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Interpreting the iISS Small-Gain Theorem as Transient Plus ISS Small-Gain
Regulation

Hiroshi Ito, Randy A. Freeman and Antoine Chaillet

Abstract— This paper addresses the problem of establishing
stability of interconnections of integral input-to-state stable
(iISS) systems. Recently, the small-gain theorem for input-to-
state stable (ISS) systems has been extended to the class of iISS
systems. It has been also proved that at least one of the two
iISS subsystems comprising a feedback interconnection needs
to be ISS with respect to the state of the other subsystem for
guaranteeing the iISS of the overall system. This paper shows
that making use of this necessary condition enables to provide
more insight on the iISS small gain theorem by giving an
alternative proof of this result from the perspective of transient
plus ISS small-gain regulation.

I. I NTRODUCTION

The ISS small-gain theorem has been widely used in anal-
ysis and design of nonlinear systems [11], [16]. The theorem
deals with input-to-state stable (ISS) systems and answers the
question of whether their feedback interconnection is again
ISS. It was first proved with a trajectory-based approach in
[11]. A version relying on the Lyapunov functions associated
to each of the subsystems was subsequently presented in
[10]. While the construction of a Lyapunov function for
the overall interconnection is useful from the analysis and
design viewpoints, the trajectory-based proof is simpler and
illustrates more intuitively the idea of contraction. Recently,
the small-gain theorem has been extended to the intercon-
nection of integral input-to-state stable (iISS) systems in [6],
[9]. The iISS is a more general robustness property than
ISS [13], [14], and the theorem in [6], [9] includes the ISS
small-gain theorem as a special case. In these references, a
Lyapunov function is explicitly constructed for the overall
interconnection. Another approach, developed in [1], makes
use of monotonicity and nullclines in deriving the small
gain condition to guarantee that the interconnection of iISS
systems is globally asymptotically stable (GAS). Although
the approach proposed there does not apply to systems with
exogenous inputs, it offers a unified interpretation of GAS
for interconnections of iISS and ISS subsystems.

The purpose of this paper is to elucidate the iISS small-
gain mechanism with and without external signals. In other
words, this paper gives a trajectory-based interpretation
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which connects the iISS small-gain theorem with the con-
tractive behavior of trajectories explained by the ISS small-
gain theorem. In order to understand how the trajectories
of interconnected systems evolve, this paper assumes that
iISS dissipation inequalities are given for both individual
subsystems. As illustrated by the result in [5] on cascaded
iISS systems, the use of dissipation inequalities of subsys-
tems is more successful than using trajectory bounds when
dealing with interconnected iISS systems. This paper follows
this idea to tackle feedback interconnected systems. The
proof this paper develops splits the system trajectory into
a transient response and a subsequent response governed by
the ISS small-gain condition. This paper illustrates how this
strategy can be made possible for dealing with iISS systems
which are not ISS.

The following notation is used throughout this paper. The
symbol | · | stands for the Euclidean norm. A continuous
function ω : R+ := [0,∞) → R+ is said to be positive
definite and denoted byω ∈ P if it satisfiesω(0) = 0 and
ω(s) > 0 holds for all s > 0. A function is of classK if it
belongs toP and is strictly increasing; of classK∞ if it is of
classK and is unbounded. The identity map onR is denoted
by Id. For a functionγ ∈ P, we write γ ∈ O(> L) with
a non-negative numberL if there exists a positive number
K > L such thatlim sups→0+ γ(s)/sK < ∞ holds. We
write γ ∈ O(L) whenK = L. The symbols∨ and∧ denote
logical sum and logical product, respectively. Forf, g :
R+ → R+, we use the simple notationlim f(s) = lim g(s)
to describe{lim f(s) = ∞ ∧ lim g(s) = ∞} ∨ {∞ >
lim f(s) = lim g(s)}. Note that the∞ case is included. In
a similar manner,lim f(s) ≥ lim g(s) denotes{lim f(s) =
∞ ∨ ∞ > lim f(s) ≥ lim g(s)}. A system ẋ = f(x)
admitting a unique maximal solutionx(t) ∈ Rn for any
initial condition x(0) ∈ Rn is said to be GAS if its origin
is globally asymptotically stable. We letU denote the set of
all measurable locally essentially bounded signalsu : R+ →
Rm. A systemẋ = f(x, u) admitting a unique solutionx(t)
onRn for any initial conditionx(0) ∈ Rn and anyu ∈ U is
said to have the Bounded Energy Frequently Bounded State
(BEFBS, [2]) property with respect to inputu and statex
if there existsσ ∈ K∞ such that, if

