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Abstract—This paper focuses on viewpoint planning for 3D
active object recognition. The objective is to design a planning
policy into a Q-learning framework with a limited number of
samples. Most existing stochastic techniques are therefore inap-
plicable. We propose to use Kriging and Bayesian Optimization
coupled with Q-learning to obtain a computationally-efficient
viewpoint-planning design, under a restrictive sampling budget.
Experimental results on a representative database, including a
comparison with classical approaches, show promising results
for this strategy.
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I. INTRODUCTION

Object recognition is a field of great interest for an

autonomous vehicle, named agent in what follows, equipped

with an on-board inexpensive camera. Since such sensors

generate only 2D data, numerous approaches have been

proposed to recognize objects from image patterns, but

classifiers are generally tuned for a restricted object pose.

Besides, intrinsic similarities between objects generate vi-

sual ambiguities, thus recognition accuracy strongly depends

on the chosen viewpoint. As the agent has the potential

to fully explore the viewpoint space, richer visual infor-

mation may be available by changing the viewpoint. The

identification of the object of interest might then be realized

from a sequence of observations. This sequence must be

chosen to ensure minimal ambiguity of the classification,

which is the aim of active recognition. Several approaches

could be defined to address the planning of this sequence of

viewpoints. The easiest one, random planification, consists in

selecting the viewpoints according to a uniform distribution.

Another approach derives from an entropy measure, which

is used to compute the information gain of new observations

given the current state of the system [1], [2], [3]. Entropy-

based viewpoint selection has been proven to perform better

than random planification. However, both planification and

classification use a probabilistic modeling of the objects

that should represent theoretical intra-class variations. This

requires a rich amount of learning observations, which is

often difficult to obtain. The system may also learn directly

from visual interactions with the environment into a rein-

forcement learning framework. This approach presents the

great advantage that the planning procedure is independent

from the classifier. Refined modeling of objects is no longer

necessary, thus fewer training data are needed. The so

called Q-learning [4], [5] derives from the mathematical

framework of Markov Decision Processes [6]. A classical

way of solving such a problem is to use a recursive stochastic

estimation of the action value via Monte Carlo. Although it

is well suited to this task as the convergence to the desired

solution is ensured, it requires a large amount of trajectory

samples, restricting its use to cost-free sensing applications.

The aim of this work is to extend the Q-learning to viewpoint

planning when Monte-Carlo estimations are too costly. We

present a novel approach for viewpoint planning based on

a coupled design of a Q-learning procedure and the use

of Kriging for both fitting and global optimization. The

objective is to find the best approximation of the action-value

function within a small sampling budget. In [7], Kriging and

Bayesian optimization have been used to address a simul-

taneous localization and mapping problem under time and

energy constraints. In the present paper, similar strategies

are investigated to tackle the problem of viewpoint planning

for active recognition.

The optimal sampling strategy is achieved by recursively

fitting a parameterized surrogate function on the samples.

This function assumes an underlying Gaussian process, thus

making it cheap to evaluate. An expected improvement

measure is derived from the current sampling so as to select

the next exploration path, and the surrogate function is

updated according to the new sample. Kriging has several

useful properties. First, this unbiased predictor minimizes

the squared prediction error and thus provides a reliable

estimate. Second, it can be used to achieve global optimiza-

tion, by combining the exploration of unknown areas with

the exploitation of current knowledge. Third, the Kriging

predictor is linear on the available observations, involving a

very reduced computational cost. Finally, all the underlying

parameters may be estimated by maximum-likelihood to fit

the available data.

This paper is organized as follows. Section II reviews

the main principles of active recognition and Q-learning.

Section III describes the basics of Kriging and how it



Figure 1. Closed-loop between the agent decision system and environment
sensing. The decision system planifies on-line a sequence of observations
from both the database ambiguity and its current state of knowledge

can be used to enhance viewpoint planning. Experimental

results illustrate the proposed approach in Section IV, while

conclusions and perspectives are reported in Section V.

