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Fault diagnosis for nonlinear aircraft based on control-induced redundancy

Julien Marzat, Hélène Piet-Lahanier, Frédéric Damongeot, Éric Walter

Abstract— A Fault Detection and Isolation (FDI) method
for a generic 3D aircraft is presented. The behavior of the
aircraft is described by a nonlinear control-affine model, which
is closed-loop controlled by a classical guidance, navigation
and control (GNC) algorithm. The proposed FDI procedure
exploits the redundancy induced by this control module, along
with the accelerations measured by the Inertial Measurement
Unit (IMU). Estimates of first-order derivatives of some state
variables are thus readily available and allow one to estimate
the control inputs as achieved by the actuators. Since the
computed control input sent to the actuator is known, it is
possible to use the discrepancy between these two elements as a
residual indicative of faults. This strategy is successfully applied
to the proposed aeronautical benchmark to detect and isolate
actuator faults affecting simultaneously flight control surfaces
and propulsion.

Index Terms— aerospace, aircraft, fault detection and isola-
tion, fault diagnosis, nonlinear systems, system inversion.

I. INTRODUCTION

A reliability study [1] reports that about 80% of flight

incidents concerning Unmanned Aerial Vehicles (UAV) are

due to faults affecting propulsion, flight control surfaces or

sensors. To allow the mission to carry on and to insure

its safety, these faults should be detected early, before they

lead to catastrophic failures. A classical way to tackle this

problem is to use hardware redundancy, i.e., multiple de-

vices performing the same function. However, this approach

implies higher costs, lower autonomy and reduced payload,

because of the additional weight, volume and power required.

An interesting way to circumvent these difficulties is to

rely on analytical redundancy, which exploits the relations

between measured or estimated variables to detect possible

dysfunctions of the system [2], [3].

The main FDI approaches, coming from different com-

munities, are reviewed in [4], where the most promising

methods for aeronautical systems are pointed out. Most

model-based methods use a linear dynamical model of the

aircraft (see, e.g., [5] or [6]). In aerospace, though, nonlinear

models provide a more accurate representation of the vehicle

complex behavior [7]. The immediate idea would be to

linearize the model in order to be able to apply the familiar

linear techniques, but the inaccuracy thus generated increases

drastically non-detection and false-alarm rates [8]. Therefore,

dedicated nonlinear methods should be investigated.

An interesting breakthrough has been achieved in

a differential-geometric framework by De Persis and
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Isidori [9]. This method extends the parity space ap-

proach [10] to nonlinear control-affine systems. It has been

successfully applied to a two-dimensional aircraft model

in [11]. Most FDI methods, including the latter, check

whether the outputs of the system monitored are consistent

with the inputs, given the model. Another interesting idea

is inversion-based FDI, which uses the left-inverse of the

nonlinear system (defined as in [12]) to check whether the ex-

pected inputs are consistent with the measured outputs [13].

However, all these approaches require the computation of

successive derivatives of noisy and disturbed inputs and

outputs (which can be numerically tricky), or model trans-

formations that lack generality.

Aircraft are most often equipped with an Inertial Measure-

ment Unit (IMU) that measures non-gravitational accelera-

tions and angular rates. These quantities are then integrated

by an Inertial Navigation System (INS) to estimate the entire

state vector. They are derivatives of the velocity variables that

are in the state vector. Building a left-inverse model through

successive derivations of differential equations can thus be

avoided. We propose to perform a direct inversion to estimate

the achieved control inputs from available information. It

is similar in spirit to that in [14], where acceleration is

estimated instead. As the desired control inputs are known,

consistency may then be checked between the estimated and

expected control values.

This approach is illustrated on an aeronautical benchmark

defined in [4], which is representative of a large panel of

aerospace vehicles. The aircraft considered is equipped with

classical, non-redundant sensors and actuators. Its three-

dimensional behavior is represented by a nonlinear control-

affine model described in Section II.

The practical application of the proposed FDI approach to

this aeronautical benchmark is the focal point of this paper.

A formal description of the method is available in [15]. The

preliminary analytical computation is explained in Section III

and simulation results are displayed in Section IV. They

show that the fault diagnosis approach allows the detection,

isolation and even identification of multiple actuator faults.

Conclusions and perspectives are discussed in Section V.

II. AERONAUTICAL BENCHMARK

The vehicle considered is a surface-to-air missile on an

interception mission. It is equipped with an IMU, coupled

with an INS. The orientation of the vehicle is governed by

three rudders, one per axis. The propulsion is regulated along

the main axis of the missile, which is assumed cylindrical.

