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2Equipe GALEN, INRIA Saclay - Île-de-France, Orsay, France
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ABSTRACT
In this paper, we propose a novel method for the spatial normal-
ization of diffusion tensor images. The proposed method takes ad-
vantage of both the diffusion information and the spatial location
of tensor in order to define an appropriate metric in a probabilis-
tic framework. A registration energy is defined in a Reproducing
Kernel Hilbert Space (RKHS), encoding the image dissimilarity and
the regularity of the deformation field in both the translation and the
rotation space. The problem is reformulated as a graphical model
where the latent variables are the rotation and the translation that
should be applied to every tensor and the observed variables are the
tensors themselves. Efficient linear programming is used to mini-
mize the resulting energy. Quantitative and qualitative results on a
manually annotated dataset of diffusion tensor images demonstrate
the potential of the proposed method.

Index Terms— Diffusion tensor imaging, spatial normalization,
kernels, markov random fields, discrete optimization

1. INTRODUCTION

Diffusion Tensor Imaging (DTI) is a fairly new modality that is able
to provide clinicians with useful information about the structure and
the geometry of the observed tissues. It has been mainly used to
study the connectivity between the different structures of the human
brain. DTI has been lately used to study the human skeletal mus-
cles as diffusion can provide information about the structure and the
organization of the muscle fibers.

For clinicians to be able to draw valid conclusions from their
clinical studies, medical image registration is an important tool. In
general, it consists of estimating a spatial transformation such that
two images are aligned. In particular, Diffusion Tensor (DT) regis-
tration not only tries to recover the spatial correspondences but also
reorient the tensors accordingly to account for the rotational compo-
nent of the spatial deformation [1]. The directional information of
the diffusion tensors as well as the high-dimensionality of the data
further complicates the registration process. The existing diffusion
tensor registration algorithms can be subdivided in two classes.

The first class of methods extracts features from the diffusion
tensor data and uses them in vector-data registration algorithms. In
[2], features describing the distribution of tensor geometry over an
isotropic neighborhood as well as ones conveying information about
the orientation are combined in a vector registration framework. In a
similar way, the Geodesic Loxodrome distance and a modified Mul-
tidimensional Scaling are used in combination with tensor shape and
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orientation information in [3]. More recently, in [4], the proposed al-
gorithm includes regional tensor statistics and edge maps to capture
relevant information in a multiscale fashion for hierarchical registra-
tion.

The second class of approaches takes advantage of standard
scalar registration techniques by defining appropriate metrics for
tensor matching. In particular, in [5], a fluid registration frame-
work followed by preservation of principal directions (PPD) tensor
reorientation scheme is proposed where the symmetrized Kullback-
Leibler divergence between probabilities is used to compare the
tensors. Methods that allow for an explicit reorientation scheme and
consider the exact gradient of the objective function are proposed
in [6, 7]. The first builds upon the Demons algorithm for the scalar
images by introducing an exact Finite-Strain (FS) differential. The
second is based on a piecewise affine deformation model where an
optimization of the rotational component of the transformation is
possible.

In this paper, both spatial and diffusion information are used in
order to define an appropriate metric between tensors. Both types
of information are combined in a probabilistic framework where a
probabilistic kernel maps diffusion tensor images in an implicit way
to a Reproducing Kernel Hilbert Space (RKHS). In this space, lo-
cal smoothness constraints impose the regularity for both the spatial
transformation and the reorientation of the tensors. What is more,
we extend the framework proposed in [8] to diffusion tensor images.
The fast Primal-Dual (fast-PD) optimization method [9] is used to
minimize the proposed energy in a discrete setting where the six-
dimensional deformation space is quantized. The quaternion repre-
sentation of rotations is considered allowing for proper interpolation
and sampling of the rotations space.

2. MAPPING DIFFUSION PROBABILITIES TO A
HILBERT SPACE

Diffusion tensors refer to the covariance of a Gaussian probability
over the displacements r of the water protons given a diffusion (mix-
ing) time t which is provided by the following expression:

p(r|t,D) =
1√

det(D)(4πt)3
exp

(
−rtD−1r

4t

)
.

