
HAL Id: hal-00526737
https://centralesupelec.hal.science/hal-00526737v1

Submitted on 10 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Entirely Model-Based Framework for Hardware
Design and Simulation

Safouan Taha, Ansgar Radermacher, Sébastien Gérard

To cite this version:
Safouan Taha, Ansgar Radermacher, Sébastien Gérard. An Entirely Model-Based Framework for
Hardware Design and Simulation. 7th IFIP TC 10 Working Conference on Distributed, Parallel and
Biologically Inspired Systems (DIPES) / 3rd IFIP TC 10 International Conference on Biologically-
Inspired Collaborative Computing (BICC) / Held as Part of World Computer Congress (WCC), Sep
2011, Brisbane, Australia. pp.31-42, �10.1007/978-3-642-15234-4_5�. �hal-00526737�

https://centralesupelec.hal.science/hal-00526737v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

An entirely Model-based Framework for
Hardware Design and Simulation

Safouan Taha1, Ansgar Radermacher2, and Sébastien Gérard2

1 SUPELEC Systems Sciences (E3S) – Computer Science Department, France,
safouan.taha@supelec.fr

2 LIST/LISE department of CEA (Commissariat à l’Energie Atomique), France,
ansgar.radermacher@cea.fr and sebastien.gerard@cea.fr

Abstract. For a long time, the code generation from domain-specific
and/or model-based languages to implementation ones remained man-
ual and error-prone. The use of modeling was required in the early stages
of development to ease the design and communicate intents, but because
of the manual implementation, there were no traceability and no formal
link with the final code. Model-Driven Development (MDD) was unable
to win its audience.
Today, models constructed with UML have an equivalent representation
in XML. And thanks to XML technologies, manipulating models for
data mining, transformation or code generation becomes possible. MDD
is now commonly used within the software community.
Next, for the hardware community, this work will empower the use of
MDD in hardware design and simulation. It offers a completely opera-
tional framework based on OMG standards: UML and MARTE.

1 Introduction

The Object Management Group (OMG) standard UML (Unified Modeling Lan-
guage) [6] is commonly used within the software community. UML has signif-
icantly improved efficiency in software development, thanks to several mech-
anisms, like generalization, composition, encapsulation, separation of concerns
(structure/behavior), abstraction (different views), and refinement. UML is sup-
ported by many modeling tools.

By using hardware description languages like VHDL and SystemC, hardware
design becomes a programming activity similar to the software development.
That eases the hardware design and enables hardware simulation to avoid any
risky implementations. But in practice, just like software, hardware programming
is implementation-oriented and doesn’t match the real issues of hardware design
and architecture exploration.

Taking into account this analogy between hardware design and software,
we developed an entire and operational framework that is completely based
on models of concepts and constructs specific to the hardware domain. Such
framework let the hardware designer benefit from all well-known features of DSLs

28 Safouan Taha, Ansgar Radermacher, and Sébastien Gérard

and MDD. Our framework is composed of a standardized Hardware Resource
Modeling (HRM) language and a powerful simulation engine.

In this paper, we will first describe a modeling methodology which helps to
resourcefully use HRM for building consistent models. This HRM methodology
is a set of guidelines within an incremental process of successive hardware com-
positions. Then, we will illustrate the efficiency of such model-based framework
on a large case study: we will apply the HRM methodology to create the model
of a heterogeneous hardware platform and we will simulate it.

The paper is organized as follows. The next section introduces in brief the
HRM profile. Section 3 describes the modeling methodology based on HRM.
Section 4 explains how the simulation engine works. Where the last section
depicts the whole design process on a case study.

2 Hardware Resource Model

The purpose of HRM is to adopt UML as a hardware design language to benefit
from its features and tools, and to unify the (software/hardware) co-design pro-
cess of embedded systems. Thanks to the UML extension mechanism, the HRM
profile [8] extends UML with hardware concepts and semantics. HRM is part
of the new OMG standard MARTE [7] (Modeling and Analysis of Real-Time
Embedded systems). HRM is intended to serve for description of existing or for
conception of new hardware platforms, through different views and detail levels.
HRM covers a large scope:

Software design and allocation: The hardware designer may use a high level
hardware description model of the targeted platform architecture, with only
key properties of the available resources like the instruction set family, the
memory size. . . Such abstract model is a formal alternative to block diagrams
that are communicated to software teams and system architects.

