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Interpreting the iISS Small-Gain Theorem as Transient Plus ISS Small-Gain
Regulation

Hiroshi Ito, Randy A. Freeman and Antoine Chaillet

Abstract—This paper addresses the problem of establishing which connects the iISS small-gain theorem with the con-
stability of interconnections of integral input-to-state stable tractive behavior of trajectories explained by the ISS small-
(iISS) systems. Recently, the small-gain theorem for input-to- gain theorem. In order to understand how the trajectories

state stable (ISS) systems has been extended to the class of ilIS fint ted t | thi that
systems. It has been also proved that at least one of the two Ol Interconnected systems evolve, This paper assumes tha

iISS subsystems comprising a feedback interconnection needs IISS dissipation inequalities are given for both individual
to be ISS with respect to the state of the other subsystem for subsystems. As illustrated by the result in [5] on cascaded

guaranteeing the iISS of the overall system. This paper shows {|SS systems, the use of dissipation inequalities of subsys-
that making use of this necessary condition enables to provide tems is more successful than using trajectory bounds when

more insight on the iISS small gain theorem by giving an . o . .
alternative proof of this result from the perspective of transient dealing with interconnected iISS systems. This paper follows

plus 1SS small-gain regulation. this idea to tackle feedback interconnected systems. The
proof this paper develops splits the system trajectory into
|. INTRODUCTION a transient response and a subsequent response governed by

The ISS small-gain theorem has been widely used in anaTe ISS small-gain condition. This paper illustrates how this
. T . trategy can be made possible for dealing with iISS systems
ysis and design of nonlinear systems [11], [16]. The theore 9y possi g with | y

ey hich are not ISS.
deals with input-to-state stable (ISS) systems and answers t ®he following notation is used throughout this paper. The
guestion of whether their feedback interconnection is agal

3 . X 'Wmbol | - | stands for the Euclidean norm. A continuous
ISS. It was first proved with a trajectory-based approach Minction w R, := [0,00) — R, is said to be positive
[11]. A version relying on the Lyapunov functions associateg1eﬁnite and denoted t;y: € P if it satisfiesw(0) = 0 and

to each of the subsystems was subsequently presentedwlps) > 0 holds for alls > 0. A function is of classc if it

Erl]o]' WhlI”e_tTe constrLtJ_ctlon of af II_)?apun;)r:/ f“”Cf'O’_‘ forgelongs tagP and is strictly increasing; of clags, if it is of
€ overall interconnection 1S usetul from the analysis anf,sqyc and is unbounded. The identity map Bris denoted
design viewpoints, the trajectory-based proof is simpler a

. N . . Id. For a functiony € P, we writey € O(> L) with
illustrates more intuitively the idea of contraction. Recently, non-negative numbek if there exists a positive number

the small-gain theorem has been extended to the intercop- ~ I such thatlim sup +(s)/s" < oo holds. We
nection of integral input-to-state stable (iISS) systems in [615rite + € O(L) when K :SE.OT'he symbols/ and A denote
[9]. The iISS is a more general robustness property thquical sum and logical product, respectively. Férg
ISS [13], [14], and the theorem in [6], [9] includes the IS . —R,, we use the simple no'Eatidﬁmf(s) — lim g(s)
small-gain theorem as a special case. In these reference%adescrib'e{lim f(s) = 0o A limg(s) — 0o} V {oo >
Lyapunov function is explicitly constructed for the overalll. ) = limgts)}. Note that theso case is included. In
interconnection. Another approach, developed in [1], make; similar mannerlim f(s) > lim g(s) denotes{lim f(s) —
use of rgonotonicity and nulr:clinf]s in deriving the sfrnall§O V oo > limf(s) > ﬂmg(s)}. A systemi = f(x)
gain condition to guarantee that the interconnection of ilS e . i . n

systems is globally asymptotically stable (GAS). Althougq dmitting a unique maximal solution(t) € R for any

