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STATISTICAL RESOLUTION LIMIT: APPLICATION TO PASSIVE POLARIZED SOURCE LOCALIZATION

This paper considers the evaluation of the so-called Cocentered Orthogonal Loop and Dipole Uniform and Linear Array (COLD-ULA) performance by mean of the Statistical Resolution Limit (SRL). The SRL adressed herein is based on the estimation accuracy. Toward this end, nonmatrix closed form expressions of the Cramér-Rao Bound (CRB) are derived and thus, the SRL is deduced by an adequat change of variable formula. Finally, concluding remarks and a comparaison between the SRL of the COLD-ULA and the ULA are given. In particular, we show that, in the case where the sources are orthogonal, the SRL for the COLD-ULA is equal to the SRL for the ULA, meaning that it is not a function of polarisation parameters. Furthermore, thanks to the derived SRL, we show that generally the performance of the COLD-ULA is better than the performance of the ULA.

INTRODUCTION

Passive polarized source localization by an array of sensors is an important topic in a large number of applications especially in wireless communication [START_REF] Godara | Applications of antenna arrays to mobile communications: II. beam-forming and direction of arrival considerations[END_REF] and seismology [START_REF] Donno | Seismic velocity and polarization estimation for wavefield separation[END_REF]. In this context, one can find several estimation schemes. For example, in [START_REF] Donno | Seismic velocity and polarization estimation for wavefield separation[END_REF], [START_REF] Ziskind | Maximum likelihood localization of diversely polarized sources by simulated annealing[END_REF], [START_REF] Wong | Uni-vector-sensor ES-PRIT for multisource azimuth, elevation, and polarization estimation[END_REF] and [START_REF] Li | Efficient direction and polarization estimation with a cold array[END_REF] the authors proposed an algorithm based on the shift-invariance property, the Maximum Likelihood Estimator (MLE), the ESPRIT algorithm and the MODE algorithm for polarized far-field narrow-band source localization, respectively.

However, the optimal performance, associated to this model, has not been fully investigated. In particular, the SRL on the signal parameters is an essential tool in the evaluation of system performance [START_REF] Lee | The Cramér-Rao bound on frequency estimates of signals closely spaced in frequency[END_REF][START_REF] Smith | Statistical resolution limits and the complexified Cramér Rao bound[END_REF][START_REF] Liu | Statistical angular resolution limit for point sources[END_REF][START_REF] Amar | Fundamental limitations on the resolution of deterministic signals[END_REF][START_REF] El Korso | Statistical resolution limit for multiple signals and parameters of interest[END_REF]. To the best of our knowledge, no results are available concerning the SRL for such a model.

The goal of this paper is to fill this lack. More precisely, the challenge herein is to determine the minimum Direction Of Arrivals (DOA) separation between two polarized sources that allows a correct sources resolvability for a specific array of sensors, adequate to the localization of polarized sources, called the COLD-ULA [START_REF] Li | Efficient direction and polarization estimation with a cold array[END_REF]. There exists essentially three approaches to determine the SRL:

(1) based on the estimation accuracy [START_REF] Smith | Statistical resolution limits and the complexified Cramér Rao bound[END_REF], (2) based on the detection theory [START_REF] Amar | Fundamental limitations on the resolution of deterministic signals[END_REF] and (3) based on the study of the spectral function for each estimation method [START_REF] Stoica | Spectral Analysis of Signals[END_REF]. In this paper we consider the SRL based on the estimation accuracy. The CRB does not directly point out the best resolution that can be achieved by an unbiased estimator. However, it expresses a lower bound on the covariance matrix of any unbiased estimator, thus it can be used to obtain the SRL. Smith defined the SRL, for pole estimation problem, as the pole separation that is greater than its standard deviation estimation [START_REF] Smith | Statistical resolution limits and the complexified Cramér Rao bound[END_REF]. In this paper, the Smith criterion will be applied to the deterministic polarized source localization. In this case, the CRB will be efficient (in the sense of the deterministic MLE) at high Signal to Noise Ratio (SNR) for a fixed number of snapshot [START_REF] Renaux | On the high SNR conditional maximumlikelihood estimator full statistical characterization[END_REF]. Consequently, the CRBs and the SRL expressions derived herein, are valid under these conditions.

In the following, the CRB for the considered model is derived in nonmatrix closed form expressions [START_REF] Boyer | Analysis of the COLD uniform linear array[END_REF], taking advantage of these expressions, the SRL is deduced for the COLD-ULA and compared with the SRL of the ULA. Finally, concluding remarks and comparisons between the SRL of the COLD-ULA and the ULA are given.

