
HAL Id: hal-00539470
https://centralesupelec.hal.science/hal-00539470v1

Submitted on 24 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Influence of Spatial Attention on the Receptive Field
Shape of Neurons in Monkey Area MT

Jérémy Fix, Henning Schroll, Katharina Anton-Erxleben, Thilo Womelsdorf,
Stefan Treue, Fred Hamker

To cite this version:
Jérémy Fix, Henning Schroll, Katharina Anton-Erxleben, Thilo Womelsdorf, Stefan Treue, et al..
Influence of Spatial Attention on the Receptive Field Shape of Neurons in Monkey Area MT. Cinquième
conférence plénière Française de Neurosciences Computationnelles, Neurocomp 2010, Oct 2010, Lyon,
France. pp. 147-152. �hal-00539470�

https://centralesupelec.hal.science/hal-00539470v1
https://hal.archives-ouvertes.fr


INFLUENCE OF SPATIAL ATTENTION ON THE RECEPTIVE FIELD SHAPE

OF NEURONS IN MONKEY AREA MT
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ABSTRACT

Spatial attention has been shown to produce non-

multiplicative effects on visual receptive fields(vRFs) in

monkey area MT, including shift and shrinkage [1]. These

non-multiplicative effects have been recently explained by

a multiplicative model of attention [2]. However, Womels-

dorf et al. introduced a simplification leading to two dis-

tinct models, one for unmodulated and another for modu-

lated responses. We provide here a unified account of both

the unmodulated and modulated responses within a single

model. This model relies on a divisive influence of anti-

preferred stimuli placed within the receptive fields of the

neurons scaled by spatial attention. This model also allows

to reproduce the influence of spatial attention observed in

[3] and provides physiological explanation for the differen-

tial shift for the centre and surround of the receptive field.

KEY WORDS
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1 Introduction

Visual attention is a property of the brain to focus on rel-

evant visual information while ignoring non-relevant in-

formation. While important results about visual attention

have been gathered both in psychology and electrophysi-

ology [4, 5], the neuronal mechanisms involved in visual

attention remain unclear. At the single cell level, it has

been proposed that spatial attention acts as a multiplicative

gain on feedforward sensory inputs [6], facilitating the pro-

cessing of behaviourally relevant spatial locations. While

some attention-related effects (scaling of the tuning curve,

contrast sensitivity increase) are consistent with a multi-

plicative influence of attention, other effects such as shift

and shrinkage of the receptive fields (RFs), as observed in

[1, 3], seem to be incompatible with it at first sight (but

see [7] for a qualitative account to model peri-saccadic RF

shifts).

Womelsdorf et al. [2] applied a standard computa-

tional model to explain the shift and shrinkage of the re-

ceptive fields as observed in monkey area MT [1]. This

model relies on a multiplicative gain increase g(x, y) ·gain

of the Gaussian response profile g(x, y), where gain =
1 + gAtt(x, y) and gAtt(x, y) a Gaussian attentional focus.

Analysing the experimental data revealed that RF flanks

opposite to the focus of attention are suppressed by atten-

tion. To obtain the suppression of the flank, the authors in-

troduced a simplification which led to two different models

for explaining the unmodulated and modulated responses.

We propose here a unified account of the unmodulated and

modulated responses by formulating a single model used

to reproduce the data in the two conditions. The model ex-

plicitly considers the influence of the attended stimulus and

not just the response to the probe. The attended stimulus,

a random dot pattern moving in the anti-preferred direc-

tion of the recorded cell, is proposed to exert a suppressive

influence on the response of the cell, magnified by spatial

attention. In addition, we show that a small modification

of the model allows also to account for the other data [3]

where attention was hypothesized to shift differently the

centre and the surround of the receptive field.