nri]tial condition z(0) € R™ is said to be GAS if its origin
the approach propo.sed there dogs nqt apply to .Systems il globally asymptotically stable. We léf denote the set of
exogenous mpqts, it offers a unified interpretation of GA Il measurable locally essentially bounded signaisR . —
for interconnections pf iISS ar_1d ISS su_bsystems_. R™. A systemi — f(x,u) admitting a unique solution (t)
The purpose of this paper is to elucidate the iISS smal[in R" for any initial conditionz(0) € R™ and anyu € U is

gain mechanism with and without external signals. In othely;q 14 have the Bounded Energy Frequently Bounded State
words, this paper gives a trajectory-based mterpretatlo(%EFBS' [2]) property with respect to input and stater
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wherez;(t) € R™, r;(t) € R™, z = [z],2]]7 € R» (i) The system (1) withr(t) = 0 is GAS for all

andr = [r{,rI1T € R™. In addition to the existence of subsystems satisfying Assumption 1 only if

a unique maximal solutior:(t) for any initial condition _ _

z(0) € R™ and any measurable, locally essentially bounded Jim aj(s) > lim o;(s) (7
external inputr, we assume that the two subsystems satisfy

the following dissipation inequalities: holds for at least one of € {1,2}.

Assumption 1:For eachi € {1,2}, there exist a continu- (i) The system (1) is ISS with respect to inpuand state
ously differentiable, positive definite and radially unbounded ~ * for all subsystems satisfying Assumption 1 only if
fsltr::cr;[ut)r?a{t/; : R™ — R, and classK functionsay;, o;, 0. lim aj(s) = oco V lim aj(s) > lim o(s) (8)

V1(x1) < —a1(Vi(z1)) + o1 (Va(z2)) + o1 (1)) (@) holds for at least one of € {1, 2}.

Va(xg) < —aa(Va(x2)) + 02(Vi(z1)) + ora(|r2])  (3) Without any loss of generality, we can take= 2 for (7)
and (8). This convention is used in the rest of this paper. The
above theorem does not exactly state that (6) is necessary for
This assumption imposes that each subsysiens iISS the iISS of the interconnection. The difference between (6)
with respect to inputzs_,, ;) and stater; (see for instance and (7) is the equality. Taking into account the necessity of
[3]). We stress that we have assumede K instead ofn; €  (6) for the ISS property, the key idea of this paper is to
P without any loss of generality due to the necessity resuttirectly make use of the property (6) for proving Theorem
in [7] for the iISS feedback interconnectibriThe following 1 in order to interpret the “iISS” small-gain theorem as the
is a result in [9], which is referred to as the iISS small-gairombination of “a transient response” and “the 1SS small-
condition in this paper. gain dynamics”. In other words, we do not consider the case
Theorem 1:Suppose that Assumption 1 holds and thaof
there existwy, wy € K, satisfying

hold for all » € & along the trajectories(¢) of (1).

oo > lim as(s) = lim o3(s) 9)
ayt o (Id+wi) ooy oyt o (Id+ws) o oa(s) < s, s7e0 §7700
Vs e R, . (4) since it prevents us from using the ISS small-gain argument
in the presence of the external signalAnyway, note that

Then, the following statements hold true: the case (9) is incompatible with the small gain condition
(i) Forr(t) =0, the system (1) is GAS. 4) if wy, we € Ko
(ii) If it holds that Remark 1:In the small-gain condition (4), this paper