II. ACTIVE RECOGNITION

A. Multiple Observations Fusion

Let Ω = {1, . . .K} be a set of object classes. Given

a sequence of T observations XT = {x1 . . . ,xT } such

that x ∈ R
m, associated with their respective viewpoints

VT = {θ1 . . . , θT }, such that θ ∈ R
d, the class label ω

should be inferred amongst Ω with minimum error. Since

observations might be disturbed by intra class variation and

noise (illumination changes, occlusions, clutter), recognition

is expressed in a probabilistic framework. The state of the

system at time t is st = P (ω | Xt,Vt). The state contains

both the current class hypothesis and the viewpoints that

have been visited. The decision of the object class is given

by a posteriori maximizing

ω∗ = argmax
ω∈Ω

P (ω | Xt,Vt) (1)

The integration of a next pair observation-viewpoint is

defined as follows :

P (Xt,Vt,xt+1, θt+1 | ω)

= P (xt+1, θt+1 | Xt,Vt, ω)P (Xt,Vt | ω)

= P (xt+1 | θt+1,Xt,Vt, ω)

×P (θt+1 | Xt,Vt, ω)P (Xt,Vt | ω) (2)

In the Markov assumption, the equality

P (xt+1 | θt+1,Xt,Vt, ω) = P (xt+1 | θt+1, ω) is applied. It

yields

P (Xt,Vt,xt+1, θt+1 | ω) = P (xt+1 | θt+1, ω)

×P (θt+1 | Xt,Vt, ω)P (Xt,Vt | ω) (3)

The evaluation of the probability

P (xt+1 | θt+1, ω) (4)

is performed by the classifier. A higher range in X and

V could be considered without challenging the rest of the

approach, but it would require more complexity in the design

of the classifier, which is not the focus of the paper. The

probability P (θt+1 | Xt,Vt, ω) indicates how to select the

next viewpoint given the past observations of the object.

Given the current state st at time t, an estimation policy

πe should be defined to favor actions leading to a fast and

accurate estimation of s∗t , which is the aim of the next

section.

B. Q-learning Framework for learning viewpoint selection

A solution to (1) both independent from the classifier and

the objects to identify is looked for in this paragraph. The

selection of the next best action for recognition is based on

a previous series of actions and decisions performed during

the learning stage. In Q-learning [8], a closed loop linking

acting and sensing is defined (see Figure 1). An action is

defined by at = (θt+1 − θt) ∈ A(st) where A(st) is the set

of available actions in state st. A quality criterion Q(st, at)
is associated to each state-action pair (st, at) ∈ S×A(st). Q
should reflect how good it is for the agent to select at for the

future. The expected return of the subsequent steps is defined

as a function of N + 1 actions aN+1 = [aTt , . . . , a
T
t+N ] ∈

A(st)× . . .× A(st+N ). Thus, it yields

Rt(aN+1) =

N∑

n=0

γnrt+n+1(at+n) with γ ∈ [0; 1] (5)

where rt+n+1 : S × A(st+n) → R is the reward associ-

ated with action at+n. The discount rate γ is a constant

coefficient that controls the influence of each subsequent

step. Note that N is theoretically equal to infinity. As future

rewards are not known in advance, the action-value is given

by the expected return

R̃t(aN+1) = EPθ
[Rt(aN+1)] (6)

The expectation is taken with respect to the pose uncertainty

Pθ =
N∏

n=0

p(xt+n+1 | θt+n+1, st+n)

×p(θt+n+1 | θt+n, at+n) (7)

Equation (6) can be rewritten in terms of a one-step recursive

estimation of Q

Q(st, at) = EPθ
[rt+1] + γ max

at+1∈A(st+1)
Q(st+1, at+1) (8)

At the end of the learning stage, Q is supposed to converge

to the optimal quality criterion Q∗. The optimal action policy

is then defined by

π∗
e(s) = argmax

a

Q∗(s, a) (9)

Numerous approaches have been proposed to estimate Q∗

(for a detailed description, see [9]). An Off-Policy Control



has been selected here to solve the Q-learning problem. The

behavior policy used to sample trajectories is unrelated to

the estimation policy. The optimal action value Q∗(st, at) is

chosen as the maximum expected return of the N subsequent

steps following at. It is a natural choice since it corresponds

to the subsequence of actions that should be performed.

For computational tractability, we assume recognition to be

viewed as an episodic task. Thus, N is a finite number of

actions and, under this assumption, QN is the corresponding

expected return. The learning of QN (st, at) is then defined

in four steps.