2 Materials and methods

2.1 Experimental paradigm

The experimental data used in this study were recorded by

[1]. Two monkeys performed an attentional task while the



response neurons was recorded in area MT. Here we briefly

summarize the experimental paradigm, more detailed in-

formation is provided in the original paper [1]. The stimuli

used for the experiment are random dot patterns of small

bright dots plotted within a stationary circular aperture on

a dark monitor. A trial started when the monkey foveated

a small square presented on the screen. Then, a cue, a

stationary random dot pattern was presented. By its loca-

tion, the cue indicated the future position of the task rel-

evant stimulus. After a certain delay, three stimuli were

presented. Two stimuli were presented within the receptive

field of the recorded cell (denoted S1 and S2). A third stim-

ulus was presented in the opposite hemifield. These three

stimuli (S1, S2 and S3) were of low contrast and moving in

the anti-preferred direction of the recorded cell. Two con-

ditions were considered. In the first condition, the mon-

key had to detect a small transient change of movement

direction of S3. This condition is called attend-away con-

dition. In the second condition, the monkey had to detect

a small transient change of movement direction of S1 or

S2. This second condition is called attend-in condition.

When required, we call the attend-in condition attend-S1

or attend-S2 condition. During the attentional task, probes

were quickly flashed on a regular grid to map the receptive

field of the cell. The probes were moving in the preferred

direction of the cell and were of higher contrast than the

anti-preferred stimuli. The dataset contains recordings of

97 pairs of attend-away/attend-in conditions.

2.2 Model

We propose a dynamical model from which we derive the

steady state equations used in this study. The response

runmod of a cell, to a probe flashed at position (x, y) is

modelled as a two-dimensional elliptical Gaussian :

runmod(x, y) = A · g(x, y) + B (1)

g(x, y) = exp( −

[(x − x0) · cos(θ) + (y − y0) · sin(θ)]2

2σ2
x

−

[−(x − x0) · sin(θ) + (y − y0) · cos(θ)]2

2σ2
y

with (x0, y0) the RF centre, θ the orientation of its

main axis, σx and σy the standard deviations respectively

along the major and minor axis, A the maximal response of

the cell and B its baseline (i.e. the response of the cell to

a probe flashed far away from its receptive field centre, in

the absence of the anti-preferred stimuli S1 and S2). The

spatial attention signal is modelled as a two-dimensional

circular symmetric Gaussian centred at (xAtt, yAtt), of am-

plitude AAtt and variance σAtt :

gAtt(x, y) = AAtt · exp(−
(x − xAtt)

2 + (y − yAtt)
2

2σ2

Att

) (2)

The evolution of the activity r(t) of the cell is defined

with the following first order differential equation :

τ
dr

dt
(t) = − r(t) + A · g(x, y).(1 + gAtt(x, y))

− r(t).As1 · g(xs1, ys1).(1 + gAtt(xs1, ys1))

− r(t).As2 · g(xs2, ys2).(1 + gAtt(xs2, ys2))

+ B (3)

Spatial attention is introduced as a multiplicative fac-
tor modulating the feedforward sensory inputs of the cell
[8]. The feedforward sensory inputs come from the probe
A · g(x, y) as well as from the anti-preferred stimuli S1
(As1 · g(xs1, ys1)) and S2 (As2.g(xs2, ys2)), although S1
and S2 could be of lateral origin. In line with the nor-
malization models of attention [9], the inhibitory influence
of the anti-preferred stimuli will appear as a divisive term
in the steady state solution if it is modulated by the fir-
ing rate of the cell. In the following, we call the attend-
away condition the condition when attention is directed far
away from the receptive field centre and the attend-in con-
dition the condition when attention is directed on one of
the anti-preferred stimuli within the receptive field of the
cell. The experimental dataset consists of pairs of attend-
away and one attend-in responses. Therefore, we neglect
in the following the influence of the anti-preferred stimulus
that is not directly attended. In addition, since, during the
experiment, the position of the anti-preferred stimulus S1
is held fixed, we can simplify equation (3) by introducing
A1 = As1g(xs1, ys1) which leads to the simplified model:

τ
dr

dt
(t) = −r(t) + A · g(x, y) · (1 + gAtt(x, y))

− r(t) · A1 · (1 + gAtt(xs1, ys1))

+ B (4)