The geometry of the aircraft in its body frame is displayed

in Figure 1. These features are not specific to the case study



and are shared by other applications, such as an UAV on an

exploration mission. The description of the flight dynamics

is stated below.

Fig. 1. Missile scheme in body frame

A. Notation

• I = diag(a, b, b) is the inertia matrix of the system,

• [x, y, z] is the position in the inertial frame,

• [vbx, vby, vbz] is the speed in body coordinates,

• [abx, aby, abz] is the non-gravitational acceleration in

body coordinates,

• [ϕ, θ, ψ] is the orientation of the vehicle,

• [p, q, r] is the angular velocity,

• [δl, δm, δn] are the rudder deflection angles,

• η is the propulsion rate,

• Q = 1
2ρ

(
v2bx + v2by + v2bz

)
is the dynamic pressure,

• α = arctan
(

vbz
vbx

)
is the angle of attack,

• β = arctan
(

vby
vbx

)
is the sideslip angle,

• m is the aircraft mass,

• fmin and fmax are constants of the propulsion model,

• sref and lref are the reference surface and length,

• c(.) are the aerodynamic coefficients, known piecewise

continuous nonlinear functions of (α, β).

B. Dynamics

The force equation is
[
abx
aby
abz

]
=

[
v̇bx
v̇by
v̇bz

]
+

[
p
q
r

]
∧

[
vbx
vby
vbz

]
=

1

m
(faero + fg) (1)

where



faero = Qsref

[
− (cx0 + cxαα+ cxδlδl + cxδmδm + cxδnδn)

cy0 + cyββ + cyδlδl + cyδnδn
− (cz0 + czαα+ czδmδm)

]

+

[
fmin + (fmax − fmin) η

0
0

]

fg =

[
− sin(θ)mg

cos(θ) sin(ϕ)mg
cos(θ) cos(ϕ)mg

]

Since the inertia matrix is diagonal, the momentum equation
is {

ṗ = QsrefL

a

q̇ = 1
b
[QsrefM − (a− b)pr]

ṙ = 1
b
[QsrefN − (b− a)pq]

(2)

where




L = cl0 + clββ + clδlδl + clδnδn + lref√
v2
bx

+v2
by

+v2
bz

clpp

M = cm0 + cmαα+ cmδmδm + lref√
v2
bx

+v2
by

+v2
bz

cmqq

N = cn0 + cnββ + cnδlδl + cnδnδn + lref√
v2
bx

+v2
by

+v2
bz

cnrr

The angular dynamics is
[
ϕ̇

θ̇

ψ̇

]
=

[
1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ

cos θ

cosϕ

cos θ

][
p
q
r

]
(3)

The model description should be completed with the coor-
dinate transformation from the body frame to the inertial
frame,
[
ẋ
ẏ
ż

]
=

[
cosψ cos θ Rb1 Rb2

sinψ cos θ Rb3 Rb4

− sin θ cos θ sinϕ cos θ cosϕ

][
vbx
vby
vbz

]

(4)
where

Rb1 = − sinψ cosϕ+ cosψ sin θ sinϕ
Rb2 = sinψ sinϕ+ cosψ sin θ cosϕ
Rb3 = cosψ cosϕ+ sinψ sin θ sinϕ
Rb4 = − cosψ sinϕ+ sinψ sin θ cosϕ

The state vector is x = [x, y, z, vbx, vby, vbz, p, q, r, ϕ, θ, ψ]
T

and the input vector is u = [δl, δm, δn, η, ]
T. This com-

plete control-affine nonlinear model has 12 state vari-

ables, which is highly classical in aerospace models. The

complete model structure is obtained by gathering equa-

tions (1), (2), (3) and (4).

C. Sensors and Guidance, Navigation and Control (GNC)

The IMU measures the non-gravitational acceleration

and angular velocity. The INS integrates these ele-

ments to estimate the position, velocity and orienta-

tion of the vehicle. The resulting output vector is

y = [abx, aby, abz, p, q, r, x, y, z, vbx, vby, vbz, ϕ, θ, ψ]
T. Er-

rors affecting the measurements are usually modeled as bi-

ases, scale factors and noise. For example, the measurement

of the yaw rate r is expressed as r̃ = krr+br+wr where kr
is the scale factor, br the bias and wr follows a zero-mean

Gaussian distribution with standard deviation σr. These three

parameters (for each sensor) are characteristic of the IMU

and set in the simulated test case at typical values.

An interception guidance law is designed to drive the

distance between missile and target to zero. The upper part

of Figure 2 shows the guidance architecture, which is a

closed-loop control using exogenous target information. The

classical approach separately defines the guidance law and

an autopilot that translates acceleration orders in actuator

rotations. Further details concerning the GNC theory used in

the benchmark can be found in [16].