employs amplification factorss;, ws which are of class
K- As shown in [9], these factors do not have to be class
®) Ko functions in the case of GAS. Nevertheless, it can be
then the system (1) is iISS with respect to inpuand  verified that, under the condition (6), the stability theorem
statez. proposed in [9] requires the existencewf, w, € K sat-
_ i " .. isfying (4) except whefim;_, o as(s) = lims_,o 02(s) =
It is stressed that the small-gain condition (4) |mpI|C|tthm§Hoo a1(s) = limy_ 01(s) = oo holds. However, this
requires that case corresponds to the interconnection of ISS subsystems,
lim as(s) =00 V lim as(s) > lim oa(s) . (6) Which is already widely addressed in the literature and is not
800 §—00 500 the purpose of the present paper. Therefore, we consider
The property (6) implies thak, is ISS with respect to w, € K, for (4) without any loss of generality as long as
its feedback inputz; (see for instance [15], [3]). On the iISS subsystems are concerned.
other hand,X; does not have to be ISS with respect to Remark 2:The necessary conditions in Theorem 2 was
its feedback inputr,. The small-gain condition for ilSS proved fora; € O(>1) in [9]. It can be verified thaty; €
subsystems indicates that the interconnection is stable if ta& > 1) can be replaced by; € O(1) for supply rates given
stability property of one subsyster,, is strong enough to as functions ofi’; and Vs as in Assumption 1.
compensate the “weak stability” of the other subsystEm,
Due to this asymmetry, we need to select or interchange the [1l. SYSTEMS WITHOUTINPUT. GAS

indices "1" and "2 so that (4) holds when iISS subsystems This section considers the interconnected system (1) in

are involved, the absence of the external signal (t) = 0, and
The necessity of the condition (6) for stability of the inter- . gnals. r ) X
_ . . A . ddemonstrates Iteri) of Theorem 1 by means of a transient
connected system is investigated in [9], which is summarize .
as follows: response plus the ISS small-gain argument. Assume Fhat 4)
Theorem 2:Suppose that; € O(1) ande; € O(>0) are is satisfied for somev;, ws € K. Suppose for the time

given fori = 1, 2. Then, the following statements hold true:be'ng that

{lim a;(s) =00 V lim o5_;(s) < oo}, i =1,2,
§—00 §—00

1in the case of cascade, assumimge K is not necessary [4], [5]. lim aq(s) <oo A lim ay(s) < SILH;O o1(s) - (10)

55— 00 S§— 00



Then, the small-gain condition (4) implies that there exists the absence of the exogenous sighahlthough the above

a positive constant3*** such that argument does not explicitly address (9), the observation of
the transient plus the ISS small-gain dynamics still holds
true. Notice that the ISS small-gain theorem applies to the

Sinceo?"** is independent of:,, the dissipation inequality ca@se of

(3) of 35 and the property (6) implied by (4) guarantee that . -
the stater,(t) is bounded and eventually enters the forward Jim oa(s) = lim o1(s) A Eq.(9) (14)
invariant set

lim oy(s) < 05" < o0 . (11)
§—00

directly sincel; andV; become ISS Lyapunov functions of

U, = {xQ €R™ : Vy(z) < lim ay'o 02(5)} . the individual subsystems. If
In fact, there exist$ > 0 such thatV, < —§ holds for all lim ay(s) > lim o1(s) A EQ.(9) (15)

xo & Uy, Let T > 0 be such that )
holds, by virtue ofa; * o 05 € Ko, the argument given in
z2(t) €Uz, VE2T. this section can be2used by switching the indices “1” and
Note that7 is finite, and that the state,(t) is bounded “2". The situation
over the time interval0, T'] sinceX; is ilSS with respect to ) )
z>. The small-gain condition (4) proves that the dissipation lim ai(s) < lim o1(s) A EQ.(9) (16)
inequality (2) of¥; becomes an ISS property when the input

- is restricted toU,. Indeed, the condition (4) guaranteesIS excluded by Theorem 5 (i) in [9]. Therefore, for the GAS
that ase e, for r(t) = 0), the interpretation of the transient
plus the ISS small-gain dynamics is valid whenever
sup o1 (Va(x2)) < lim oy 0 ag 0 09(s)
z2€Us sTee lim as(s) > lim o9(s). a7
< lim (Id +w;) P o ay(s). e e
§—00 H
Hence, we obtain from (2) and (3) that V. SYSTEMS WITHINPUT. 11SS
- This section proves Iterfii) of Theorem 1 under particular
> a;! _ o .
Vi(@r) 2 aq 7o (Id +wn) 0 01(Va(22)) A w2 € Us assumptions. The property (6) implied by the small-gain