Analysis: Analysis needs specialized hardware description model. The nature
of details depends on the analysis focus. For example, schedulability analy-
sis requires details on the processor throughput, memory organization and
communication bandwidth, whereas power analysis will focus on power con-
sumption, heat dissipation and the layout of the hardware components. HRM
uses the UML ability to project different views of the same model.

Simulation: It is based on detailed hardware models (see section 4). The re-
quired level of detail depends on the simulation accuracy. The performance
simulation needs a fine description of the processor microarchitecture and
memory timings, whereas many functional simulators simply require entering
the instruction set family.

HRM is grouping most of hardware concepts under a hierarchical taxonomy
with several categories depending on their nature, functionality, technology and
form. The HRM profile is composed of two sub-profiles, a logical profile that
classifies hardware resources depending on their functional properties, and a
physical one that concentrates on their physical nature. The logical and physical

An entirely Model-based Framework for Hardware Design and Simulation 29

views are complementary. They provide two different abstractions of hardware
that should be merged to obtain the whole model. Each sub-profile is, in turn,
composed of many metamodels as shown in figure 1.

« profile »
HRM

HwComputing
HwStorage

HwCommunication

HwTiming

HwLayout

HwMemory

 HwStorage-
Manager

HwDevice

« profile »

« import »

HwPower

HwGeneral
« merge »« merge »

MARTE::Foundations

 « profile »
HwPhysical

 « profile »
HwLogical

Fig. 1. HRM structure overview

Logical model The objective of the logical model is to provide a functional
classification of hardware resources, whether if they are computing, storage,
communication, timing or auxiliary devices. This classification is mainly based
on services that each resource offers. As shown in figure 1, there is a specific
metamodel for each hardware logical category.

HRM contains most of hardware resources thanks to a big range of stereo-
types that are organized under a tree of successive inheritances from generic
stereotypes to specific ones. This is the reason behind the ability of the HRM pro-
file to cover many detail levels. For example, the HwMemory metamodel shown in
figure 2 reveals the HRM accuracy and its layered architecture. The HwMemory
stereotype denotes a given amount of memory. It has three attributes, memo-
rySize, addressSize and timings. This latter is a datatype to annotate detailed
timing durations. HwMemory could be an HwProcessingMemory symbolizing a
fast and working memory, or an HwStorageMemory for permanent and relatively
time consuming storage devices. . .

Physical model The hardware physical model represents hardware resources
as physical components with physical properties. As most of embedded systems

30 Safouan Taha, Ansgar Radermacher, and Sébastien Gérard

memorySize : NFP_DataSize

addressSize : NFP_DataSize

timings : Timing [*]

« stereotype »

HwMemory

repl_Policy : Repl_Policy

writePolicy : WritePolicy

HwProcessingMemory

HwStorageMemory

level : NFP_Natural

type : CacheType

structure : CacheStructure

« stereotype »

HwCache

organization : MemoryOrganization

isSynchronous : NFP_Boolean

isStatic :NFP_Boolean

isNonVolatile : NFP_Boolean

« stereotype »

HwRAM

Data

Instruction

Unified

Other

Undefined

« enumeration »

CacheType

notation : NFP_String

description : NFP_String

value : NFP_Duration

« dataType »

Timing

nbRows : NFP_Natural

nbColumns : NFP_Natural

nbBanks : NFP_Natural

wordSize : NFP_DataSize

« dataType »

MemoryOrganization

nbSets : NFP_Natural

blocSize : NFP_DataSize

associativity : NFP_Natural

« dataType »

CacheStructure

buffer

{subsets ownedHW}

0..1

WriteBack

WriteThrough

Other

Undefined

« enumeration »

WritePolicy

LRU

NFU

FIFO

Random

Other

Undefined

« enumeration »

Repl_Policy

type : ROM_Type

organization : MemoryOrganization

« stereotype »

HwROM

MaskedROM

EPROM

OTP_EPROM

EEPROM

Flash

Other

Undefined

« enumeration »

ROM_Type

sectorSize : NFP_DataSize

« stereotype »

HwDrive

« stereotype »

MARTE::GRM::Storage

« stereotype »

HwResource

Fig. 2. HwMemory metamodel

have limited area and weight, hard environmental conditions and a predeter-
mined autonomy, this view enables layout, cost, power analysis and autonomy
optimization The HwPhysical profile contains two metamodels: HwLayout and
HwPower.