MODEL SETUP

Consider a COLD-ULA of L COLD sensors (a COLD sensor is formed by a loop and a dipole) with interelement spacing d that receives a signal emitted by M radiating far-field and narrowband sources. Assuming that the array and the incident signals are coplanar [START_REF] Li | Efficient direction and polarization estimation with a cold array[END_REF] ,i.e., the elevation is fixed to π 2 , the signal model observed on the -th COLD sensor at the t-th snapshot is given by [START_REF] Li | Efficient direction and polarization estimation with a cold array[END_REF][START_REF] Li | Angle and polarization estimation using esprit with a polarizationsensitive array[END_REF] 

x (t) = x (t) x (t) = M m=1 α m (t)u m z m + v (t), t ∈ [1 . . . N ], ∈ [0 . . . L -1]
where N is the number of snapshots, z m = e i 2π λ d sin(θm)

denotes the spatial phase factor in which θ m and λ are the azimuth of the m-th source and the wavelength, respectively. The time-varying source is given by1 α m (t) =

a m e i(2πf0+φm(t)) in which a m is the non-zero real amplitude, φ m (t) is the time-varying modulating phase and f 0 denotes the carrier frequency of the incident wave. The additive thermal noise is denoted by

v (t) = v (t) v (t)
T in which v (t) and v (t) are random process. The polarization state vector u m is given by

u m = 2iπA sl λ cos(ρ m ) -L sd sin(ρ m )e iψm
where ρ m ∈ [0, π/2] and ψ m ∈ [-π, π] are the polarization state parameters. In a modeling point of view, each dipole in the array is assumed to be a short dipole with the same length L sd and each loop is assumed to be a short loop with the same area A sl . Under this assumptions, the total output vector received by the COLD-ULA at the t-th snapshot can be wirtten as follows

y(t) =    x 0 (t) . . . x L-1 (t)    = M m=1 A m (t)d m +    v 0 (t) . . . v L-1 (t)    (1) 
where

A m (t) = I L ⊗ (α m (t)u m ) is of size (2L) × L
in which the operator ⊗ stands for the Kronecker product and the steering vector is defined by

d m = 1 e i 2π λ d sin(θm) . . . e i(L-1) 2π λ d sin(θm) T .
Since the problem addressed herein is to derive the SRL based on the CRB for the proposed model, we first start by deriving the CRB for (1) in the case of two known sources.

DETERMINISTIC CRAM ÉR-RAO BOUND DERIVATION

In the remaining of the paper, we will use the following assumptions:

A1. The noise is assumed to be a complex circular white Gaussian random noise with zero-mean and unknown variance σ 2 , A2. The noise is assumed to be uncorrelated both temporally and spatially, A3. The sources are assumed to be deterministic where the unknown parameters vector is ξ = [ω 1 ω 2 σ 2 ] T in which ω i = 2π λ d sin(θ i ), A4. Furthermore, in a modeling point of view, we can assume, without loss of generality, that

L sd = 2πA sl λ = 1.
Using A1. and A2. the joint probability density function of the observation χ = y T (1) . . . y T (N )

T given ξ can be written as follows

p( χ| ξ) = 1 π 2N L det(R) e -(χ-µ) H R -1 (χ-µ) ,
where R = σ 2 I 2N L and

µ = M m=1 A T m (1) . . . A T m (L) T ⊗ d m .
Let E ( ξξ)( ξξ) T be the covariance matrix of an unbiased estimate of ξ, denoted by ξ and define the CRB for the considered model. The covariance inequality principle states that under quite general/weak conditions

MSE([ ξ] i ) = E [ ξ] i -[ξ] i 2 ≥ CRB([ξ] i ), where CRB([ξ] i ) = [FIM -1 (ξ)] i,i
in which FIM(ξ) denotes the Fisher Information Matrix regarding to the vector parameter ξ.

Since we are working with a Gaussian observation model (assumption A.1), the i th , j th element of the FIM for the parameter vector ξ can be written as [START_REF] Stoica | Spectral Analysis of Signals[END_REF] [

FIM(ξ)] i,j = N L σ 4 ∂σ 2 ∂ [ξ] i ∂σ 2 ∂ [ξ] j + 2 σ 2 ∂µ H ∂ [ξ] i ∂µ ∂ [ξ] j
where [z] i and {z} denote the i th element of z and the real part of z, respectively. Then, the FIM for the proposed model is block-diagonal according to

FIM(ξ) = 2 σ 2 F 0 0 N L 2σ 2 (2)
where

[F] mp = ∂µ H ∂ω m ∂µ ∂ω p = N r N u H m u p d H m D 2 d p + k (3) in which D = diag{0, . . . , L -1}, k = ∂ (u m ) H ∂ω m ∂u p ∂ω p d H m d p -iu H m ∂u p ∂ω p d H m Dd p +i ∂u m ∂ω m u H p d H m Dd p and r N = 1 N N t=1 α * 1 (t)α 2 (t).
Using the fact that the polarization state vector of a COLD array is not a function of the direction parameter, thus ∂u m /∂ω m = 0, consequently k = 0 and (3) becomes