= Vl(l“l) —(Id - (Id +wi)"") o a1(Vi(z1)) (12) condition (4) again plays a key role in implementing the
Va(x2) > ag b o (Id + wa) 0 oo (Vi(z1)) idea of a transient plus the ISS small-gain argument. The
= Vg(xz) < —(Id — (Id + ws) ") 0 aa(Va(z2)) proof consists of two parts. One is to verify that the system

'(13) (1) is 0-GAS (that is, GAS when(t) = 0). The other part is
to establish the Bounded Energy Frequently Bounded State
Note thatld — (Id+w;) " € K since(Id— (Id+w;)~')o  (BEFBS) property of the system (1). It is shown in [2] that
(stwi(s)) = wi(s). Due to (12) and (13), the convergence ofthe combination of the above two properties is equivalent to
x(t) to the originz = 0 departing from any:(T') € R™ xU,  the iISS property of the system (1). Since the 0-GAS has
att = T is ensured by the small-gain condition (4). Forbeen proved in the previous section, this section is devoted
instance, we can follow the proof for the interconnection ofo the BEFBS property.
the two ISS subsystems given in [11], [10]. First, notice thatlim, ... a;(s) > lim,_,. o4(s) does
Finally, in the case that (10) does not hold, that is not guarantee the ISS property Bf with respect to input
(x3—;,7;) sincelim,_,, 0,;(s) can anyway be larger than
limg o ;(s). In fact, when there exists € {1,2} such
the subsystent; is ISS with respect, and we can invoke that lim, .. a;(s) < oo holds, the previously existing
the ISS small-gain argument frotn= 0. This completes the results only show the iISS of the interconnected system
proof of GAS,i.e. Item (i) of Theorem 1. [6], [9]. Hence, in contrast to the GAS case, the condition
To sum up, the behavior befote= T is a transient, and lim,_. a2(s) > lim,_. o2(s) is not sufficient for resort-
aftert = T, the contractive dynamics kicks in since the i1ISSng to the ISS small-gain argument in the presence of external
small-gain condition acts as the 1SS small-gain condition imputs. In order to make use of the small-gain argument of
the domain the trajectories evolve 3If is ISS, the transition 1SS-type, we assume the following in addition to (6).
time T is zero. Assumption 2:The following properties hold:
Remark 3:In the absence of external signal®. r(t) =
0, a Lyapunov function establishing the GAS of the intercon- lim {o1 o a;' o (Id+wy ') 0 opa(s) +om(s)}
nected system can be constructed even when (9) holds. In < lim (Id — (Id + w1)™Y) o ay (s) (18)
fact, Theorem 1 in [9] derives such a Lyapunov function from T s—o0
a small-gain condition. The small-gain condition is in the hnolo az(s) =00 V
form of (4). However, as already stressed, the amplification . —1y-1
factorswy, wy for GAS case are not necessarily of cldssg }LH;O a2(s) > lim (Id — (Id + wp) ™) ™" 0 o7a(s) - (19)

lim aq(s) =00 V lim ai(s) > lim oy(s),
S§— 00 S— 00 S§— 00



Note thatld +w, ' € K. We are now ready to prove the Thus, the property (18) implies the bounded-input bounded-
BEFBS property of the system (1). Due to (19), there existstate property ovet € [T,c0) provided thatzo(T) €

8 € K4 such that U pe, Which holds true in view of (23). This together with
lim as(s) = 0o V the boundedness of;(¢t) and z3(¢) in the interval [0, T)
S0 establishes the BEFBS property for afl0) € R™.