For more details on HRM, please refer to [8] and the MARTE document [7].
As HRM is serialized into the OMG standard XML Metadata Interchange

(XMI) [5], it can be used within most UML-based modeling tools. In our case,
we use the Papyrus UML tool [3] that is developed within our laboratory (CEA
LIST/LISE). Papyrus is based on the Eclipse Modeling Framework and provides
a MARTE plug-in.

3 Hardware Modeling Methodology

As the HRM profile extends the generic UML kernel metaclasses, it can be used
within all UML diagrams. UML offers a big amount of notations and diagrams,
it also includes many variation points. Consequently, it is a common practice
to adopt modeling methodologies that restrain the UML mechanisms to use,
fixate their semantics and bring consistency rules. Considering that the hardware

An entirely Model-based Framework for Hardware Design and Simulation 31

designers are not used to UML-based modeling, such a modeling methodology
is quite necessary.

The HRM modeling methodology is mainly based on the UML2 Compos-
ite Structure diagram, since this latter has a clear graphical representation of
composition and supports the Part, Port and Connector concepts that are well-
adapted to hardware modeling.

The HRM modeling methodology is iterative, one iteration corresponds to
the entire modeling of only one resource from the hardware platform. Each it-
eration is composed of many modeling steps grouped into three phases: class
definition, internal structure modeling and instantiation. Our methodology is
also incremental (bottom-up), it starts from modeling elementary resources, and
with successive compositions, it reaches the whole platform model.

Class definition

1. Choose the next resource to model taking into account the incremental order
(partial order) of compositions. Create the corresponding class using the
resource name. Specify its inheritances from previously defined classes (from
previous iterations). Notice that the inheritance mechanism is an efficient
way to classify hardware resources depending on their nature.

2. Apply the HRM stereotype matching the resource type. It is a key step
where we extend, in a simple manner, the UML class structure and seman-
tics with the hardware specific ones. To avoid useless decompositions, many
HRM stereotypes could be applied simultaneously if the current resource
plays many roles within the hardware platform (e.g. a typical chipset is
either HwMemoryManager, HwBridge, HwArbiter . . .). Furthermore, stereo-
types from different profiles may also be applied if necessary. UML supports
these options.

3. Assign values to some of the tag definitions (stereotype attributes), espe-
cially those that match the class level and are common to all the resources
represented by the current class. For example, if the instruction set of a Hw-
Processor could be assigned at this level, its frequency or its cache size should
be specified later within the steps of integration and instantiation. Notice
that the HRM tag definitions are optional and they should be specified only
if necessary.

4. Even if HRM is very detailed, it is a standard that mainly groups generic
and common properties. Therefore, if at this stage of modeling, the hardware
designer still needs to specify additional properties of the current resource,
he should use UML ordinary, in this step, regardless of HRM.

– Define specific attributes. They must be strictly typed, and for this, we
can exploit the UML typing mechanisms like DataType or Enumeration.
We can also use the MARTE library of basic types BasicNFP Types
or define new complex types (with physical measurements and units)
thanks to the NFP profile [7] of MARTE.

32 Safouan Taha, Ansgar Radermacher, and Sébastien Gérard

– Add associations when necessary between the current class and the previ-
ously defined ones. When an association corresponds to a hardware con-
nection, we can apply corresponding stereotypes (HwMedia, HwBus. . .)
on it. Notice that class compositions will be defined during the next step.

– Define operations and use the HwResourceService stereotype and the
providedServices tag definition to settle if they are provided services of
the current resource.

Fig. 3. ICACHE class definition

Figure 3 shows a light model of an instruction cache class that we typically
obtain at the end of this first iteration phase.