∫∞
0

σ(|u(τ)|)dτ < ∞
then lim inft→∞ |x(t)| < ∞ for all initial conditionsx(0).

A preliminary result of this paper was presented in [8].

II. A R EVIEW OF i ISS SMALL -GAIN THEOREM

Consider the following interconnected system:

Σ :
{

Σ1 : ẋ1 = f1(x1, x2, r1)
Σ2 : ẋ2 = f2(x1, x2, r2)

(1)



where xi(t) ∈ Rni , ri(t) ∈ Rmi , x = [xT
1 , xT

2 ]T ∈ Rn

and r = [rT
1 , rT

2 ]T ∈ Rm. In addition to the existence of
a unique maximal solutionx(t) for any initial condition
x(0) ∈ Rn and any measurable, locally essentially bounded
external inputr, we assume that the two subsystems satisfy
the following dissipation inequalities:

Assumption 1:For eachi ∈ {1, 2}, there exist a continu-
ously differentiable, positive definite and radially unbounded
function Vi : Rni → R+ and classK functionsαi, σi, σri

such that

V̇1(x1) ≤ −α1(V1(x1)) + σ1(V2(x2)) + σr1(|r1|) (2)

V̇2(x2) ≤ −α2(V2(x2)) + σ2(V1(x1)) + σr2(|r2|) (3)

hold for all r ∈ U along the trajectoriesx(t) of (1).

This assumption imposes that each subsystemΣi is iISS
with respect to input(x3−i, ri) and statexi (see for instance
[3]). We stress that we have assumedαi ∈ K instead ofαi ∈
P without any loss of generality due to the necessity result
in [7] for the iISS feedback interconnection1. The following
is a result in [9], which is referred to as the iISS small-gain
condition in this paper.

Theorem 1:Suppose that Assumption 1 holds and that
there existω1, ω2 ∈ K∞ satisfying

α−1
1 ◦ (Id+ω1) ◦ σ1 ◦ α−1

2 ◦ (Id+ω2) ◦ σ2(s) ≤ s,

∀s ∈ R+ . (4)

Then, the following statements hold true:

(i) For r(t) ≡ 0, the system (1) is GAS.
(ii) If it holds that

{ lim
s→∞

αi(s) = ∞ ∨ lim
s→∞

σ3−i(s) < ∞}, i = 1, 2,

(5)

then the system (1) is iISS with respect to inputr and
statex.

It is stressed that the small-gain condition (4) implicitly
requires that

lim
s→∞

α2(s) = ∞ ∨ lim
s→∞

α2(s) > lim
s→∞

σ2(s) . (6)

The property (6) implies thatΣ2 is ISS with respect to
its feedback inputx1 (see for instance [15], [3]). On the
other hand,Σ1 does not have to be ISS with respect to
its feedback inputx2. The small-gain condition for iISS
subsystems indicates that the interconnection is stable if the
stability property of one subsystem,Σ2, is strong enough to
compensate the “weak stability” of the other subsystem,Σ1.
Due to this asymmetry, we need to select or interchange the
indices “1” and “2” so that (4) holds when iISS subsystems
are involved.

The necessity of the condition (6) for stability of the inter-
connected system is investigated in [9], which is summarized
as follows:

Theorem 2:Suppose thatαi ∈ O(1) andσi ∈ O(>0) are
given for i = 1, 2. Then, the following statements hold true:

1In the case of cascade, assumingαi ∈ K is not necessary [4], [5].