lim ay(s)> lim ((Id+3) " — (Id+wz) ") "o oya(s) . If lim, .o, 0,2(s) = co holds, the property (18) yields
(20) 51520 {o1(8) + o71(8)} < Slingo(ld —(Id +wih)) oy (s)
By virtue of (20) and < lim au(s). (25)

lim asg(s) > lim (Id + ws) 0 02(s) ) )
o 500 500 Hence, the BEFBS property with respect to inpwind state
implied by (4), the property x; follows from (2). Due to the fact thatm,_, o, a2 (s) = oo
lim as(s) > lim (Id + B) o (0a(s) + ora(s))  (21) @ndVi(zi) < B < oo with a constantB guaranteed by
8700 §—00 (25), the BEFBS property with respect to inputand state
holds since x, follows from (3). This completes the proof of Itefii)
of Theorem 1 .
Thus, even in the presence of the external signahe
Jim (Id+w2)™" + (Id+8) "= (Id+w2) ') ca2(s)  behavior up tot = T can be considered as a transient.
) After ¢t = T, the bounded-input bounded-state property takes
effect since the iISS small-gain condition acts as the ISS
shnélo a1(s) < oo V SliIIolo as(s) < oo (22) small-gain condition in the domain the trajectories evolve.
holds since the standard ISS small-gain theorem applies (E]e k')ounQed-.lnput bounded-state property preceded by the
. . transient implies the BEFBS property. ¥, is ISS, the
the case oftim, o a1(s) = 00 A lims_oo 2(s) = 00. oncivion fimeT is equal to zero
If lims o @1(s) < oo holds, the property (5) implies ’

lims o 02(8) < 00. In the case ofim,_. o az(s) < oo, the V. ANOTHER FORMULATION OFilSS

property (6) yieldslim, ., 03(s) < co. Thus, when (22)  The idea of the reduction to the ISS small-gain argument
is satisfied, there existy** > 0 such that (11) holds. If in the presence of an ilSS subsystem can be seen in a more
lim,_. 072(s) < oo holds, the dissipation inequality (3) of compact manner if one uses dissipation inequalities of an-
¥, guarantees that the statg(t) which is bounded enters gner type for the iISS property of the individual subsystems.
the set To this end, in this section, we replace Assumptions 1 and
o na . 2 with the following two assumptions:
Upz = {IQ cR™: Assumption 3:For eachi € {1,2}, there exist a continu-
ously differentiable positive definite and radially unbounded

lim o3(s) + lim o,9(s) <
85— 00 5— 00

in the case ofim;_, a2(s) < co. Suppose that

. -1
Va(z2) < Jm ap o {o2(s) + ara(s)} function V; : R™ — R, and class functionsa;, o;, o,
in a finite time and remains there. Here, (21) is used. LéUCh that
T = 0 be such that Vi(z1) < —a1(Vi(21)) + max{o1(Va(22)), 001 (1)) }
22(t) € Upy, Yt>T. (23) ' (26)
Note that the state; (¢) is also bounded for the time interval Va(2) < —0a(Va(22)) + max{oz(Vi(z1)), 0T2(|r2|)(}’27)
[0, T] sinceX; is iISS with respect to inputzs, 1) and state
z1. Combining (4) andrs € Up, yields hold for all » € U along the trajectories(¢) of (1).
sup 01(Va(ze)) < lim 0y 0yt o {oa(s) + ora(s)} Assumption 4:The following properties hold:
z2€Upa2 §To0
< lim o7 0 a;l o (Id 4+ w2) 0 o2(s) glinolo ai(s) =00 V glggo ai(s) > glggo or1(s) (28)
+ lim oy 0ay o (Id + w5 ') 0 opa(s) SIEEO az(s) = o0 V Sli}nolo az(s) > SILH;O ora(s).  (29)
< lim (Id 4+ wy) " o ay(s) When t'he interconnection of two iISS subsystems is
5700 . . ) defined with Assumption 3 in Theorem 1, we are able to
+31LH(}O oroay o (Id+w; ) oor(s). achieve the reduction to the transient plus the ISS small-

in argument under Assumption 4 which looks simpler
than Assumption 2. The rest of this section gives a proof
demonstrating this fact for Iterfii) of Theorem 1.
] Since the 0-GAS property is proved in Section lll, we
Vi(a1) < —en (Vi(an)) + lim (Id +w1) ' ear(Vi(z1))  shall prove the BEFBS property of the system (1). As in
Section IV, we can assume (22). The properties (5) and (6)
ensure the existence of;*** > 0 satisfying (11). Suppose