[F] mp = N r N u H m u p d H m D 2 d p .
Furthermore, since the polarization state vector is normalized, one obtains

F = N a 2 1 α r N u H 1 u 2 η r N u H 1 u 2 η a 2 2 α where η = L-1 =0 
2 e i(ω1-ω2) , α = 1 6 (L -1)L(2L -1) and u H 1 u 2 = cos(ρ 1 ) cos(ρ 2 ) + sin(ρ 1 ) sin(ρ 2 )e i(ψ2-ψ1) . Consequently, its inverse is given by

F -1 = N det{F} a 2 2 α -r N u H 1 u 2 η -r N u H 1 u 2 η a 2 1 α (4) 
where

det{F} = N 2 (a 2 1 a 2 2 α 2 -2 r N u H 1 u 2 η ).
Finally, replacing (2) and (4) in CRB(ξ) = FIM -1 (ξ), one obtains

CRB(ω 1 ) ∆ = [CRB(ξ)] 1,1 = σ 2 2N a 2 2 α a 2 1 a 2 2 α 2 -2 {r N u H 1 u 2 η} (5) CRB(ω 2 ) ∆ = [CRB(ξ)] 2,2 = σ 2 2N a 2 1 α a 2 1 a 2 2 α 2 -2 {r N u H 1 u 2 η} (6) CRB(ω 1 , ω 2 ) ∆ = [CRB(ξ)] 1,2 = - σ 2 2N {r N u H 1 u 2 η} a 2 1 a 2 2 α 2 -2 {r N u H 1 u 2 η} (7) 
The CRB is used as a benchmark to evaluate the efficiency of suboptimal unbiased estimators, however, it does not indicate the achievable SRL by such estimators. In the next section, we will make use of the derived CRBs ( 5), ( 6) and ( 7) to derive the SRL for the proposed model.

STATISTICAL RESOLUTION LIMIT

To resolve two sources, Smith [START_REF] Smith | Statistical resolution limits and the complexified Cramér Rao bound[END_REF] proposed the following criterion: Two sources are resolvable if standard deviation of source separation ≤ source separation Consequently, Smith defined the SRL as the source separation at which the equality in the above inequality is achieved, in other words, he defined the SRL as the source separation that is equals to its own CRB.

Statistical resolution limit for a COLD-ULA

Having CRB(ξ), one can deduce CRB( ξ) by using the change of variable formula

CRB( ξ) = ∂g(ξ) ∂ξ T CRB(ξ) ∂g T (ξ) ∂ξ , (8) 
where

ξ = g(ξ) = [δ (COLD) ω σ 2 ] T , in which δ (COLD) ω = |ω 1 -ω 2 |
and where the Jacobian matrix

∂g(ξ) ∂ξ T i,j = ∂ [g(ξ)] i ∂ [ξ] j .
Cconsequently,

∂g(ξ) ∂ξ T = sgn(ω 1 -ω 2 ) -sgn(ω 1 -ω 2 ) 0 0 0 1 ,
where sgn(z) = z |z| for z = 0. Without loss of generality, let us suppose that ω 1 > ω 2 , thus

∂g(ξ) ∂ξ T = 1 -1 0 0 0 1 . (9) 
Using the Jacobian matrix above and ( 8), one obtains

CRB(δ (COLD) ω ) ∆ = CRB( ξ) 1,1 = CRB(ω 1 ) + CRB(ω 2 ) -2CRB(ω 1 , ω 2 ).
Consequently, the SRL2 is defined as δ (COLD) ω which resolve the following equation

δ (COLD) ω 2 = CRB(ω 1 ) + CRB(ω 2 ) -2CRB(ω 1 , ω 2 )
(10) Consequently, we have to solve

δ (COLD) ω 2 = σ 2 2N (a 2 1 + a 2 2 )α + 2 {r N u H 1 u 2 η} a 2 1 a 2 2 α 2 -2 r N u H 1 u 2 η . (11) 

The orthogonal sources case

In case of orthogonal sources (r N = 0 [START_REF] Li | Maximum likelihood angle estimation for signals with known waveforms[END_REF]), the SRL for orthogonal sources is given by

δ (COLD-O) ω = σ √ 2N α (a 2 1 + a 2 2 ) a 2 1 a 2 2 = σ a 1 a 2 3(a 2 1 + a 2 2 ) N L(2L 2 -3L + 1) . (12) 
For orthogonal sources, it can be readily checked that the SRL is not a function of polarisation parameters. This is a surprising result. Note also that the SRL is proportional to the inverse of the third-half square-root of the number and to the square-root of sensors and amplitudes. Furthermore, the SRL obtained herein is, qualitatively, consistent with the SRL derived for binary phase-shift keying sources in [START_REF] Delmas | Statistical resolution limits of DOA for discrete sources[END_REF], since it is proportional to the square-root of the variance.