Internal structure modeling

5. To define the internal structure of the resource being modeled, insert UML
Part(s) typed by resources specified in previous iterations. We see here the
reason behind the use of the Composite Structure diagram in our method-
ology and why we are following the incremental compositions order. Each
Part has a multiplicity that is a simple and powerful mechanism for the rep-
resentation of repetitive structures, very frequent in the area of hardware.
Each Part must also display its ports, which correspond to those of its class
type (see step 8).

6. Once Part(s) are typed as resources and taking into account their new con-
text, it is important to reapply stereotypes and assign local values to their
specific tag definitions. Indeed, if we have previously modeled resource in
absolute terms regardless of its enclosing component, it should be now more
specifically characterized. The hardware designer is limited to the reapplica-
tion of stereotypes previously applied to the typing class or one of its class
parents. It is a rule of consistency between the nature of the resource and
the roles it can play within different platforms.

7. Connect these parts by means of UML Connector(s) linking their ports.
Such connectors must be typed by either an association defined in step 4
or a HRM meta-association. They could also be stereotyped as HwMedia,
HwBus or HwBridge depending on their role.

8. Define boundary ports. In the UML Composite Structure diagram, a Port is
a Property that is not necessarily typed but has a name and a multiplicity.

An entirely Model-based Framework for Hardware Design and Simulation 33

Under this methodology, we require that each port and/or its class type must
be stereotyped as a HwEndPoint.
Use then UML Connector(s) to define delegations from the class ports to
the ports of its subcomponents.

«hwEndPoint» toCPU: [1]

 toPLMB: LMB_Interface [1]

Fig. 4. PMI (Program Memory Interface) internal structure modeling

Figure 4 shows a model of a composite memory class that we typically obtain
at the end of this second phase. It contains the ICACHE shown in figure 3.

Instantiation

9. Step 9 is a test step, which unlike other steps, does nothing to the model
under construction. Our methodology is iterative and incremental in the
sense of composition, since the designer begins with basic resources and then
iterates to resources increasingly composite. If the current class represents
the entire platform, this means that the model is complete, and that normally
at this stage, all resources are referenced from the current platform class. We
skip therefore to step 10 for the model instantiation. Otherwise we iterate
from step 1, and we choose the next resource to model from those that have
all their subcomponents already modeled in previous iterations.

For example, figure 5 represents the block diagram of the complex CPU
Subsystem of the Infineon microcontroller TC1796 [2]. Figure 6 shows its entire

34 Safouan Taha, Ansgar Radermacher, and Sébastien Gérard

ÛÞË

Ð®±¹®¿³ Ó»³±®§
Ë²·¬

ÐÓË

ïê ÕÞ ÞÎÑÓ
î ÓÞ ÐÚÔßÍØ

ïîè ÕÞ ÜÚÔßÍØ

Ü¿¬¿ Ó»³±®§
Ë²·¬

ÜÓË

ïê ÕÞ ÍÞÎßÓ
êì ÕÞ ÍÎßÓ

Ô±½¿´ Ó»³±®§ó¬±ó
ÚÐ× Þ« ×²¬»®º¿½»

ÔÚ×óÞ®·¼¹»

ÐÞÝË ÜÞÝË
ÐÔÓÞ ÜÔÓÞ

Ð®±¹®¿³ Ô±½¿´
Ó»³±®§ Þ«

Ü¿¬¿ Ô±½¿´
Ó»³±®§ Þ«

Í§¬»³
Ð»®·°¸»®¿´ Þ«

ÍÐÞ

ÓÝÞðëëèë

Û³«´¿¬·±² Ó»³±®§
×²¬»®º¿½»

Ì± Û³«´¿¬·±² Ó»³±®§
øÛ³«´¿¬·±² ¼»ª·½» ±²´§÷

ÔÓ×

Ú´±¿¬·²¹ Ð±·²¬ Ë²·¬
ÚÐË

Ì®·Ý±®»ÌÓ

ÝÐË

Ü¿¬¿ Ó»³±®§
×²¬»®º¿½»