The spatial arrangement of the tensors conveys valuable informa-
tion. In order to take the spatial context into account, we proposed
in [10] to incorporate the spatial information in a probabilistic set-
ting. Given a diffusion tensor D localized at voxel x, the probability
of the position y of the water molecule previously localized at x can



be obtained in a straightforward way:

p(y|x, t,D) =
1√

det(D)(4πt)3
exp(− (y − x)tD−1(y − x)

4t
)

Let us now consider the normalized L2 inner-product between
two Gaussian diffusion probability densities p1 and p2 with parame-
ters (x1,D1) and (x2,D2) respectively. It is given by the following
expression:

kt(p1, p2) =

∫
p1 (y|x1, t,D1) p2 (y|x2, t,D2) dy√∫

(p1 (y|x1, t,D1))
2 dy

√∫
(p2 (y|x2, t,D2))

2 dy
.

It can be shown, based on [11], that the previous equation has an
interesting closed form that is a product of two terms:

kt(p1, p2) = 2
√

2
det(D1)

1
4 det(D2)

1
4√

det(D1 + D2)︸ ︷︷ ︸
tensor similarity term

×

exp

(
− 1

4t
(x1 − x2)

t(D1 + D2)
−1(x1 − x2)

)

︸ ︷︷ ︸
spatial connectivity term

(1)

Therefore kt takes into account the tensor affinity as well the spatial
position. This is crucial since combination of spatial and diffusion
information allows for a better modeling of the interactions between
tensors. It is easy to verify that the kernel kt verifies the Mercer
property over the space of multivariate normal distributions. The
Mercer property accounts for the existence of a mapping φ associ-
ated with the kernel kt that provides an embedding from the space
of Gaussian probabilities in the RKHS H such that kt(p1, p2) =<
φ(p1), φ(p2) >H, where < ., . >H is the inner product of H. This
allows to have the following Hilbertian metric δt:

δt(p1, p2) =
√

2− 2kt(p1, p2)

In order to ease the notation, in the remainder of the paper we will
identify a Gaussian probability distribution with its parameters and
denote:

δt(p1(y|x1, t,D1), p2(y|x2, t,D2)) = δt((x1,D1), (x2,D2)).

3. DEFORMABLE REGISTRATION

Let us consider a source DT image U : Ω 7→ S+(3) and a target
image V , where Ω is the source image domain and S+(3) is the
space of symmetric positive definite matrices. We aim at computing
a deformation field T : Ω 7→ R3×SO(3) where SO(3) is the special
orthogonal group. At each point x ∈ Ω, T (x) = (t(x),R(x)) is
a pair composed of a translation vector t(x) and a rotation matrix
R(x) that deforms U in an image W such that W (x + t(x)) =
R(x)U(x)R(x)t.

We consider a grid-based deformation model that can provide
for one-to-one and invertible transformations. The basic idea of the
deformation model is that by superimposing a grid G : [1, K] ×
[1, L]× [1, M ] (where K, L and M are smaller than the dimensions
of the domain) onto the moving image, it is possible to deform the
embedded image by manipulating the control points belonging to

the grid. Consequently, the goal is to recover the deformation vector
Tp = (tp,Rp) that should be applied to the node p of the grid, in
order for the images to be aligned. In such a framework, the defor-
mation T (x) = (t(x),R(x)) that should be applied to an image
position x can be obtained through interpolation of the deformations
obtained at the control points:

t(x) =
∑
p∈G

ηs(|x− p|)tp, R(x) =
∑
p∈G

ηr(|x− p|)Rp.

ηs and ηr are functions that weight the influence of each control
point of the grid to each point of the domain in relation to their spatial
distance from it. The group of rotations matrices is not a linear space,
this motivates the use of the quaternion representation in order to
interpolate the rotations.

Given the above-defined deformation model, the DT images will
be deformed in such a way that an appropriately defined dissimilarity
criterion with respect to the distance δt is minimized:

Ed =
1

|G|
∑
p∈G

∫

Ω

η−1
p (|x−p|)δt((x, W (x)), (x, V (x)))dx. (2)

Ed is simply a data term that will drive the deformation towards a
minimal mismatch between the deformed image W and the target
image V , written by using the control points of the superimposed
grid G. Note that in Ed, only the tensor similarity term in (Eq.1) is
relevant, since we will compare tensors that share the same location.
The back-projection function η−1 computes the influence of the po-
sition x to the control point p. If the nearest neighbor weighting
scheme is considered, then each position x contributes to only one
control point p with a weight equal to one. In the general case, it
takes the following form η−1

p (|x− p|) =
ηp(|x−p|)∫

Ω ηp(|y−p|)dy . It should
be noted that different weighting schemes can be used for the in-
terpolation of the displacement field (ηs), the interpolation of the
rotations (ηr) as well as for the back-projection to the nodes of the
grid (ηp).