The non-orthogonal sources case

Considering the first-order Taylor expansion of functional 

1 ) 2 L 2 thus expression ( 11 )C 2 -

 122112 for non-orthogonal sources (r N = 0) becomesδ (COLD) (B -δ (COLD) ω B) 2(13)whereA = (a 2 1 + a 2 2 )α, B = α {r N u H 1 u 2 }, B = β {r N u H 1 u 2 }, and C = a 1 a 2 α in which {z} denotes

Note that this source model is commonly used in many digital communication systems (see[START_REF] Godara | Applications of antenna arrays to mobile communications: II. beam-forming and direction of arrival considerations[END_REF][START_REF] Li | Efficient direction and polarization estimation with a cold array[END_REF] and the references therein).

From[START_REF] El Korso | Statistical resolution limit for multiple signals and parameters of interest[END_REF], one should note that the SRL using the Smith criterion[START_REF] Smith | Statistical resolution limits and the complexified Cramér Rao bound[END_REF], unlike the Lee criterion[START_REF] Lee | The Cramér-Rao bound on frequency estimates of signals closely spaced in frequency[END_REF], takes into account the correlation between sources.
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the imaginary part of z. Expression [START_REF] Boyer | Analysis of the COLD uniform linear array[END_REF] is in fact the resolution of a fourth-order polynomial given by 2N B δ (COLD) This leads to intractable solutions for the SRL. Only keeping the dominant terms lower or equal to the second-order, one obtains

The discriminant is given by ∆ = 4σ 4 B2 + 8σ 2 N (C 2 -B 2 )(A + 2B). Consequently, assuming that ∆ ≥ 0, the solution is given by

,

Under A3., the deterministic CRB is reachable only at high SNR [START_REF] Renaux | On the high SNR conditional maximumlikelihood estimator full statistical characterization[END_REF], consequently, one can assume that σ 2 is small. In this case, this leads to the following positive solution

Consequently, from ( 12) and ( 14), we notice that the SRL depends strongly on the state vector parameter, thus the performance of a COLD-ULA for orthogonal sources is better than for non-orthogonal sources, i.e., δ

Furthermore δ

iff u H 1 u 2 = 0 meaning that the orthogonality of the vectors of the polarization state parameters induces the same performance regardless the orthogonality of sources. 

Comparison in the orthogonal sources case

In the case where the sources are orthogonal, one obtains δ

meaning that, in the case of orthogonal sources, the performance of the COLD-ULA and the ULA are similar.

Comparison in the non-orthogonal sources case

In the case where the sources are non-orthogonal

Thus, from ( 14) and ( 15), one obtains

Which leads to the following implication

Consequently, if the sources are non-orthogonal, one can distinguish the following cases C1. if the amplitudes are positif reals, i.e., {r N } = 0, thus

C3. if the polarization state vectors are the same, i.e., ρ 1 = ρ 2 and ψ 1 = ψ 2 , thus δ

meaning that the use of an ULA is equivalent, in term of performance, to a COLD-ULA if the polarization of the sources is the same. This is expected since, intuitively, the same polarization doest not bring additional information to resolve two sources.

Besides C1., C2. and C3., in Fig. 1 we plot

versus the polarization state parameters ρ and ψ. Consequently, from [START_REF] Delmas | Statistical resolution limits of DOA for discrete sources[END_REF] if D > 0 thus δ only for a small region (which corresponds to the part of the plot that is under the horizontal plan), meaning that generally the performance of the COLD-ULA is better than the performance of the ULA.

CONCLUSION

In this paper, we derived the deterministic CRB in a nonmatrix closed form expression for two polarized far-field time-varying narrowband known sources observed by a COLD-ULA. Taking advantage of these expressions, we deduced the SRL for the COLD-ULA which was compared to the SRL for the ULA. We noticed that, in the case where the sources are orthogonal, the SRL for the COLD-ULA is equal to the SRL for the ULA, meaning that it is not a function of polarisation parameters. This was not expected. Furthermore, for non-orthogonal sources, we gave a sufficient and a necessary condition such that the SRL for the COLD-ULA is less than the SRL for the ULA. By analytical expressions and numerical simulations we showed that the SRL for the ULA is less than the SRL for the COLD-ULA only in few cases, meaning that generally the performance of the COLD-ULA is better than the performance of the ULA.