1) given a state st, generate a sequence of K actions at
according to a sampling behavior policy πb,

2) for each action at, generate a series of K ′ subsequences

of actions according to a behavior policy π′
b,

3) for each subsequence of actions, calculate the expected

return,

4) find the subsequence aN = [aTt+1, . . . , a
T
t+N ] ∈

A(st+1) × . . . × A(st+N ) that maximizes the expected

return and update QN (st, at) by using equation (8) as

follows :

QN (st, at) = EPθ
[rt+1]+max

aN

EPθ

[
N∑

n=1

γnrt+n+1

]
(10)

C. Basic Sampling Approach

A straightforward way to estimate Q∗(st, at) from ex-

perience consists in a Monte Carlo evaluation of the max-

imum expected return. The two policies πb and π′
b use a

uniform sampling respectively over A(st) and A(st+1) ×
. . . × A(st+N ). Given an action at and K ′ subsequences

of actions {a
(1)
N , . . .a

(K′)
N }, the action value QN (st, at) is

approximated by

QN (st, at) = EPθ
[rt+1]+ max

a
(k)
N

, k∈[1;K′]

EPθ

[
N∑

n=1

γnrt+n+1

]

(11)

For large values of K, K ′ and N , the quality criterion QN

should converge to the optimal criterion Q∗ (for a fixed value

of γ), which is the idea underlying all Monte Carlo methods.

As a reinforcement learning method, this Monte Carlo esti-

mation process treats states and actions as discrete variables.

To allow for a continuous estimation of Q, a natural way

consists in defining a continuous function Q̂(s, a) by a

weighted sum of the previously collected action-values as

in [10]

Q̂(s, a) =

∑
(s′,a′)∈Γ(s) d(a, a

′)Q(s′, a′)
∑

(s′,a′)∈Γ(s) d(a, a
′)

(12)

where Γ(s) defines the set of all state-action pairs whose

state s′ is equal to s. The term d(a, a′) is a distance function

that measures how far is a from a′. It is generally computed

by using a parametric kernel, usually Gaussian [10]. How-

ever, this approach suffers from several weaknesses. First,

the method implies a large sampling number. An accurate

computation of Q is thus very time-consuming. This turns

out to be infeasible for learning the estimation policy when

actions require a physical (thus slow and costly) move of

the agent. Second, the interpolation involves the selection of

both kernel and kernel parameter values. Optimal selection

can be obtained by cross-validation with the learning objects,

but it requires further simulation time.

III. Q-LEARNING COUPLED WITH KRIGING

To overcome the drawbacks of the Monte-Carlo method,

we propose to use the potentialities of Kriging within the

Q-learning framework in two points. First, a Kriging model

with a smart sampling policy is used to obtain a dense

estimate of Q during the learning stage and avoid the com-

plex interpolation design from equation (12). This accounts

for optimizing the behavior policy πb. Second, a Kriging-

based global optimization procedure furnishes a reliable

estimation of the maximum expected future reward from

equation (10). This accounts for optimizing the behavior

policy π′
b. The design of the two policies are respectively

indicated in Algorithms 1 and 2. The basics of Kriging and

the underlying concepts of these two procedures are now

described.

A. Basics of Kriging

Kriging has been given this name by the French geostatis-

tician G. Matheron, to recognize the seminal influence of

the work of D.G. Krige on the gold deposit of the Rand, in

South Africa [11]. The Kriging approach is presented here

with notations independent from those of the rest of the

paper to remain generic.

Consider a process giving a scalar output y from inputs

u ∈ U ⊂ R
d. Given an initial small sample of size n, Un =

{u(1), ...,u(n)} and the corresponding output results yn =
[y(1), ..., y(n)], the aim of Kriging is to predict the value

of y (·) at any unexplored point u ∈ U. For this purpose,

the function y(·) is modeled as a Gaussian process Y (·)
with mean function avg (·) and covariance function cov (·, ·).
More specifically, Y (·) is written as

Y (u) = fT (u)b+ Z(u) (13)

where f (u) is some known regression function vector (usu-

ally chosen constant or polynomial in u), b is a vector of

unknown regression coefficients to be estimated, and Z(·) is

a zero-mean Gaussian process with known (or parametrized)

covariance function cov (·, ·). Kriging is then the search for

the best linear unbiased predictor (BLUP) of Y (·) [12].