(i) The system (1) withr(t) ≡ 0 is GAS for all
subsystems satisfying Assumption 1 only if

lim
s→∞

αj(s) ≥ lim
s→∞

σj(s) (7)

holds for at least one ofj ∈ {1, 2}.
(ii) The system (1) is ISS with respect to inputr and state

x for all subsystems satisfying Assumption 1 only if

lim
s→∞

αj(s) = ∞ ∨ lim
s→∞

αj(s) > lim
s→∞

σj(s) (8)

holds for at least one ofj ∈ {1, 2}.
Without any loss of generality, we can takej = 2 for (7)

and (8). This convention is used in the rest of this paper. The
above theorem does not exactly state that (6) is necessary for
the iISS of the interconnection. The difference between (6)
and (7) is the equality. Taking into account the necessity of
(6) for the ISS property, the key idea of this paper is to
directly make use of the property (6) for proving Theorem
1 in order to interpret the “iISS” small-gain theorem as the
combination of “a transient response” and “the ISS small-
gain dynamics”. In other words, we do not consider the case
of

∞ > lim
s→∞

α2(s) = lim
s→∞

σ2(s) (9)

since it prevents us from using the ISS small-gain argument
in the presence of the external signalr. Anyway, note that
the case (9) is incompatible with the small gain condition
(4) if ω1, ω2 ∈ K∞.

Remark 1: In the small-gain condition (4), this paper
employs amplification factorsω1, ω2 which are of class
K∞. As shown in [9], these factors do not have to be class
K∞ functions in the case of GAS. Nevertheless, it can be
verified that, under the condition (6), the stability theorem
proposed in [9] requires the existence ofω1, ω2 ∈ K∞ sat-
isfying (4) except whenlims→∞ α2(s) = lims→∞ σ2(s) =
lims→∞ α1(s) = lims→∞ σ1(s) = ∞ holds. However, this
case corresponds to the interconnection of ISS subsystems,
which is already widely addressed in the literature and is not
the purpose of the present paper. Therefore, we considerω1,
ω2 ∈ K∞ for (4) without any loss of generality as long as
iISS subsystems are concerned.

Remark 2:The necessary conditions in Theorem 2 was
proved forαi ∈ O(> 1) in [9]. It can be verified thatαi ∈
O(>1) can be replaced byαi ∈ O(1) for supply rates given
as functions ofV1 andV2 as in Assumption 1.

III. SYSTEMS WITHOUT INPUT: GAS

This section considers the interconnected system (1) in
the absence of the external signals,i.e., r(t) ≡ 0, and
demonstrates Item(i) of Theorem 1 by means of a transient
response plus the ISS small-gain argument. Assume that (4)
is satisfied for someω1, ω2 ∈ K∞. Suppose for the time
being that

lim
s→∞

α1(s) < ∞ ∧ lim
s→∞

α1(s) ≤ lim
s→∞

σ1(s) . (10)



Then, the small-gain condition (4) implies that there exists
a positive constantσmax

2 such that

lim
s→∞

σ2(s) ≤ σmax
2 < ∞ . (11)

Sinceσmax
2 is independent ofx1, the dissipation inequality

(3) of Σ2 and the property (6) implied by (4) guarantee that
the statex2(t) is bounded and eventually enters the forward
invariant set

U2 :=
{

x2 ∈ Rn2 : V2(x2) ≤ lim
s→∞

α−1
2 ◦ σ2(s)

}
.

In fact, there existsδ > 0 such thatV̇2 ≤ −δ holds for all
x2 6∈ U2. Let T ≥ 0 be such that

x2(t) ∈ U2 , ∀t ≥ T .

Note thatT is finite, and that the statex1(t) is bounded
over the time interval[0, T ] sinceΣ1 is iISS with respect to
x2. The small-gain condition (4) proves that the dissipation
inequality (2) ofΣ1 becomes an ISS property when the input
x2 is restricted toU2. Indeed, the condition (4) guarantees
that

sup
x2∈U2

σ1(V2(x2)) ≤ lim
s→∞

σ1 ◦ α−1
2 ◦ σ2(s)

≤ lim
s→∞

(Id + ω1)−1 ◦ α1(s) .