To derive the second inequality, the two cases separated
wo 0 03(8) > 0,2(s) andws 0 o2(s) < 0.2(s) are combined.
Hence, from (2) it follows that, for alky € Ups,

+ lim 0100y o (Id +wy ') 0 ova(s) + o (Ir]) . (24)



that lim,_, 02(s) < oo. Due to (11), (29) and (6), the  © ‘ ‘ -

““““ Boundaries between [oXimlNe) folnd
dissipation inequality (27) ok, guarantees that the state sl --- Boundaryofu i
x2(t) which is bounded enters the set Q"
4+ |
Uy := {1'2 e R™ : Va(xs) < lim a2—1 002(5)} —

S— 00 \></ 37 _
in a finite timeT" and stays there. Wheéin,_, ., 0,2(s) = oo ol |
holds, the same property holds withwhich satisfied” < oo e Q-
for |ra| < co. The stater;(¢) is also bounded for the time s T
interval [0, T] sinceX; is iISS With_r_espect tc_J inputzs, 1) S
and stater;. The small-gain condition (4) yields 0= > v A 6

1 x 1
- : -1
12816182 a1(Va(z2)) < SILH;O g1 00y 003(s) Fig. 1. A trajectory on thel(;,V5)-plane without disturbances.
< lim (Id +w1) ' o as(s) 6
From (26) it follows that, for alky, € Us, 5| --- Boundary of U, |
V1($1) < —ar(Vi(zy))+ al
rnax{hm (Id + wy) Lo ay(s), ar1(|r1|)} . —~
30) =
Thus, the assumption (28) leads us to the BEFBS proper 2r
with respect to inputr and statex; in the interval of U
t € [T,o00) for the initial conditionsz,(T) € Us,. Since

we havez,(t) € U, for all ¢ € [T, 00), the BEFBS property o
with respect to input and stater, also holds in the interval
of t € [T, 00) for the initial conditionz,(T') € U,. These Fig. 2. A trajectory on thel(;,V)-plane with a disturbance.
properties together with the boundedness:aft) andxz,(¢)
in the interval [0,7) establish the BEFBS property with
respect to input and statex in the interval oft € [0,00) interconnection of iISS subsystems. For example, in the case
for all 2(0) € R™. This completes the proof of lterfii) of wherea; = 09, as = doy with 0,1, 0,2 € K and some
Theorem 1. d > 1, the functionV = Vi + V5(1+ 1/d)/2 is an ilSS
Assumption 1 and Assumption 3 are qualitatively equivkyapunov function, thus immediately proving the iISS of the
alent in the sense that; + o,; < max{20;,20,,} < interconnection. In contrast to the approach followed in this
20; + 20,.;. We can consider other variants of dissipatiorpaper, this case is covered by the iISS small-gain theorems
inequalities for iISS. Although the coefficients appearingroposed in [6], [9]. Therefore, the approach based on the
in the transformation between two representations result IS small-gain argument plus the transient is more restrictive
conservativeness in different forms, the essence of impositigan the direct iISS small-gain approach.
the constraint on the external inputs for the reduction to the
ISS small-gain argument remains the same.
Remark 4:As already stressed, the difficulty in estab- Consider the interconnected system described by

VI. AN EXAMPLE

lishing the iISS via the transient plus the ISS small-gain =11 i T1 (22 +11) 31)
dynamics arises when the effect ofs is larger than the ! 1+2?  2(1+2%) 2T
contribution of;’s. Both Assumption 1 and Assumption 3 x2

allow the magnitude of ;s to be arbitrarily large. In order Ty = —Ty+ - 1+ (32)

to make the ISS small-gain argument work, the undesirabl

large effect ofr,'s is avoided by Assumptions 2 and 4. ‘¥h|s pair satisfies the d|SS|pat|on inequalities