D. Faults

We need to distinguish two types of control input vectors.

• The (known) control input vector as computed by the

GNC module, uc = [δlc, δmc, δnc, ηc]
T.

• The (unknown) control input vector as achieved by the

actuators, ua = [δla, δma, δna, ηa]
T.



Sensor faults may be modeled as unexpected variations in

the uncertainty parameters of the IMU. We focus here on

actuator faults, which result in discrepancies between uc

and ua. This means that the control input sent by the

GNC module is not correctly implemented by the actuator.

Actuators faults will be modeled as

ua = σf · kf · uc + (1− σf) · uf

where ∀t > tfault, depending on the type of fault occurring,

and where the parameters are such that




σf = 1, kf = 1 (no fault)
σf = 1, 0 < kf < 1 (loss of effectiveness)
σf = 0, kf = 1, uf = uc(tfault) (locking in place)

This fault model will be used to simulate two major faults

affecting actuators, namely the loss of effectiveness of the

propulsion and the locking in place of one rudder (or more).

III. FAULT DIAGNOSIS

A. Principles

The key idea is to use the control-affine structure of the

system and the available measurements to extract directly an

estimate of the achieved control input vector, without com-

puting an inverse state-space model. Let ûa be this estimate

of ua. Fault residuals are then obtained by comparing ûa

with uc. The complete architecture of the system coupled

with the fault diagnosis procedure is displayed in Figure 2.

Fig. 2. Vehicle loop and residual generation

Many inversion procedures can be considered. We now

present a possible approach to obtain expressions of ûa that

will lead to reliable fault detection, isolation and identifica-

tion.

The first step is to select, from the entire state-space model

described in Section II-B, state equations where the control

inputs are the only unknown variables. In other words, these

equations must contain only measured (or reliably estimated)

state variables and their derivatives, and control inputs. The

only group of equations fulfilling this requirements is that

of the force equations (1). Indeed, there is no control input

present in (3) and (4), so these equations are useless for the

proposed FDI method. Equations of (2) are also excluded,

because the variables ṗ, q̇, ṙ are not measured. For fault

diagnosis, we thus consider only the force equation, whose

only non-measured variables are the control inputs, which

appear in an affine manner




abx = −
Qsref
m

[cx0 + cxaα+ cxδlδl + cxδmδm + cxδnδn]
+ 1

m
[fmin + (fmax − fmin) η]

aby = Qsref
m

[cy0 + cybβ + cyδlδl + cyδnδn]

abz =
Qsref
m

[cz0 + czaα+ czδmδm]

It could be formalized as f = Gu, or more explicitly



f1
f2
f3


 =



g11 g12 g13 g14
g21 0 g23 0
0 g32 0 0







δl
δm
δn
η


 (5)

where




f1 = abx +
Qsref
m

[cx0 + cxaα]−
fmin

m

f2 = aby −
Qsref
m

[cy0 + cybβ]

f3 = abz +
Qsref
m

[cz0 + czaα]

g11 = −
Qsrefcxδl

m

g12 = −
Qsrefcxδm

m

g13 = −
Qsrefcxδn

m

g14 = fmax−fmin

m

g21 = −
Qsrefcyδl

m

g23 = −
Qsrefcyδn

m

g32 = −
Qsrefczδm

m

Note that these coefficients are all functions of the measure-

ment vector y, however this dependency will be omitted in

what follows for the sake of simplicity.

B. Direct residuals

The idea of the estimation procedure is to consider sep-

arately each equation in (5). Using one of these equations,

each control input involved can be estimated as a function of

the measurements and the other control inputs. Substituting

the computed values for the unknown values of the other

inputs gives an estimate of this control input as achieved by

the corresponding actuator. This direct procedure produces

as many residuals as there are nonzero terms in G (seven

here).

Consider, for example, the second equation f2 = g21δl +
g23δn. It is possible to obtain estimates of δla and δna (roll

and yaw angles achieved by the corresponding rudders) as

δ̂la =
f2 − g23δnc

g21
(6)

and

δ̂na =
f2 − g21δlc

g23
(7)

These estimates are valid only when the corresponding

denominators are nonzero. They are structurally so, but their

value should nevertheless be checked and the residual not

taken into account if the denominator is too close to zero.



Residuals can now be generated by comparing the values

obtained through (6) and (7) to the computed control inputs

δlc and δnc, provided by the control module, to get the

residuals

r21 = δ̂la − δlc =
f2 − g23δnc

g21
− δlc (8)

and

r23 = δ̂na − δnc =
f2 − g21δlc

g23
− δnc

Five other residuals are obtained similarly from the first and

third equations of (5).