From the previous equation, we can derive the steady state

equations for both the attend-away and attend-in condi-

tions. Since in the attend-away condition spatial attention

is directed far away from the receptive field of the recorded

cell, we can omit the attentional term. In this condition, we

obtain the response rout defined by:

rout(x, y) =
Ag(x, y) + B

1 + A1

(5)

The steady-state attend-in response, denoted by rin,

is given by the following equation :

rin(x, y) =
A.g(x, y) · (1 + gAtt(x, y)) + B

1 + A1 · (1 + gAtt(xs1, ys1))
(6)

In the rest of the paper, we call the model defined by

the previous equations the divisive model. We also call the

model in which the influence of the anti-preferred stimuli is

not introduced (A1 = 0) the Gaussian model. All the anal-

yses were performed with custom scripts written in MAT-

LAB (The MathWorks, Natrick, MA)1.

1The scripts used for the theoretical tuning curves (figures 1A and 4)
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Figure 1: Illustration of the RF changes when attending

away (solid line) or attending the anti-preferred stimulus

S1 (dashed line). The position of S1 is indicated by the

vertical dashed line. As seen on the difference between the

attend-in and attend-away conditions (dashed-point line),

the response to a probe flashed on the same flank as S1
is increased while the response to a probe flashed on the

opposite flank is decreased. A) Simulation of a 1D model

with the parameters A = 2, B = 0.1, σx = 15, x0 = 0,

xAtt = 20, AAtt = 2, σAtt = 20, xs1 = 20. B) Re-

sponse of one of the fitted cell (Cell #8 with the statistics

Rout
2

= 0.87, Rin
2

= 0.79), along the axis connecting the

RF’s center to the anti-preferred stimulus S1. For both il-

lustrations, the x-axis is scaled by the unmodulated RF size

and the y-axis is scaled by the maximal attend-away re-

sponse.

2.3 Illustrative example in one dimension

We here illustrate the RF shape change by a one-

dimensional example. The equations used for the simu-

lation are the equations (5) and (6) expressed in one spa-

tial dimension. The receptive fields when attending away

(solid line) or attending S1 (dashed line) are shown on fig-

ure 1A. As seen from the difference between the attend-

S1 and attend-away conditions (dashed-dot line), the re-

sponse to a probe flashed close to the attended stimulus

S1 is increased, while the response to a probe flashed on

the opposite flank of the receptive field is decreased. The

suppressive effect of attention on the left flank is due to

an increase of the inhibitory drive from the anti-preferred

stimulus that is not compensated by an increase of the exci-

tatory drive from the probe: when attention is on S1 and a

flash is presented on the left flank, the inhibitory drive from

S1 is magnified while the excitatory drive from the probe

is less influenced by attention. The net effect is therefore

suppressive. When a probe is flashed on the flank of the

receptive field closer to attention, the attentional effect on

the probe is larger than on S1. To illustrate this effect on a

recorded cell, the figure 1B shows a slice of the attend-

away and attend-in responses of one cell fitted with the

two-dimensional model. As seen from the difference be-

tween the two responses (dashed-point line), when attend-

ing S1, the response is increased on the flank close to S1
and decreased on the opposite flank. The suppression of the

are available on the website of the author : http://jeremy.fix.free.fr/

flank on the side opposite to S1 allows for a strong shift of

the RF.

2.4 Fitting procedure

The dataset provided by [1] contains the attend-away and

one of the two attend-in conditions for each cell. We fit-

ted simultaneously the two conditions using the lsqnonlin

function of MATLAB (The MathWorks), searching for 10

free parameters (A, B, x0, y0, θ, σx, σy, AAtt, σAtt, A1),

repeating the procedure for several times to avoid local

minima. For each cell, the minimized criterion is based

on the mean square error between the model’s response

and the experimental data, normalized by their respective

standard deviations σout and σin. Namely, the following

criterion was minimized :

C =
P

i

„

rout(xi, yi) − zout(xi, yi)

σout

«

2

+
P

i

„

rin(xi, yi) − zin(xi, yi)