In order to account for the ill-posedness of the problem as well
as the local structural information of the source image U a regu-
larization term is needed. We suppose that the deformation field is
approximately, up to a suitable change in the diffusion time t to ac-
count for local rescaling, locally isometric in the RKHS H, i.e. that
it preserves the distance δt between spatially neighboring Gaussian
probabilities when deforming U and accounts for a possible change
of scale. Thus, the smoothness term is defined as:

Es =

∫

G

∫

z∈Nx

|δt((x, U(x)), (z, U(z)))−

δtxz((x, W (x)), (z, W (z)))|dzdx (3)

where x = x + t(x), z = z + t(z), txz = t ||x−z||2
||x−z||2 and Nx

is a local neighborhood of x on the grid G. We expect the mini-
mization of Es to favor tensor reorientation so that the local source
image structure can be preserved in the deformed image. In other
words, it is through the regularization term that the rotations and the
translations are coupled in such a way that the local structure in the
deformed image, expressed by the distance between spatially neigh-
boring Gaussian probability distributions, remain consistent with the
local structure in the source image. An important underlying prop-
erty is that the coupling provided by the smoothness term constrains
the rotations with respect to the displacements, so that tensors do not
rotate independently from the translation they undergo with respect
to their neighbors.



Following recent ideas in scalar image registration [8] and recent
advances in discrete optimization [9], we opt for the use of a discrete
optimization technique called Fast-PD [9]. The reason behind our
choice is twofold: Fast-PD can provide an optimal solution (up to
a user-defined bound) in an efficient way and allows for a gradient-
free optimization thus permitting the use of different deformation
models.

To be able to apply the Fast-PD optimization, it is obligatory
to provide a quantized version of the deformation space. Let Θ =
(d1, . . . ,dn) be a quantized version of the deformation space R3 ×
SO(3), then to each quantized deformation di, a label li can be as-
signed to it, thus defining a discrete set of labels L = {l1, . . . , ln}.
Then, assigning a label lp to the node p, where lp ∈ L, corresponds
to applying the deformation dlp to the node, that is translating it by
tlp and rotating the corresponding tensor by Rlp .

The quantization of spatial displacements is intuitive, the case
of rotations is however less straightforward. In order to quantize the
group of rotation matrices, we use their quaternion representation.
The problem is equivalent to sampling points over the unit sphere
S3 of R4. We use layered Sukharev Grid sequences [12] that offer a
multi-resolution, deterministic and uniform sampling of S3 by back-
projecting points sampled over a hypercube inscribed in S3 outward
onto the spherical surface. The set Θ is therefore formed by the pairs
of sampled translations and rotations.

Following [8], we cast the registration problem as a discrete
multi-labeling problem. In such a context, the goal is to recover the
optimal individual label lp that should be assigned to each node p
of the grid. This can be done using the theory of MRFs, the general
form of which is the following:

EMRF =
∑
p∈G

Vp(lp) +
∑
p∈G

∑

q∈N (p)

Vpq(lp, lq) (4)

where Vp(·) are the unary potentials that encode the data term and
Vpq(·, ·) are the pairwise potentials that encode smoothness con-
straints. N (p) represents the neighborhood system of the node p.
The unary potentials will be defined according to the data term in
(Eq.2):

Vp(lp) ≈
∫

Ω

η−1
p (|x− p|)δt((x, W (x)), (x, V (x)))dx, (5)

where W is deformed by applying the label lp to the node p, that
is translating it and rotating the corresponding tensor accordingly.
Similarly the pairwise potentials are derived following (Eq.3):

Vpq(lp, lq) = |δt((p, U(p)), (q, U(q)))−
δtpq((p, W (p)), (q, W (q)))| (6)

where (p, W (p)) (resp. (q, W (q))) are obtained by applying
the deformation parameters of the label lp (resp. lq). More
schematically, it is as if any pair of neighboring grid tensors
(x, z) were linked by a spring of a known rest length l0(x, z) =
δt((x, U(x)), (z, U(z))). Deforming the tensors will affect the
length of the spring which is now given by the equation l(x, z) =
δtxz((x, W (x)), (z, W (z))). Thus, the minimization of the smooth-
ness energy will amount to keeping the length of the spring l close
enough to its rest length l0. The number of labels acts as a bottleneck
from computational perspective both in terms of time and needed
memory. As a result, we use a compositional multiscale approach,
that will gradually refine the solution by applying finer grids (and
consequently shorter diffusion times t) and label sets.