Hence, we obtain from (2) and (3) that

V1(x1) ≥ α−1
1 ◦ (Id + ω1) ◦ σ1(V2(x2)) ∧ x2 ∈ U2

⇒ V̇1(x1) ≤ −(Id− (Id + ω1)−1) ◦ α1(V1(x1)) (12)

V2(x2) ≥ α−1
2 ◦ (Id + ω2) ◦ σ2(V1(x1))

⇒ V̇2(x2) ≤ −(Id− (Id + ω2)−1) ◦ α2(V2(x2)) .
(13)

Note thatId−(Id+ωi)−1 ∈ K∞ since(Id−(Id+ωi)−1)◦
(s+ωi(s)) = ωi(s). Due to (12) and (13), the convergence of
x(t) to the originx = 0 departing from anyx(T ) ∈ Rn1×U2

at t = T is ensured by the small-gain condition (4). For
instance, we can follow the proof for the interconnection of
the two ISS subsystems given in [11], [10].

Finally, in the case that (10) does not hold, that is

lim
s→∞

α1(s) = ∞ ∨ lim
s→∞

α1(s) > lim
s→∞

σ1(s) ,

the subsystemΣ1 is ISS with respectx2 and we can invoke
the ISS small-gain argument fromt = 0. This completes the
proof of GAS, i.e. Item (i) of Theorem 1.

To sum up, the behavior beforet = T is a transient, and
after t = T , the contractive dynamics kicks in since the iISS
small-gain condition acts as the ISS small-gain condition in
the domain the trajectories evolve. IfΣ1 is ISS, the transition
time T is zero.

Remark 3: In the absence of external signals,i.e. r(t) ≡
0, a Lyapunov function establishing the GAS of the intercon-
nected system can be constructed even when (9) holds. In
fact, Theorem 1 in [9] derives such a Lyapunov function from
a small-gain condition. The small-gain condition is in the
form of (4). However, as already stressed, the amplification
factorsω1, ω2 for GAS case are not necessarily of classK∞

in the absence of the exogenous signalr. Although the above
argument does not explicitly address (9), the observation of
the transient plus the ISS small-gain dynamics still holds
true. Notice that the ISS small-gain theorem applies to the
case of

lim
s→∞

α1(s) = lim
s→∞

σ1(s) ∧ Eq. (9) (14)

directly sinceV1 andV2 become ISS Lyapunov functions of
the individual subsystems. If

lim
s→∞

α1(s) > lim
s→∞

σ1(s) ∧ Eq. (9) (15)

holds, by virtue ofα−1
2 ◦ σ2 ∈ K∞, the argument given in

this section can be used by switching the indices “1” and
“2”. The situation

lim
s→∞

α1(s) < lim
s→∞

σ1(s) ∧ Eq. (9) (16)

is excluded by Theorem 5 (i) in [9]. Therefore, for the GAS
case (i.e., for r(t) ≡ 0), the interpretation of the transient
plus the ISS small-gain dynamics is valid whenever

lim
s→∞

α2(s) ≥ lim
s→∞

σ2(s) . (17)

IV. SYSTEMS WITH INPUT: i ISS

This section proves Item(ii) of Theorem 1 under particular
assumptions. The property (6) implied by the small-gain
condition (4) again plays a key role in implementing the
idea of a transient plus the ISS small-gain argument. The
proof consists of two parts. One is to verify that the system
(1) is 0-GAS (that is, GAS whenr(t) ≡ 0). The other part is
to establish the Bounded Energy Frequently Bounded State
(BEFBS) property of the system (1). It is shown in [2] that
the combination of the above two properties is equivalent to
the iISS property of the system (1). Since the 0-GAS has
been proved in the previous section, this section is devoted
to the BEFBS property.