ÜÓ×

ëê ÕÞ ÔÜÎßÓ
è ÕÞ ÜÐÎßÓ

Ð®±¹®¿³ Ó»³±®§
×²¬»®º¿½»

ÐÓ×

ìè ÕÞ ÍÐÎßÓ
ïê ÕÞ ×ÝßÝØÛ ÝÐË Í´¿ª» ×²¬»®º¿½»

ÝÐÍ

ÔÜÎßÓ ã Ô±½¿´ Ü¿¬¿ ÎßÓ
ÜÐÎßÓ ã Ü«¿´óÐ±®¬ ÎßÓ
ÍÐÎßÓ ã Í½®¿¬½¸óÐ¿¼ ÎßÓ
×ÝßÝØÛ ã ×²¬®«½¬·±² Ý¿½¸»
ÍÞÎßÓ ã Í¬¿²¼ó¾§ ÎßÓ
ÍÎßÓ ã Ü¿¬¿ ÎßÓ
ÐÚÔßÍØ ã Ð®±¹®¿³ Ó»³±®§ Ú´¿¸
ÜÚÔßÍØ ã Ü¿¬¿ Ó»³±®§ Ú´¿¸
ÞÎÑÓ ã Þ±±¬ ÎÑÓ ú Ì»¬ ÎÑÓ

ÛÞË ã Û¨¬»®²¿´ Þ« Ë²·¬
ÔÓ× ã Ô±½¿´ Ó»³±®§ ×²¬»®º¿½»
ÐÞÝË ã Ð®±¹®¿³ Ô±½¿´ Ó»³±®§

Þ« Ý±²¬®±´ Ë²·¬
ÜÞÝË ã Ü¿¬¿ Ô±½¿´ Ó»³±®§

Þ« Ý±²¬®±´ Ë²·¬

ÜÓß Ý±²¬®±´´»®
Þ« Í©·¬½¸

ÛÞË

Ð®±¹®¿³ Ó»³±®§
Ë²·¬

ÐÓË

ïê ÕÞ ÞÎÑÓ
î ÓÞ ÐÚÔßÍØ

ïîè ÕÞ ÜÚÔßÍØ

Ü¿¬¿ Ó»³±®§
Ë²·¬

ÜÓË

ïê ÕÞ ÍÞÎßÓ
êì ÕÞ ÍÎßÓ

Ô±½¿´ Ó»³±®§ó¬±ó
ÚÐ× Þ« ×²¬»®º¿½»

ÔÚ×óÞ®·¼¹»

ÐÞÝË ÜÞÝË
ÐÔÓÞ ÜÔÓÞ

Ð®±¹®¿³ Ô±½¿´
Ó»³±®§ Þ«

Ü¿¬¿ Ô±½¿´
Ó»³±®§ Þ«

Í§¬»³
Ð»®·°¸»®¿´ Þ«

ÍÐÞ

ÓÝÞðëëèë

Û³«´¿¬·±² Ó»³±®§
×²¬»®º¿½»

Ì± Û³«´¿¬·±² Ó»³±®§
øÛ³«´¿¬·±² ¼»ª·½» ±²´§÷

ÔÓ×

Ú´±¿¬·²¹ Ð±·²¬ Ë²·¬
ÚÐË

Ì®·Ý±®»ÌÓ

ÝÐË

Ü¿¬¿ Ó»³±®§
×²¬»®º¿½»

ÜÓ×

ëê ÕÞ ÔÜÎßÓ
è ÕÞ ÜÐÎßÓ

Ð®±¹®¿³ Ó»³±®§
×²¬»®º¿½»

ÐÓ×

ìè ÕÞ ÍÐÎßÓ
ïê ÕÞ ×ÝßÝØÛ ÝÐË Í´¿ª» ×²¬»®º¿½»