The actual covariance cov (·, ·) is most often unknown. It

is expressed as

cov(Z(u(i)), Z(u(j))) = σ2
ZC(u(i),u(j)) (14)

where σ2
Z is the process variance and C (·, ·) is a parametric

correlation function. Both σ2
Z and the parameters of C (·, ·)



must be chosen or estimated from the available data. Under

a stationarity assumption, C
(
u(i),u(j)

)
depends only on

the displacement vector u(i) − u(j), denoted by h in what

follows. A frequent choice of correlation function, also

adopted in the present paper, is the power exponential

correlation function

C (h) = exp

(
−

d∑

k=1

∣∣∣∣
hk

βk

∣∣∣∣
pk

)
(15)

where 0 < pk ≤ 2, and hk is the k-th component of h.

Note that with this choice, C (h) tends to 1 when h tends

to 0. The βk may be estimated from the data by maximum

likelihood, to get what is known as empirical Kriging. A

wide range of other choices for the correlation function is

available [13].

Define C as the n× n matrix such that its (i, j) element

Cij is

Cij = C(u(i),u(j)) (16)

and c(u) as the n vector

c (u) =
[
C(u,u(1)), ..., C(u,u(n))

]T
(17)

and F as the (n× dim b) matrix

F = [f(u(1)), . . . , f(u(n))]T (18)

The maximum-likelihood estimate b̂ of the regression

coefficients b from the available data {Un,yn} is

b̂ =
(
FTC−1F

)−1
FTC−1yn (19)

The predictor of the mean of the Gaussian process, at u ∈ U,

is then given by

Ŷ (u) = fT (u) b̂+ c (u)
T
C−1

(
yn − Fb̂

)
(20)

This predictor is linear in yn and interpolates the training

data, as Ŷ (u(i)) = y(i). Another interesting property of

Kriging, which is crucial regarding the reliability of the

estimate and global search for a maximum, is the possibility

to compute the variance of the prediction error at u ∈ U by

σ̂2 (u) = σ2
Z

(
1− c (u)

T
C−1c (u)

)
(21)

B. Estimating Q by Kriging

The Kriging predictor is used to compute, for a given

st, the value QN (st, at) for any action at ∈ A(st), with a

reduced sampling budget of K samples. The fitting proceeds

in two main steps. An initialization step consists in choosing

randomly by Latin Hypercube Sampling (LHS) n points

in A(st) (n < K) and computing their corresponding

expected return. A Kriging predictor is then fitted on these

data to obtain a first estimator of QN . The second step

recursively finds the next sampling point for which the

prediction error (21) is high, until the exhaustion of the

sampling budget K. This way, the fitting minimizes the

Algorithm 1: Design of πb by Kriging

Initialize: st, γ,K, n < K,N
Output: Fitted planning function

Choose An = {a
(1)
t

, ..., a
(n)
t
} by LHS in A(st);1

Compute Qn = {QN (st, a
(1)
t

), ..., QN (st, a
(n)
t

)} using2

Algorithm 2;
while n ≤ K do3

Fit the Kriging model on the known data points {An,Qn}4

according to equations (15)→(20);
Find a(n+1) = argmax

a

σ̂2 (a);
5

Compute QN (st, at), append it to Qn and append a(n+1) to6

An;
n← n+ 1;7

end8

Algorithm 2: Design of π′
b by Kriging

Initialize: K′, n′ and use initialized variables from Algorithm 1,
notably the current action at

Output: estimation of the maximum expected return R̃max
t

Choose An′ = {a
(1)
N

, . . . ,a
(n′)
N
} by LHS;1

aN+1 = [aT
t
,aN ];2

Compute, according to (6), Rn′ = {R̃t(a
(1)
N+1), . . . , R̃t(a

(n′)
N+1)};3

while n′ < K′ do4

Fit the Kriging model on the known data points {An,Rn′}5

according to equations (15)→(20);

Find R̃max
t

= max
i=1...n′

{R̃t(a
(i)
N+1)};6

Find a
(n′+1)
N

= max
aN

{EI(a, Rmax
t

)};
7

Compute R̃t(a
(n′+1)
N+1 ), append it to Rn′ and append a

n
′+1

N
to8

An′ ;
n′ ← n′ + 1;9

end10

global prediction error (this is a natural property of Kriging),

but also ensures that the local prediction error is small,

in order to have a high-quality prediction with a reduced

number of points. Algorithm 1 summarizes the procedure.

At Step 2 and 6, the values QN (st, at) of the sampled

actions are computed by Algorithm 2, which achieves global

optimization by Kriging, and which is now described.