First, notice thatlims→∞ αi(s) > lims→∞ σi(s) does
not guarantee the ISS property ofΣi with respect to input
(x3−i, ri) since lims→∞ σri(s) can anyway be larger than
lims→∞ αi(s). In fact, when there existsi ∈ {1, 2} such
that lims→∞ αi(s) < ∞ holds, the previously existing
results only show the iISS of the interconnected system
[6], [9]. Hence, in contrast to the GAS case, the condition
lims→∞ α2(s) > lims→∞ σ2(s) is not sufficient for resort-
ing to the ISS small-gain argument in the presence of external
inputs. In order to make use of the small-gain argument of
ISS-type, we assume the following in addition to (6).

Assumption 2:The following properties hold:

lim
s→∞

{
σ1 ◦ α−1

2 ◦ (Id + ω−1
2 ) ◦ σr2(s) + σr1(s)

}

≤ lim
s→∞

(Id− (Id + ω1)−1) ◦ α1(s) (18)

lim
s→∞

α2(s) = ∞ ∨
lim

s→∞
α2(s)> lim

s→∞
(Id− (Id + ω2)−1)−1 ◦ σr2(s) . (19)



Note thatId+ω−1
2 ∈ K∞. We are now ready to prove the

BEFBS property of the system (1). Due to (19), there exists
β ∈ K∞ such that

lim
s→∞

α2(s) = ∞ ∨
lim

s→∞
α2(s)≥ lim

s→∞
((Id+β)−1− (Id+ω2)−1)−1◦ σr2(s) .

(20)

By virtue of (20) and

lim
s→∞

α2(s) ≥ lim
s→∞

(Id + ω2) ◦ σ2(s)

implied by (4), the property

lim
s→∞

α2(s) ≥ lim
s→∞

(Id + β) ◦ (σ2(s) + σr2(s)) (21)

holds since

lim
s→∞

σ2(s) + lim
s→∞

σr2(s) ≤
lim

s→∞
(
(Id+ω2)−1 + (Id+β)−1− (Id+ω2)−1

) ◦ α2(s)

in the case oflims→∞ α2(s) < ∞. Suppose that

lim
s→∞

α1(s) < ∞ ∨ lim
s→∞

α2(s) < ∞ (22)

holds since the standard ISS small-gain theorem applies to
the case oflims→∞ α1(s) = ∞ ∧ lims→∞ α2(s) = ∞.
If lims→∞ α1(s) < ∞ holds, the property (5) implies
lims→∞ σ2(s) < ∞. In the case oflims→∞ α2(s) < ∞, the
property (6) yieldslims→∞ σ2(s) < ∞. Thus, when (22)
is satisfied, there existσmax

2 > 0 such that (11) holds. If
lims→∞ σr2(s) < ∞ holds, the dissipation inequality (3) of
Σ2 guarantees that the statex2(t) which is bounded enters
the set

UD2 :=
{

x2 ∈ Rn2 :

V2(x2) ≤ lim
s→∞

α−1
2 ◦ {σ2(s) + σr2(s)}

}

in a finite time and remains there. Here, (21) is used. Let
T ≥ 0 be such that

x2(t) ∈ UD2, ∀t ≥ T . (23)

Note that the statex1(t) is also bounded for the time interval
[0, T ] sinceΣ1 is iISS with respect to input(x2, r1) and state
x1. Combining (4) andx2 ∈ UD2 yields

sup
x2∈UD2

σ1(V2(x2)) ≤ lim
s→∞

σ1 ◦ α−1
2 ◦ {σ2(s) + σr2(s)}

≤ lim
s→∞

σ1 ◦ α−1
2 ◦ (Id + ω2) ◦ σ2(s)

+ lim
s→∞

σ1 ◦ α−1
2 ◦ (Id + ω−1

2 ) ◦ σr2(s)

≤ lim
s→∞

(Id + ω1)−1 ◦ α1(s)

+ lim
s→∞

σ1 ◦ α−1
2 ◦ (Id + ω−1

2 ) ◦ σr2(s) .