σin

«

2

The statistics reported in the result section are the R2 val-
ues for each condition as well as the combined R2 value
for the two conditions :

R
2

out = 1 −

P

i(rout(xi, yi) − zout(xi, yi))
2

P

i(zout(xi, yi) − z̄out)2

R
2

in = 1 −

P

i(rin(xi, yi) − zin(xi, yi))
2

P

i(zin(xi, yi) − z̄in)2

R
2

both =
R2

out + R2

in

2
(7)

2.5 Variability of the feedback signals

As explained above, the fits of a single cell were performed

several times with random starting values of the parame-

ters. During the fits, we kept all the parameters that led to

a R2

tot of at least 0.99 times the best R2

tot. For some cells,

we observed that the shape of the attentional signal of the

models we kept may vary significantly. In order to analyse

the shape of the feedback signals, we introduce a criterion

to exclude the cells for which the shape of the attentional

signal exhibits too much variability. We excluded the cells

for which the parameters of the feedback signals (ampli-

tude or variance), leading to a model with a R2

tot of at least

0.99 the best R2

tot, had a standard deviation higher than 5%
the mean value. This selection criterion led to discard 29

cells out of the 97 recorded cells.

2.6 Analysis

Receptive field size

The RF size is computed as the square root of the area

above the half-maximal baseline-corrected response. In



the attend-away condition, the RF size can be computed

analytically. Given the RF is elliptic with a major and mi-

nor axis of lengths σx

√

2 log(2) and σy

√

2 log(2), the area

above the half-maximum is 2π log(2)σxσy . This leads to

an attend-away RF size of :

s
out
RF =

p

2π log(2)σxσy (8)

The RF size in the attend-in condition sin
RF was com-

puted by probing on a fine grid the RF. We checked that the

response of the cell on the borders of the grid was below the

half-maximum response and counted the number of probes

falling within the half-maximum area. The square root of

the area covered by these probes was used as a measure of

the receptive field size. To evaluate the influence of spatial

attention on the RF size, we define the variation of recep-

tive field size ∆sRF as the ratio between attend-away and

attend-in receptive field sizes:

∆sRF = 100
sin

RF

sout
RF

(9)

Therefore, a ∆sRF smaller than 100 indicates a

shrinkage of the receptive field with attention while a

∆sRF higher than 100 indicates an expansion.

Receptive field shift

To evaluate the influence of spatial attention on the position

of the RF centre of the cell, we computed the RF shift be-

tween the attend-away and attend-in conditions. The centre

of the RF in both conditions was evaluated by searching for

the position of the probe that leads to the maximal response

of the model cell, using a fine grid of probes (usually with

a step of 0.3 degrees). If we denote ~cS1 a unitary vector

on this axis, ~cout the position of the peak response in the

attend-away condition and ~cin the position of the peak re-

sponse in the attend-in condition, the RF shift ∆c is esti-

mated as :

∆c =
(~cin − ~cout).~cS1

sout
RF

(10)

A positive ∆c indicates a shift of the RF centre toward at-

tention, while a negative shift ∆c indicates a shift away

from attention.

3 Results

3.1 Quantitative results of the divisive and

Gaussian models

The statistics of the different models we tested are shown

in table 1. We observed that the performance of the divisive

model is significantly better than a Gaussian model (paired

t-test, p < 0.001). The better fits obtained with our model

are explained by the introduction of the inhibitory influence

of the anti-preferred stimulus which allows to suppress one

of the flanks of the receptive field. This suppressive effect
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Figure 2: A) Unmodulated receptive field size as a func-

tion of the receptive field eccentricity. In addition to a lin-

ear fit of the RF size (6.5o + 0.47ǫ, solid line), the rela-

tionships given by [10] (sRF = 1.04o + 0.91ǫ) and by [11]

(sRF = 1.04o+0.61ǫ) are plotted, with ǫ the eccentricity of

the receptive field centre. B) Size of the attentional signal

(σAtt

√

2π log(2)) as a function of the attended stimulus’

eccentricity. Only the signals for which the variability was

small, as explained in section 2.5, are shown. The slope is

0.49 and the y-intercept is 4.8 degrees.

of the anti-preferred stimulus S1 is observed on the flank

of the receptive field on the side opposite to S1. Although

similar effects can be achieved with attentional foci mod-

eled with a DoG, it does not provide a clear understanding

of the neural effects.