C. Bayesian Optimization for best sequence of actions

For a given pair state-action (st, at), a global optimization

procedure should be employed to find the subsequence

of N actions aN =
[
aTt+1, ...a

T
t+N

]
∈ A(st+1) × . . . ×

A(st+N ) that maximizes the expected return R̃t(aN+1)
where aN+1 = [aTt ,aN ]. For that purpose, we propose

to use a global optimization algorithm based on Kriging

and Expected Improvement, called EGO for efficient global

optimization [13]. This algorithm uses the Kriging predic-

tor (20) as a surrogate to find a better approximation of the

global maximum of the expected return, taking advantage

of the knowledge of the prediction error (21). The recursive

procedure maximizes the Expected Improvement, whose

principles are now outlined.



After an initial sampling of n′ subsequences and corre-

sponding computations of R̃t, the best available estimate for

the global maximum is

Rmax
t = max

i=1...n

{
R̃t(aN+1)

}
(22)

The Expected Improvement is expressed in closed-form as

EI(a, Rmax
t ) = σ̂ (a) [uΦ (u) + φ (u)] (23)

where u =
(
Ŷ −Rmax

t (a)
)
/σ̂ (a). Φ is the cumulative dis-

tribution function and φ the probability density function of

the normalized Gaussian distribution N (0, 1). Maximizing

Expected Improvement achieves a trade-off between local

search (numerator of u) and the exploration of unknown

areas (where σ̂ is high) and is therefore well suited for global

optimization.

Our implementation of these algorithms is based on

Sasena’s toolbox SuperEGO [14] and uses the DIRECT

optimization algorithm [15] to achieve Step 5 of Algorithm 1

and Step 6 of Algorithm 2.

IV. EXPERIMENTAL RESULTS

A series of experiments has been performed to validate the

Kriging approach. The illustrative environment, represented

in Figure 2, allows a one-degree-of-freedom displacement

along the azimuth, leading to a 1-dimensional action space.

The database used for recognition is composed of 8 models

of cars, as shown in Figure 3. For convenience, all obser-

vations have been collected in advance: objects have been

presented on a turntable to a calibrated camera and images

have been acquired at video rate, giving approximately 1000

images per object. For each object, 2 datasets have been

considered, namely a learning set for training the planning

policy and the classifier, and a test set for experiments. Each

set corresponds to a 360-degree rotation. Note that this step

does not challenge the use of our sampling approach since

a motion cost could be defined for each observation. Each

image has been centered into a sub-window of 100*100

pixels and annotated with the object class and the object pose

relative to the camera. The classifier is based on the GLOH

appearance descriptor of the objects [16]. Each descriptor

is normalized by its sum in order to reduce the effects of

illumination change. The dimension have been reduced by

PCA to obtain a 5-d image descriptor. A Gaussian mixture

density has then been computed for each class from the

training set, and the probability (4) has been derived. This

choice of classifier (which should have statistical properties)

is independent from the rest of the process.

The learning of the estimation policy has been achieved by

computing, for each class ω∗, a viewpoint planning function

in order to disambiguate this class amongst the database. The

reward rt is defined as the difference between the posterior

Figure 2. Experimental setup for active recognition.

of ω∗ and the best current posterior,

rt = P (ω∗ | Xt,Vt)− max
ω∈Ω, ω 6=ω∗

P (ω | Xt,Vt) (24)

The planning horizon is set to N = 2, but higher values

could be considered without additional constraint. The pa-

rameters of πb and π′
b (Algorithms 1 and 2) are n = n′ = 10

and K = K ′ = 15. The advantage of Kriging interpolation

over classical Gaussian kernel interpolation could be seen

in Figure 4. For the same sampling budget, Kriging inter-

polation is far more sharply with no additional parameter

to tune. For each action at, the expected return could be

estimated by averaging the return of a set of trajectories

generated according to the pose uncertainty distribution, as

in [7]. The return of a single trajectory is considered here,

since no pose uncertainty is assumed during the learning

stage. The discount rate, γ, can be chosen experimentally

to minimize the average number of observations needed to

identify the object class (see Figure 5). The value γ = 0.4
has thus been chosen for the recognition task.

During the recognition stage, the first viewpoint is randomly

chosen. At each step, the agent plans the next viewpoint

using the planning function associated to the current object

hypothesis. The pose uncertainty is modeled by a Gaussian

distribution centered on the selected viewpoint, with stan-

dard deviation of 5 degrees. Recognition ends as soon as one

of the posteriors exceeds a threshold Pmax = 0.9 or when

the maximum number of allowed observations Omax = 20
is reached. Figure 6 compares the recognition performance

using the Kriging approach, the stochastic approach and

random planification. These results are averaged over 50

tests for each class. The Kriging-based planning policy is

shown to converge much faster and provides a significantly

higher maximum performance rate.