C. Sensitivity and robustness

The sensitivity of the residuals to actuator faults should be

analyzed, to ensure the possibility of isolation when multiple

faults occur. If we consider the previously generated residual

r21 and replace f2 by its expression from (5), we have

r21 =
g21δla + g23δna − g23δnc

g21
− δlc

= (δla − δlc) +
g23
g21

(δna − δnc) (9)

Therefore, if a fault affecting the roll rudder δl occurs and

if there is no fault affecting the yaw rudder δn (i.e., δna =
δnc), then the residual r21 measures the distance between δla
and δlc and directly identifies the error of angle affecting the

roll rudder. On the other hand, if there is no fault affecting δl
and if a fault affecting δn occurs, the residual will react to it

but will not allow a direct identification of the fault because

of the factor involved in (9). The fault on δn, if isolated, can

nevertheless be identified by multiplying r21 by g21/g23. The

residual r23 has the opposite features. This analysis makes

it possible to fill in the first seven rows of Table I.

To get an idea of the robustness of the method to

model uncertainty, let the actual equation for f2 in (5) be

f2 = (g21 + ε1) δl + (g23 + ε2) δn, where ε1 and ε2 are

small parameters (not necessarily constant). This represents

model uncertainty on constant parameters (e.g., mass) and

aerodynamic coefficients c(·), which are partially unknown

in practice. Injecting this expression for f2 in (8) yields

r21 =
(g21 + ε1) δla + (g23 + ε2) δna − g23δnc

g21
− δlc

= (δla − δlc) +
g23
g21

(δna − δnc) +
1

g21
(ε1δla + ε2δna)

= (δla − δlc) +
g23
g21

(δna − δnc) + ∆ (ε1, ε2,ua,y)

The residual is still sensitive to the two faults on δl and δn as

explained in the sensitivity analysis, however an additional

term ∆(·) has appeared, in which

• ε1 and ε2 are small parameters. A bound on their value

may be known or assumed;

• δla and δna are the unknown but bounded (due to

physical saturation) control inputs as achieved by the

actuators;

• the g(·)s are known functions of the measurements.

The available information on these variables implies that

upper and lower bounds on ∆(·) are computable at each

time step. If ε1 and ε2 are small enough, ∆ should remain

smaller than the size of the fault that needs to be detected and

isolated. Nevertheless, identification of the numerical value

of the fault in such conditions should be carried out with

care. The same type of dependency to model uncertainty is

observed with observer-based or parity space approaches as

described, e.g., in [3] or in [17].

D. Additional residuals

The residuals obtained so far are functions of the available

measurements and computed control inputs. Others may be

obtained by substitution.

1) First substitution: The second equation in (5) contains

only one control input, δm. It is then possible to obtain

an estimator of this control input as a function of the

measurements only,

δ̂m =
f3
g32

(10)

This expression can be injected into the residuals in place

of the computed control input δmc. Consider, for example,

the residual

r11 =
f1 − g12δmc − g13δnc − g14ηc

g11
− δlc (11)

and substitute δ̂m as given by (10) for δmc to get the

alternative residual

r̃111 =
f1 − g12

f3
g32

− g13δnc − g14ηc

g11
− δlc

As shown in Section III-C, sensitivity to a given actuator

fault is indicated by the presence of the corresponding

computed control input in the residual. Here, r11 is sensitive

to faults affecting all the actuators while r̃111 is insensitive

to faults on δm. Four such residuals are obtained from the

first equation of (5), and their sensitivity was analyzed as in

Section III-C to complete Table I.

2) Second and third substitution: The second equation of

(5) makes it possible to express δl as a function of δn and

the measurements and reciprocally δn as a function of δl and

the measurements, to get

δ̂l =
f2 − g23δnc

g21
(12)

and

δ̂n =
f2 − g21δlc

g23
(13)

Substituting δ̂l as given by (12) for δlc in (11), one obtains

the new residual

r̃211 =
f1 − g12δmc − g13δnc − g14ηc

g11
−
f2 − g23δnc

g21

=
f1 − g12δmc − g14ηc

g11
−

f2
g21

−

(
g13
g11

−
g23
g21

)
δnc

To analyze the sensitivity of this new residual, f1 and f2



are replaced by their expression from (5) to get

r̃211 =
g12
g11

( δma − δmc) +
g14
g11

( ηa − ηc)

+

(
g13
g11

−
g23
g21

)
( δna − δnc)

This residual is thus insensitive to δl, which allows fault

isolation between δl and δn. However, no direct fault identi-

fication is possible due to the functions involved. The other

residuals r̃212, r̃213, r̃214 will be sensitive to the same actuator

faults but may allow further fault identification.