R
2
out R

2

in R
2

both

Gaussian 0.698 0.745 0.722

(SD 0.153) (SD 0.121) (SD 0.127)

Divisive 0.752 0.764 0.757

(SD 0.099) (SD 0.107) (SD 0.094)

DoG 0.755 0.778 0.767

(SD 0.101) (SD 0.102) (SD 0.093)

Table 1: Statistics of the fitted models with the population

mean R2 values and their respective standard deviations.

3.2 Receptive field size change and shift

We found that the unmodulated receptive field size was in-

creasing approximately linearly with eccentricity accord-

ing to the relationship sout
RF = 6.5o + 0.47ǫ (fig. 2). The

receptive field size of MT neurons previously reported was

sRF = 1.04o + 0.91ǫ [10] and sRF = 1.04o + 0.61ǫ [11].

The higher y-intercept is due to some receptive fields that

are quite large for small eccentricities.

In addition, the figure 3 shows the relationship be-

tween the shift and the shrinkage. The more the RF shifts

toward attention, the more it shrinks. Expansion of the re-

ceptive field is observed only for small shifts. These results

are consistent with the shrinkage/shift patterns reported in

[2].

3.3 Attentional signal

Our model allows to extract the shape of the attentional

signal as a function of the eccentricity of the attended
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Figure 3: Receptive field shift and shrinkage.

stimulus. The size of the attentional signal computed

as the square root of the half-maximum area (sAtt =
σAtt

√

2π log(2) is shown on figure 2 as a function of the

attended target’s eccentricity. The size of the attentional

signal is growing as a function of eccentricity of the at-

tended stimulus. The slope of the relationship is 0.49 with

a y-intercept of 4.8. With a similar slope and y-intercept,

the size of the attentional signal is similar to the size of the

receptive field.

3.4 The influence of the second anti-

preferred stimulus

The recent study of [3] used almost the same experimen-

tal paradigm as [1], using a larger grid of probes in order

to evaluate the influence of attention on the periphery of

the receptive fields of MT neurons. When computing the

difference map between the attend-S1 and attend-S2 con-

ditions, the authors observed two opposite effects in the

centre and periphery of the receptive field. In the centre of

the receptive field, the response is increased close to the at-

tended target and decreased further away. The opposite is

observed in the periphery. Anton-Erxleben et al. proposed

that the observed effects are due to different shifts of the ex-

citatory centre and inhibitory surround of the recorded cells

(figure 4). To explain this observation with our model an in-

teraction between the probe and the anti-preferred stimulus

is assumed, so that the inhibitory term A1 in equation (4) is

replaced by :

A1exp(−
(xs1 − x)2 + (ys1 − y)2

2σ2

s1

) (11)

This allows to obtain the excitatory and inhibitory com-

ponents in the periphery. These peripheral effects are

here due to a suppression of the baseline response when

a probe is flashed close to the attended stimulus (in the

difference map, this results in a positive or negative com-

ponent depending on whether attention is on S1 or S2).

Using this modified model to fit the data of [3] pro-

vided good statistics (R2

fix = 0.796(SD = 0.132),

R2

in,S1
= 0.815(SD = 0.123), R2

in,S2
= 0.805(SD =
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Figure 4: Illustrative example of the difference between the

responses when attending S1 (xs1 = 15, ys1 = 0) and

the responses when attending S2 (xs2 = −15, ys2 = 0)

showing that a divisive model can qualitatively account for

the difference maps observed in [3]. In order to produce

this pattern, an influence between the probe and the anti-

preferred stimuli has been introduced leading to a suppres-

sion by the anti-preferred stimuli that is stronger when a

probe is flashed close to them. The illustration on the right

is a slice of the difference map along the x-axis connecting

S1, S2 and the receptive field centre.