To derive the second inequality, the two cases separated by
ω2 ◦ σ2(s) ≥ σr2(s) andω2 ◦ σ2(s) < σr2(s) are combined.
Hence, from (2) it follows that, for allx2 ∈ UD2,

V̇1(x1) ≤ −α1(V1(x1)) + lim
s→∞

(Id + ω1)−1 ◦ α1(V1(x1))

+ lim
s→∞

σ1 ◦ α−1
2 ◦ (Id + ω−1

2 ) ◦ σr2(s) + σr1(|r1|) . (24)

Thus, the property (18) implies the bounded-input bounded-
state property overt ∈ [T,∞) provided thatx2(T ) ∈
UD2, which holds true in view of (23). This together with
the boundedness ofx1(t) and x2(t) in the interval [0, T )
establishes the BEFBS property for allx(0) ∈ Rn.

If lims→∞ σr2(s) = ∞ holds, the property (18) yields

lim
s→∞

{σ1(s) + σr1(s)} ≤ lim
s→∞

(Id− (Id + ω−1
1 )) ◦ α1(s)

≤ lim
s→∞

α1(s) . (25)

Hence, the BEFBS property with respect to inputr and state
x1 follows from (2). Due to the fact thatlims→∞ α2(s) = ∞
and V1(x1) ≤ B < ∞ with a constantB guaranteed by
(25), the BEFBS property with respect to inputr and state
x2 follows from (3). This completes the proof of Item(ii)
of Theorem 1 .

Thus, even in the presence of the external signalr, the
behavior up tot = T can be considered as a transient.
After t = T , the bounded-input bounded-state property takes
effect since the iISS small-gain condition acts as the ISS
small-gain condition in the domain the trajectories evolve.
The bounded-input bounded-state property preceded by the
transient implies the BEFBS property. IfΣ1 is ISS, the
transition timeT is equal to zero.

V. A NOTHER FORMULATION OF i ISS

The idea of the reduction to the ISS small-gain argument
in the presence of an iISS subsystem can be seen in a more
compact manner if one uses dissipation inequalities of an-
other type for the iISS property of the individual subsystems.
To this end, in this section, we replace Assumptions 1 and
2 with the following two assumptions:

Assumption 3:For eachi ∈ {1, 2}, there exist a continu-
ously differentiable positive definite and radially unbounded
function Vi : Rni → R+ and classK functionsαi, σi, σri

such that

V̇1(x1) ≤ −α1(V1(x1)) + max{σ1(V2(x2)), σr1(|r1|)}
(26)

V̇2(x2) ≤ −α2(V2(x2)) + max{σ2(V1(x1)), σr2(|r2|)}
(27)

hold for all r ∈ U along the trajectoriesx(t) of (1).

Assumption 4:The following properties hold:

lim
s→∞

α1(s) = ∞ ∨ lim
s→∞

α1(s) > lim
s→∞

σr1(s) (28)

lim
s→∞

α2(s) = ∞ ∨ lim
s→∞

α2(s) > lim
s→∞

σr2(s) . (29)

When the interconnection of two iISS subsystems is
defined with Assumption 3 in Theorem 1, we are able to
achieve the reduction to the transient plus the ISS small-
gain argument under Assumption 4 which looks simpler
than Assumption 2. The rest of this section gives a proof
demonstrating this fact for Item(ii) of Theorem 1.

Since the 0-GAS property is proved in Section III, we
shall prove the BEFBS property of the system (1). As in
Section IV, we can assume (22). The properties (5) and (6)
ensure the existence ofσmax

2 > 0 satisfying (11). Suppose



that lims→∞ σr2(s) < ∞. Due to (11), (29) and (6), the
dissipation inequality (27) ofΣ2 guarantees that the state
x2(t) which is bounded enters the set

U2 :=
{

x2 ∈ Rn2 : V2(x2) ≤ lim
s→∞

α−1
2 ◦ σ2(s)

}

in a finite timeT and stays there. Whenlims→∞ σr2(s) = ∞
holds, the same property holds withT which satisfiesT < ∞
for |r2| < ∞. The statex1(t) is also bounded for the time
interval [0, T ] sinceΣ1 is iISS with respect to input(x2, r1)
and statex1. The small-gain condition (4) yields

sup
x2∈U2

σ1(V2(x2)) ≤ lim
s→∞

σ1 ◦ α−1
2 ◦ σ2(s)

≤ lim
s→∞

(Id + ω1)−1 ◦ α1(s)

From (26) it follows that, for allx2 ∈ U2,

V̇1(x1) ≤ −α1(V1(x1))+

max
{

lim
s→∞

(Id + ω1)−1◦ α1(s), σr1(|r1|)
}

.