In short, o,;’s are required to be sufficiently small in this . 2V (x1)

paper. It is worth noticing that the pair of ISS with respect Vi(a) < 1+ Vi(ar) + VVa(22) + || (33)

to small inputs and forward completeness does not always . Vi(z1) 2

imply iISS. Indeed, one can construct a forward complete Va(ze) < —Va(x2) + (1+1V(1x)) (34)
1\41

non-ilSS system of the formt = f(z) + g(z,r)r which is
ISS with respect to small inputs by modifying the techniquéor Vi(z;) = 22 and Va(z2) = z3. Note that the upper
proposed in [3, Section V]. In the presence of arbitrarily largéounds in (33) and (34), i.e., the supply rates, may not be
ori'S, removing Assumptions 2 and 4 is inherently difficult.completely tight. The subsystehy, is not ISS with respect
Remark 5:Neither the pair (18)-(19) nor the pair (28)-to input x5, and it is only iISS. The trajectory of (31)-(32)
(29) is necessary for establishing the iISS property of thfer the initial conditionz(0) = [2.2,2.2]" is plotted on the



(V1, Va)-plane in Fig. 1 forr,(¢) = 0. Figure 1 also depicts are not allowed to be large either as in (18)-(19) or (28)-
the following sets: (29). These assumptions ensure that the transient response
actually dies in finite time which allows us to make use of

Q77 = {(V1,V2) €RY s en(V1) < 01 (V) the “ISS” small-gain argument for the subsequent behavior

Nag(Va) > o9(V1)} in dealing with “iISS” subsystems. There are interconnected
Q= {(Vi, Vo) €R2 sy (V) > 01 (V) systems which v_iolate _these assumptions and can anyway
be proved to be iISS with respect to the external signals by
N aa(V2) 2 o2(V1)} constructing L functi in [6], [9
. ) g Lyapunov functions as in [6], [9].
Q7" ={(V1,V2) e Ry : (V1) = 01(V2) After the submission of this paper, the authors became
Nag(Va) < oo(Vh)}. aware of an independent study [12] verifying input-to-output

) ) stability and computing the gain of interconnected systems.
The boundaries of these sets are not necessarily the nyjl-,ses a similar idea of combining a small-gain argument

clines of (31) and (32) owing to the lack of tightness inyiih 4 transient under the assumption that an estimate of
the dissipation inequalities (33) and (34). Two phases afgyjectories is somehow available during the time period
observed in Fig. 1. The first phase is the transient evolvinghen the 1SS-type small-gain criterion is invalid. In contrast,
putS|deU2 for which the'trajectory hggds. The second phasg,is paper here does not assume anything more than the
is the trajectory converging to the origin without leavibig.  gtandard iISS dissipation inequalities of subsystems, which
Once the frajectory enters the positively invariant BB,  \yoyid be less demanding than the time embedded trajectory
the dynamic is governed by the ISS small-gain condition gsgtimate. Nevertheless, it is remarkable that an abstract
d|§c_ussed in Section I.II. It is also seen in F|.g. 1.near thEodel is employed in [12] for covering a considerably broad
origin that the sef2™~ is too narrow to be an invariant set ;|5ss of systems at the price of some complexities in the

because of the gaps in the dissipation inequalities. Figug‘%ability criterion.

2 shows the response for the same initial condition in the
presence of disturbances(t) = 1.8/(2 +¢) andry(t) = 0.
The trajectory is bounded and moves toward the Wet
which becomes positively invariant again. Since the ilSS
small-gain condition acts as the ISS small-gain conditio
in Uy, we see that the trajectory converges to the origin.
It conforms to the converging-input converging-state of thel3]
ISS property. The boundedness and the converging property
agree with the iISS property for the entite> 0 which is  [4]
established in Section IV.