4. EXPERIMENTAL VALIDATION

For validation purposes, we considered DT images of the calf muscle
of 10 healthy subjects. The images were acquired with a 1.5 T MRI
scanner using the following parameters : TR = 3600 ms, TE =
70 ms and b value of 700 s.mm−2 with 12 gradient directions and
13 repetitions. The size of the obtained volumes is 64 × 64 × 20
voxels with a voxel resolution of 3.125 mm× 3.125 mm× 7 mm.
High-resolution T1-weighted images were simultaneously acquired
and segmented in 7 muscle groups by an expert.

Based on the given segmentations, the dice overlap, the sensi-
tivity and the specificity of the deformed source segmentation with
respect to the target segmentation, are computed. Moreover, four
angular similarity criteria are also evaluated on the target mask: the
mean difference in the azimuthal angle θ and the polar angle φ in
spherical coordinates of the principal directions of diffusion, their
average angular separation (AAS) as well as the average overlap of
eigenvalue-eigenvector pairs (AOE). We also compute the mean dif-
ference in fractional anisotropy (FA).
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Fig. 1. Boxplots of the evaluation criteria over the 50 registrations
before registration (Init), with our method with a single identity ro-
tation label (KMRF-Worot) and several rotation labels (KMRF), as
well as the method in [6] (DT-REFinD).

Among the possible 90 registrations, we chose randomly a sub-
set of 50 pairs of DT images. In all our experiments, we used a
three-level multiresolution scheme. The grids used at the three lev-
els were of size 6 × 6 × 5, 12 × 12 × 10 and 18 × 18 × 15. The
following diffusion times were used: t =

{
2 105, 5 104, 2 104

}
. A

number of 73 = 18 × 4 + 1 translation labels were used per res-



olution level, sampled along the horizontal and vertical directions
as well as the diagonals. For rotation sampling, we generated 103,
104 and 105 quaternions using Sukharev layered grids. Of these, we
selected 100, 50 and 25 for the three levels respectively. These sam-
ples were chosen as the closest with respect to the geodesic distance
arccos(., .) on S3 to the identity matrix (or equivalently with the
smallest angle). Towards imposing the diffeomorphic property on
the deformation field, we use a cubic B-spline interpolation of the
displacement field, with the maximum displacement being restricted
to 0.4 times the grid spacing. We used a simple trilinear scheme for
tensor interpolation and a nearest-neighbor backprojection (ηp).

For the sake of comparison, we provide the values of the com-
puted evaluation criteria before and after registration. We also
compare our method to a reference algorithm proposed in [6] (the
software is publicly available at http://www-sop.inria.fr/
asclepios/software/MedINRIA/) and to the result of our
method without a rotational component, i.e. with a single rotation
label equal to the identity matrix. For the reference algorithm, we
considered a three-level multiresolution pyramid with a smoothing
kernel of size 1 and a maximum displacement of 4.

Fig. 2. From left to right and top to bottom: moving, fixed and
deformed tensors. All are overlaid on the B0-image of the target
subject. RGB colors encode principal directions of diffusion.

We report in (Fig.1) the boxplots of the evaluation criteria over
the 50 registrations for our method and for the approaches described
above. Our approach improves significantly all the evaluation cri-
teria with respect to the initial state (no registration) and achieves
close results to [6]. We run a paired statistical Student t-test with
a significance level of 0.05 for comparison and we found that the
two approaches performed equivalently for the dice and FA, that our
method achieved better results for θ, AAS and sensitivity while [6]
performed better in φ, AOE and specificity. The inclusion of rotation
labels improved (significantly according to the t-test) all the angular
criteria with respect to the no-rotation experiments.

For qualitative evaluation, we report in (Fig.2) a view of moving
tensors, target tensors and deformed tensors overlaid over the base-
line target image. We can see that the spatial mismatch is minimized
while the tensor field obtained is smooth and the directions of the
deformed tensors are similar to the fixed ones.

5. DISCUSSION

We introduced a novel method for diffusion tensor registration. The
main contribution is two-fold. First, we proposed to use a diffusion
probability kernel that models both spatial and data dependencies in
the tensor field in order to drive the registration process. The pro-
posed formulation allows for the matching of the deformed and the
target images while reorienting the tensors and taking into account
the local structural information of the source image. Moreover, we
showed that the MRF-based formulation for scalar images proposed
in [8] can be extended to the case of tensor images. A possible im-
provement could be to consider automatic and location-dependent
adaptive quantization of the search space.
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