0.141),R2

tot = 0.805(SD = 0.123)). However, the feed-

back signals revealed to be highly variable. In fact, the

dataset does not contain an attend-away condition but an

attend-fixation. For the majority of cells, the fixation stim-

ulus lies within the receptive field of the recorded cell,

which forced us to consider all the conditions (attend-

fixation, attend-S1 and attend-S2) as attend-in conditions.

This leads to more complicated fits. Unfortunately, the ab-

sence of an attend-away condition removes constraints on

the unmodulated receptive field parameters, which impairs

a more detailed analysis as with the other dataset.

An ideal situation would be to have the responses

in the attend-away condition in the absence of S1 and

S2, attend-away condition with S1 and S2, attend-S1

and attend-S2 conditions. We would then be able to

fit separately the unmodulated receptive fields before

introducing the influences of the anti-preferred stimuli and

the influence of spatial attention.

4 Discussion

We have proposed here a unified model accounting for

the data of [1]. The model we proposed explains shift

and shrinkage of receptive fields by an increase of the re-

sponse close to attention and a suppression on the opposite

flank. The novelty we introduced is the inhibitory influ-

ence, through a divisive term, of the anti-preferred stim-

uli, magnified by spatial attention. We also provide a more

physiological explanation of the effects observed in [3].

Anton-Erxleben et al. found a RF change similar to the

one illustrated on figure 4. They proposed that this pattern

is due to a different shift of the centre and surround of the

receptive field. Here we propose that this pattern of change



can be obtained by introducing a divisive inhibitory influ-

ence of the anti-preferred stimuli.

Divisive models were previously proposed to model

the influence of attention on visual receptive fields [9] or

the influence of contrast on the center/surround structure

of V1 receptive fields [12, 13]. Another class of models is

substractive models. For example, [13] obtained similar re-

sults using a substractive or divisive model. Here, we also

analyzed a substractive inhibitory model where the atten-

tional signal is a difference of Gaussians (DoG), multiplica-

tively scaling the sensory feedforward input (i.e. replacing

the attentional Gaussian gAtt in equation (3) by a differ-

ence of Gaussians and removing the influence of the anti-

preferred stimulus). This also introduces suppression of the

periphery of the receptive field on the opposite side of at-

tention. Indeed, we performed the fits with a DoG model

which led to good fitting statistics (see table 1). However,

the model’s parameters were too variable to report their val-

ues. In particular, we observed that the inhibitory compo-

nent of the DoG attentional signal could be local or broad,

up to constant for some cells (i.e. not null for large eccen-

tricities). Indeed, since the receptive field and the atten-

tional signal are interacting multiplicatively in the model,

the receptive field is hiding part of the attentional signal.

If simultaneous recordings were available for the same at-

tentional conditions, we may have been able to analyse if

a DoG model would account for the data. In addition, the

divisive and DoG model provide different interpretations

for the observed suppression. If the inhibition were purely

spatial-based (as in the DoG model), originating from the

attentional feedback, it should not depend on the selectivity

in feature space of the recorded cell. Therefore, we expect

that in this situation, varying the motion direction of the

attended anti-preferred stimulus would not change the sup-

pression of the flank. On the opposite, with the divisive

model we proposed, the amplitude of the inhibitory influ-

ence A1 is dependent on the selectivity in feature space of

the recorded cell and on the motion direction of the anti-

preferred stimulus.

Biased competition suggests that attention directed

toward a stimulus inside the receptive field of a neuron oc-

cupied by two stimuli drives the response of the neuron to-

ward the response to the attended stimulus presented alone.

Interestingly, the model studied in this paper suggests dif-

ferent influences of attention depending on the probe po-

sition (see for example figure 1B, the probe moving in the

preferred direction of the recorded neuron). In particular,

attending to S1 causes a decrease of the response to a probe

flashed on the suppressed flank. On the side close to at-

tention, we observe the opposite effect; the response to a

probe flashed close to attention is increased even if an anti-

preferred stimulus is attended.
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