ÝÐÍ

ÔÜÎßÓ ã Ô±½¿´ Ü¿¬¿ ÎßÓ
ÜÐÎßÓ ã Ü«¿´óÐ±®¬ ÎßÓ
ÍÐÎßÓ ã Í½®¿¬½¸óÐ¿¼ ÎßÓ
×ÝßÝØÛ ã ×²¬®«½¬·±² Ý¿½¸»
ÍÞÎßÓ ã Í¬¿²¼ó¾§ ÎßÓ
ÍÎßÓ ã Ü¿¬¿ ÎßÓ
ÐÚÔßÍØ ã Ð®±¹®¿³ Ó»³±®§ Ú´¿¸
ÜÚÔßÍØ ã Ü¿¬¿ Ó»³±®§ Ú´¿¸
ÞÎÑÓ ã Þ±±¬ ÎÑÓ ú Ì»¬ ÎÑÓ

ÛÞË ã Û¨¬»®²¿´ Þ« Ë²·¬
ÔÓ× ã Ô±½¿´ Ó»³±®§ ×²¬»®º¿½»
ÐÞÝË ã Ð®±¹®¿³ Ô±½¿´ Ó»³±®§

Þ« Ý±²¬®±´ Ë²·¬
ÜÞÝË ã Ü¿¬¿ Ô±½¿´ Ó»³±®§

Þ« Ý±²¬®±´ Ë²·¬

ÜÓß Ý±²¬®±´´»®
Þ« Í©·¬½¸

Fig. 5. TC1796 CPU Subsystem (block diagram)

platform class model that was achieved through this methodology. If the first
diagram is only a useless drawing, the second one is formal and may be used for
analysis and simulation.

10. Finally, once the class of the whole platform is reached, instantiate the model
giving values to slots (attributes, parts and ports), linking them and again
applying stereotypes (if needed) on instances with assigning tag values cor-
responding to instance level semantics.

By the several steps of this methodology, we propose an efficient use of the
HRM profile. We limit for this, the UML mechanisms to use and we give them
clear semantics. However our methodology is advisory, even if it includes good
practices, the use of HRM independently of it, is obviously possible. It is never-
theless adapted to new users of UML and ensures consistency of the final model.
When a platform model is consistent you can use it for various manipulations,
such as simulation that we will detail in the next section.

4 Hardware Simulation

The simulation of a hardware architecture to test its ability to provide an ad-
equate execution platform for the software application, provides many bene-
fits. It improves flexibility, accelerates the development process, saves time and
money, and enables effective communication between software and hardware

An entirely Model-based Framework for Hardware Design and Simulation 35

Fig. 6. TC1796 final platform class

flows. Therefore, developers are no longer dependent on the availability of the
physical hardware and they can explore in the early stages of design, several
architectures, including new configurations. The simulation also offers several
advances in debugging software and hardware.

Designated as one of the three HRM use cases, the idea behind our simula-
tion engine is to use HRM/UML as a common interface to hardware simulation
tools. Indeed, the user can take advantage of HRM/UML to describe a hardware
architecture in a model that will be automatically translated and interpreted by
simulation tools.

Most simulation tools are only Instruction Set Simulators (ISS) that simu-
late a processor with some RAM running assembler code. However, we simulate
a whole execution platform with processors, memory, peripherals, and different
means of communication. Such a simulation environment should also run com-
plex software applications without any modification and start operating systems.

After a deep study we adopt Simics [1] as a target of our model-based simula-
tion engine. Simics is capable of simulating the full-system. All common embed-
ded components are available including PowerPC, ARM, SPARC, x86 proces-
sors, FLASH memories, I2C busses, serial ports and timers. Also, defining new
components is feasible. Simics platform runs the same binary software as would
run the real hardware target including operating systems and device drivers. Sim-
ics is at the origin a fast functional system-level simulator, it does not handle
timing considerations. But recently, a Micro Architectural Interface was designed
to overcome these limitations and provides cycle-accurate simulations.

36 Safouan Taha, Ansgar Radermacher, and Sébastien Gérard

Today, Simics is widely used by the telecom, networking, military/aerospace
(including commercial avionics and space systems), high-performance comput-
ing, and semiconductor industries.

Fig. 7. Simulation engine process

To start, we modeled using HRM all components supported by Simics, we get
then a library of resources’ models. This library will be provided to the user who
will apply our HRM methodology to create his hardware platform. The user
can use the resources of the library as basic components and with successive
iterations in the sense of compositions, he can construct the whole hardware
platform. Once done, he can automatically generate the equivalent script that
will run under Simics. This process is illustrated in figure 7.