(30)

Thus, the assumption (28) leads us to the BEFBS property
with respect to inputr and statex1 in the interval of
t ∈ [T,∞) for the initial conditionsx2(T ) ∈ U2. Since
we havex2(t) ∈ U2 for all t ∈ [T,∞), the BEFBS property
with respect to inputr and statex2 also holds in the interval
of t ∈ [T,∞) for the initial conditionx2(T ) ∈ U2. These
properties together with the boundedness ofx1(t) andx2(t)
in the interval [0, T ) establish the BEFBS property with
respect to inputr and statex in the interval oft ∈ [0,∞)
for all x(0) ∈ Rn. This completes the proof of Item(ii) of
Theorem 1.

Assumption 1 and Assumption 3 are qualitatively equiv-
alent in the sense thatσi + σri ≤ max{2σi, 2σri} ≤
2σi + 2σri. We can consider other variants of dissipation
inequalities for iISS. Although the coefficients appearing
in the transformation between two representations result in
conservativeness in different forms, the essence of imposing
the constraint on the external inputs for the reduction to the
ISS small-gain argument remains the same.

Remark 4:As already stressed, the difficulty in estab-
lishing the iISS via the transient plus the ISS small-gain
dynamics arises when the effect ofri’s is larger than the
contribution ofαi’s. Both Assumption 1 and Assumption 3
allow the magnitude ofσri’s to be arbitrarily large. In order
to make the ISS small-gain argument work, the undesirably
large effect of ri’s is avoided by Assumptions 2 and 4.
In short, σri’s are required to be sufficiently small in this
paper. It is worth noticing that the pair of ISS with respect
to small inputs and forward completeness does not always
imply iISS. Indeed, one can construct a forward complete
non-iISS system of the forṁx = f(x) + g(x, r)r which is
ISS with respect to small inputs by modifying the technique
proposed in [3, Section V]. In the presence of arbitrarily large
σri’s, removing Assumptions 2 and 4 is inherently difficult.

Remark 5:Neither the pair (18)-(19) nor the pair (28)-
(29) is necessary for establishing the iISS property of the
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Fig. 1. A trajectory on the (V1,V2)-plane without disturbances.
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Fig. 2. A trajectory on the (V1,V2)-plane with a disturbance.

interconnection of iISS subsystems. For example, in the case
whereα1 = σ2, α2 = dσ1 with σr1, σr2 ∈ K∞ and some
d > 1, the functionV = V1 + V2(1 + 1/d)/2 is an iISS
Lyapunov function, thus immediately proving the iISS of the
interconnection. In contrast to the approach followed in this
paper, this case is covered by the iISS small-gain theorems
proposed in [6], [9]. Therefore, the approach based on the
ISS small-gain argument plus the transient is more restrictive
than the direct iISS small-gain approach.

VI. A N EXAMPLE

Consider the interconnected system described by

ẋ1 = − x1

1 + x2
1

+
x1

2(1 + x2
1)

(x2 + r1) (31)

ẋ2 = −x2 +
x2

1

1 + x2
1

(32)

This pair satisfies the dissipation inequalities

V̇1(x1) ≤ − 2V1(x1)
1 + V1(x1)

+
√

V2(x2) + |r1| (33)

V̇2(x2) ≤ −V2(x2) +
(

V1(x1)
1 + V1(x1)

)2

(34)

for V1(x1) = x2
1 and V2(x2) = x2

2. Note that the upper
bounds in (33) and (34), i.e., the supply rates, may not be
completely tight. The subsystemΣ1 is not ISS with respect
to input x2, and it is only iISS. The trajectory of (31)-(32)
for the initial conditionx(0) = [2.2, 2.2]T is plotted on the