(1]

VIl. CONCLUDING REMARKS 5]
This paper has investigated the iISS small-gain theoren!
developed in [6], [9] in order to give it a trajectory-based
interpretation linking with the contractive mechanism of thel7]
ISS small-gain theorem. A preceding study has proved that
the interconnection of two iISS systems is stable if one[g
subsystem is ISS with respect to its feedback input strongly
enough to compensate the weak stability of the other iIS
subsystem. By making use of this fact, this paper has shown
that the behavior of the interconnected system can be split
into two phases. In the first phase, roughly, the trajectorg}ol
of the ISS subsystem behaves almost independently of the
other iISS subsystem and this phase lasts until the trajectdi}]
of the ISS subsystem enters a neighborhbizdof the origin
with a certain radius. In this phase, the behavior of thaz)
merely iISS subsystem is almost a free response. In the
second phase, the interaction between the two subsyste
takes effect and the contractive behavior of the whole state
vector occurs since the small-gain constraint plays the rolé&4l
of the ISS small-gain condition ifU,. This observation [15]
would be practically useful in designing and analyzing the
dynamics of nonlinear control systems based on the IS
small-gain theorem. It is worth stressing that the above
interpretation is not always applicable. The external signals

REFERENCES

D. Angeli and A. Astolfi, “A tight small gain theorem for not
necessarily ISS systems§yst. Control Lett.vol. 56, pp. 87-91, 2007.

2] D. Angeli, B. Ingalls , E.D. Sontag and Y. Wang, “Separation prin-

ciples for input-output and integral-input-to-state stabilit3/AM J.
Control Optim, vol. 43, pp. 256-276, 2004.

D. Angeli, E.D. Sontag and Y. Wang, “A characterization of integral
input-to-state stability,JEEE Trans. Autom. Contrplol. 45, pp. 1082-
1097, 2000.

M. Arcak, D. Angeli, and E. Sontag, “A unifying integral ISS frame-
work for stability of nonlinear cascades§1AM J. Control Optim.vol.

40, pp. 1888-1904, 2002.

A. Chaillet, and D. Angeli, “Integral input to state stable systems in
cascade,'Syst. Control Letf.57, pp. 519-527, 2008.

H. Ito, “State-dependent scaling problems and stability of intercon-
nected iISS and ISS system$EEE Trans. Autom. Contrphol. 51,
pp.1626-1643, 2006.

H. Ito, “A Lyapunov approach to integral input-to-state stability
of cascaded systems with external signaRibc. 47th IEEE Conf.
Decision and Contrglpp. 628-633, 2008.

H. Ito, R.A. Freeman and A. Chaillet, “A two-phase interpretation
of the iISS small-gain theorem'SICE 10th Annual Conf. Control
Systems166-1-1(6 pages), March, 2010.

H. Ito and Z.-P. Jiang, “Necessary and sufficient small gain conditions
for integral input-to-state stable systems: A Lyapunov perspective,”
IEEE Trans. Autom. Contivol.54, pp.2389-2404, 2009.

Z-P. Jiang, |. Mareels, and Y. Wang, “A Lyapunov formulation of
the nonlinear small-gain theorem for interconnected ISS systems,”
Automatica vol. 32, pp. 1211-1215, 1996.

Z-P. Jiang, A.R. Teel, and L. Praly. “Small-gain theorem for ISS
systems and applicationsi¥athe. Contr. Signals and Syswol. 7,
pp.95-120, 1994.

I. Karafyllis and Z.-P. Jiang, "New results in trajectory-based small-
gain with application to the stabilization of a chemostat”, Submitted,
2010, Available online: http://arxiv.org/abs/1002.4489.

E.D. Sontag. “Smooth stabilization implies coprime factorization,”
IEEE Trans. Autom. Contrvol. 34, pp.435-443, 1989.

E.D. Sontag, “Comments on integral variants of ISSyst. Control
Lett, vol. 34, pp. 93-100, 1998.

E.D. Sontag, and Y. Wang. “On characterizations of input-to-state
stability property,”Syst.Control Letf24,pp.351-359,1995.

A. Teel, “A nonlinear small gain theorem for the analysis of control
systems with saturationfJEEE Trans. Automat. Contrplol. 41, pp.
1256-1270, 1996.