V. CONCLUSIONS

We have presented a computationally-efficient approach

for viewpoint planning in active recognition under a re-

stricted sampling budget. Kriging sampling policies have

been defined, achieving a trade-off between exploration and

capitalization of the current best solution. Active recognition

experiments on a database of 8 classes show that the method

is significantly beneficial, providing higher performance and



Figure 3. Illustration of the database used for the experiments. Objects
are represented by their 2D appearance.

Figure 4. Right: Root mean square error between the true planning function
and interpolated curves. Left: Fitting of a planning function (for γ = 0) by
Kriging with different sampling budgets.

Figure 5. Influence of γ on the average number of observations needed
for accurate recognition (obtained with kriging-based viewpoint planning).

Figure 6. Average cumulated performance as a function of the sequence
length for different planning strategies (γ = 0.4).

better estimation than classical stochastic methods. Future

work will study the influence of the sampling budget on

recognition accuracy, take into account pose uncertainty

during the learning stage, optimize the decision threshold,

and test other sampling strategies for viewpoint planning.

REFERENCES

[1] J. Denzler and C. M. Brown, “Information theoretic sensor
data selection for active object recognition and state estima-
tion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 2,
pp. 145–157, 2002.

[2] F. Callari and F. Ferrie, “Autonomous recognition: Driven by
ambiguity,” in CVPR96, 1996, pp. 701–707.

[3] T. Arbel and F. P. Ferrie, “Viewpoint selection by navigation
through entropy maps,” in Seventh Int’l Conf. Computer
Vision, 1999.

[4] L. Paletta and A. Pinz, “Active object recognition by view
integration and reinforcement learning,” Robotics and Au-
tonomous Systems, vol. 31, pp. 71–86, 2000.

[5] F. Deinzer, C. Derichs, H. Niemann, and J. Denzler, “Inte-
grated viewpoint fusion and viewpoint selection for optimal
object recognition,” in BMVC06, 2006, p. I:287.

[6] S. D. Whitehead and D. H. Ballard, “Learning to perceive and
act by trial and error,” Machine Learning, vol. 7, pp. 45–83,
1991.

[7] R. Martinez-Cantin, N. de Freitas, E. Brochu, J. Castellanos,
and A. Doucet, “A Bayesian exploration-exploitation ap-
proach for optimal online sensing and planning with a visually
guided mobile robot,” Autonomous Robots, vol. 27, no. 2, pp.
93–103, 2009.

[8] C. Watkins and P. Dayan, “Q-learning,” Machine learning,
vol. 8, no. 3, pp. 279–292, 1992.

[9] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction (Adaptive Computation and Machine Learning).
The MIT Press, March 1998.

[10] F. Deinzer, J. Denzler, and H. Niemann, “Classifier in-
dependent viewpoint selection for 3-d object recognition,”
Mustererkennung, vol. 22, pp. 237–244, 2000.

[11] G. Matheron, “Principles of geostatistics,” Economic Geol-
ogy, vol. 58, no. 8, p. 1246, 1963.

[12] J. Lefebvre, H. Roussel, E. Walter, D. Lecointe, and W. Tab-
bara, “Prediction from wrong models: the Kriging approach,”
IEEE Antennas and Propagation Magazine, vol. 38, no. 4,
pp. 35–45, 1996.

[13] D. Jones, M. Schonlau, and W. Welch, “Efficient global
optimization of expensive black-box functions,” Journal of
Global optimization, vol. 13, no. 4, pp. 455–492, 1998.

[14] M. Sasena, Flexibility and Efficiency Enhancements for Con-
strained Global Design Optimization with Kriging Approxi-
mations. PhD thesis, University of Michigan, USA, 2002.

[15] D. Jones, C. Perttunen, and B. Stuckman, “Lipschitzian
optimization without the Lipschitz constant,” Journal of Op-
timization Theory and Applications, vol. 79, no. 1, pp. 157–
181, 1993.

[16] K. Mikolajczyk and C. Schmid, “A performance evaluation
of local descriptors,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 27, no. 10, pp. 1615–1630, 2005.