Modeling the library of Simics components As Simics is implemented
in Python and C++, our task was easier because Simics has already an object-
oriented structure. Nevertheless it has a specific terminology and semantics wider
than the object paradigm ones. We had then to translate each of its concepts
according to UML/HRM. In brief, the concept of component is central in Simics,
it denotes a hardware resource that can be used in the construction of a platform
(called machine or configuration), a component can be implemented by one or
more classes.

An entirely Model-based Framework for Hardware Design and Simulation 37

Code generation We had primarily used Acceleo [4] that we reinforced by a
set of services we have developed in Java (thanks to the Eclipse UML2 plug-in).
Acceleo generates code from models by interpreting a script of declarative rules.

Our first step of code generation is to explore the platform subcomponents
and generate the adequate Simics creation commands. To parametrize the Sim-
ics components, we have developed indeed a method that checks whether a
stereotype is applied and gets the corresponding value of the tag definition when
specified.

The second step of code generation is to produce connection commands be-
tween the Simics components created during the previous step. To do this, we
take one by one all connectors of the platform that are linking the ports of the
various subcomponents. We check that the ports are similar and have consistent
directions. Note however that connection commands may be inappropriate for
technological or generational reasons and will therefore be rejected by Simics.

The first objective of this simulation engine was to demonstrate that HRM
is complete and it offers a level of detail sufficient to interface the most accurate
simulation tools. The second objective was to provide the hardware designer with
a rich and automated model-based tool to assist him in designing platforms. Let’s
illustrate it on a real complex example.

5 Case Study

For our case study shown in figure 8, we consider a highly heterogeneous hard-
ware platform, since it combines two very different computing resources: board
and boardSMP. The first is a uniprocessor from the PowerPC family and has
a 32bits architecture. While the second is a multiprocessor (SMP) from the
Itanium family with a 64bits architecture, it may contain up to 32 processors
sharing a 1GiBytes memory. We connected board and boardSMP via an Ethernet
link ethLink, but it was necessary, first, to provide the boardSMP with an Ether-
net card CardPciEth that we connected to a PCI port. We also have connected to
the boardSMP a SCSI hard disk harddisk via a HwBridge pci-sym53c810. board
has a 64MiBytes ddr memory and the exact description of its organization is
specified in terms of nbRows, nbColumns, nbBanks. . .

Figure 8 shows the whole platform class that was obtained applying our
methodology (within the Papyrus UML tool), we used then our simulation engine
to generate the corresponding Simics script. To simulate this platform, we started
two different Linux 2.4, the first on board was compiled for the ppc32 instruction
set and the second on boardSMP was compiled for the ia64 instruction set with
the SMP option activated. Both run and communicate perfectly.

6 Conclusion

Having no equals that meet the needs of high-level description of hardware archi-
tectures and with the standardization of MARTE, HRM is dedicated to a massive
use within the industry. In this paper, we first describe a modeling methodology

38 Safouan Taha, Ansgar Radermacher, and Sébastien Gérard

Fig. 8. Heterogeneous platform model

which helps to resourcefully use HRM for building consistent platform models.
We developed then an innovative simulation framework that is hundred percent
model-based and supports the widely-used simulator Simics.

References

1. Simics Platform. http://www.virtutech.com
2. TriCore Architecture. http://www.infineon.com/tricore
3. CEA LIST: Papyrus UML2 Tool. http://www.papyrusuml.org
4. Obeo: Acceleo Generator. http://www.acceleo.org (2007)
5. Object Management Group, Inc.: MOF 2.0 XMI Mapping Specification, Version 2.1.

Tech. Rep. 2005-09-01, OMG
6. Object Management Group, Inc.: OMG UML Superstructure, V2.1.2. Tech. Rep.

formal/2007-11-02, OMG (2007)
7. Object Management Group, Inc.: Uml profile for marte, beta 2. Tech. Rep. ptc/08-

06-09, OMG (June 2008)
8. Taha, S., Radermacher, A., Gerard, S., Dekeyser, J.L.: An open framework for

detailed hardware modeling. In: SIES. pp. 118–125. IEEE (2007)