The same kind of substitution can be made with (13),

producing one additional residual r̃311 that will be sensitive to

faults affecting δl, δm and η but not δn. Three other residuals

could be obtained and will present sensitivity to the same

actuator faults.

3) Fourth and fifth substitution: It is even possible to go

further. As earlier, δmc can be replaced by the estimate (10)

in the residuals generated in the previous paragraph, which

produces residuals r̃411, which is sensitive to faults affecting

only δn and η, and r̃511, which is sensitive to faults affecting

only δl and η. Table I sums up the sensitivity of all these

residuals to the actuator faults.

TABLE I

FAULT SIGNATURES

δl δm δn η

r11 1 1 1 1

r12 1 1 1 1

r13 1 1 1 1

r14 1 1 1 1

r21 1 0 1 0

r23 1 0 1 0

r32 0 1 0 0

r̃111 1 0 1 1

r̃211 0 1 1 1

r̃311 1 1 0 1

r̃411 0 0 1 1

r̃511 1 0 0 1

Notice that the fault signature (the Boolean column) of

each actuator in Table I is unique. This means that fault

detection and isolation is possible even when multiple faults

occur successively or simultaneously. It has also been shown

that fault identification may be possible if only one fault to

whom the residual is sensitive occurs at a time.

IV. SIMULATION RESULTS

The aeronautical benchmark (cf. Section II) is simulated

with a time step of 0.01s. Uncertainty parameters affecting

IMU measurements are tuned to typical values, as mentioned

in Section II-C. The IMU is also assumed to suffer a delay of

two time steps. Three fault scenarios are defined, a selection

of residuals being displayed for each of them (cf. Table II).

The corresponding 3D trajectories are presented in Figure 3.

TABLE II

FAULT SCENARIOS

Scenario Faults Residuals displayed

1 loss of 25% of η at 30s r14, r12, r23

2

{
δm locked at 30s

loss of 25% of η at 50s
r32, r21, r̃

1
14

3

{
loss of 50% of η at 20s

δm locked at 45s
δn locked at 30s

r23, r32, r̃
4
11, r̃

5
14

Fig. 3. Failed-interception trajectories

A. Scenario 1 (see Figure 4)

The 25 % propulsion loss is identifiable with r14. The

residual r12 allows the detection of the fault but is not tuned

to identify it, while r23 is insensitive to it. This abrupt fault

can be detected with a very short delay.

Fig. 4. Scenario 1

B. Scenario 2 (see Figure 5)

The residuals r32 and r̃114 respectively allow the detection

and identification of faults on δm and η. The residual r21 is

insensitive to both faults, ensuring isolation with respect to



faults on the two other actuators. The incipient character of

the fault affecting δm will imply a delay in its detection and

identification.

Fig. 5. Scenario 2

C. Scenario 3 (see Figure 6)

The residuals r23, r32 and r̃514 are respectively sensitive to

faults on δn, δm and η. The residual r̃411 reacts to both faults

on propulsion and the yaw rudder.

Fig. 6. Scenario 3

Note that, through this FDI procedure, the detection,

isolation and identification of faults affecting three actuators

(out of four) simultaneously is feasible, using only the three

force equations.

V. CONCLUSIONS AND PERSPECTIVES

This paper was dedicated to the application to an aero-

nautical test-case of the nonlinear diagnosis method that has

been formally presented in [15]. The major assumptions are

that the behavior of the system can be reliably represented

by a nonlinear control-affine model, and that an IMU (or

any other device measuring acceleration) is available. If these

assumptions are valid, then the force equation can be used to

compute fault residuals. An inversion procedure to extract the

achieved control inputs from this model has been presented.

Residuals are obtained by comparing the estimates of the

control inputs achieved by the actuators with the computed

ones provided by the control module. Substitutions are then

carried out to eliminate control inputs from the residuals.

Fault detection and isolation of multiple faults affecting all

the actuators has been shown to be feasible on the generic

six-degrees-of-freedom aeronautical benchmark proposed, in

the presence of realistic measurement uncertainty.

This paper was focused on the description of the resid-

ual generation procedure, and the residual analysis strategy

remains to be chosen. Statistical tests and adaptive thresh-

olds are interesting contenders. Sensor faults and robustness

regarding disturbances (such as wind) should also be ad-

dressed.

Finally, the proposed method should be analyzed with

respect to performance indices such as non-detection and

false-alarm rates, detection delays and computational com-

plexity. A framework to conduct as objectively as possible

this rating and comparison with other FDI approaches should

be designed.
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