trajectories.

In Fig. 2 (resp. 3), the stability domain of an BS-
governed by (4-a) (resp. (4-b)) and,[n]=e,[n-1] is
represented. In Fig. 2, the black subset correspdadthe

values of K; and K, for which a PQLF could be found,

whereas, in Fig. 3, it corresponds to the valuesmuaich the
PLL can be analytically shown to synchronize [3heTgrey
subset corresponds to the valuek pfand K, for which the
transient simulation of (4-a) or (4-b) convergeteiss than 10
iterations. The criterion for convergence is thwe final value
of the errore, be smaller than 10 The initial values ofe,
follow a normal distribution N(01). In both figures, the
triangle delimited by the dashed lines correspotaighe
stability domain of a “classical” PLL, for whick[n]=e,[n].
As expected, the black area is always a subsbedjrey area.

Choosing K; and K, in the grey subset should always b%]

made with caution. As can be seen from Fig. 2 ¢n&porder
between the grey subset and the white (unstabibsesis very
difficult to define. Furthermore, as was mentionedsection
I, some points belonging to the grey subset mayfaict
correspond to unstable systems. For example, cemaiéPLL
governed by (4-b), withK; =18 and K, =-14. Testing

different initial conditions of the forme,[1]=sina and

gonclusive. On the one hand, the LMI-based apprdach

rigorous but cannot be made to apply to all SS-PLLs
Moreover, it yields very conservative results asdquite
costly in computing time. On the other hand, deteimg
stability of SS-PLLs through transient simulatioissrather
hazardous: as we have shown, some SS-PLLs mayitexhib
stable or unstable behaviour depending on theitiaini
conditions. While it was relatively simple to teat large
number of initial conditions for a single SS-PLLhist
approach is not realistic in the context of a langéwork of
SS-PLLs. It might then be necessary to explore sbbu
simulation methods [7], which may give results wiRDLFs
cannot be found. However, these methods are natdyio
costly and may not adapt easily to the context afyd
networks of PLLs. In practice, another solution \dobe to
design the PLLs so that they adapt the values effitter
coefficients until a consensus is reached. Othediptions
&,[n] may also be tested in order to increase the Htabil

domain. A more realistic model - including satuwatiof the
DPD and quantization of the DCO - of the SS-PLLthie
subject of ongoing work, as is determination of tbek-in
range.
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