(V1, V2)-plane in Fig. 1 forr1(t) ≡ 0. Figure 1 also depicts
the following sets:

Ω+− := {(V1, V2) ∈ R2
+ : α1(V1) ≤ σ1(V2)

∧ α2(V2) ≥ σ2(V1)}
Ω−− := {(V1, V2) ∈ R2

+ : α1(V1) ≥ σ1(V2)
∧ α2(V2) ≥ σ2(V1)}

Ω−+ := {(V1, V2) ∈ R2
+ : α1(V1) ≥ σ1(V2)

∧ α2(V2) ≤ σ2(V1)} .

The boundaries of these sets are not necessarily the null-
clines of (31) and (32) owing to the lack of tightness in
the dissipation inequalities (33) and (34). Two phases are
observed in Fig. 1. The first phase is the transient evolving
outsideU2 for which the trajectory heads. The second phase
is the trajectory converging to the origin without leavingU2.
Once the trajectory enters the positively invariant setU2,
the dynamic is governed by the ISS small-gain condition as
discussed in Section III. It is also seen in Fig. 1 near the
origin that the setΩ−− is too narrow to be an invariant set
because of the gaps in the dissipation inequalities. Figure
2 shows the response for the same initial condition in the
presence of disturbancesr1(t) = 1.8/(2 + t) andr2(t) ≡ 0.
The trajectory is bounded and moves toward the setU2

which becomes positively invariant again. Since the iISS
small-gain condition acts as the ISS small-gain condition
in U2, we see that the trajectory converges to the origin.
It conforms to the converging-input converging-state of the
ISS property. The boundedness and the converging property
agree with the iISS property for the entiret ≥ 0 which is
established in Section IV.

VII. C ONCLUDING REMARKS

This paper has investigated the iISS small-gain theorem
developed in [6], [9] in order to give it a trajectory-based
interpretation linking with the contractive mechanism of the
ISS small-gain theorem. A preceding study has proved that
the interconnection of two iISS systems is stable if one
subsystem is ISS with respect to its feedback input strongly
enough to compensate the weak stability of the other iISS
subsystem. By making use of this fact, this paper has shown
that the behavior of the interconnected system can be split
into two phases. In the first phase, roughly, the trajectory
of the ISS subsystem behaves almost independently of the
other iISS subsystem and this phase lasts until the trajectory
of the ISS subsystem enters a neighborhoodU2 of the origin
with a certain radius. In this phase, the behavior of the
merely iISS subsystem is almost a free response. In the
second phase, the interaction between the two subsystems
takes effect and the contractive behavior of the whole state
vector occurs since the small-gain constraint plays the role
of the ISS small-gain condition inU2. This observation
would be practically useful in designing and analyzing the
dynamics of nonlinear control systems based on the iISS
small-gain theorem. It is worth stressing that the above
interpretation is not always applicable. The external signals

are not allowed to be large either as in (18)-(19) or (28)-
(29). These assumptions ensure that the transient response
actually dies in finite time which allows us to make use of
the “ISS” small-gain argument for the subsequent behavior
in dealing with “iISS” subsystems. There are interconnected
systems which violate these assumptions and can anyway
be proved to be iISS with respect to the external signals by
constructing Lyapunov functions as in [6], [9].

After the submission of this paper, the authors became
aware of an independent study [12] verifying input-to-output
stability and computing the gain of interconnected systems.
It uses a similar idea of combining a small-gain argument
with a transient under the assumption that an estimate of
trajectories is somehow available during the time period
when the ISS-type small-gain criterion is invalid. In contrast,
this paper here does not assume anything more than the
standard iISS dissipation inequalities of subsystems, which
would be less demanding than the time embedded trajectory
estimate. Nevertheless, it is remarkable that an abstract
model is employed in [12] for covering a considerably broad
class of systems at the price of some complexities in the
stability criterion.
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