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We propose a variant of the recently introduced strategy for stabilization with limited information [D. Liberzon
and J. P. Hespanha. “Stabilization of nonlinear systems with limited information feedback.” IEEE Trans. on
Automat. Contr., 2005] and analyze its robustness properties. We show that, if the nominal plant can be
made Input-to-State Stable (ISS) with respect to measurement errors, parameter uncertainty and exogenous
disturbances, then this robustness is preserved with this quantized feedback. More precisely, if a sufficient
bandwidth is available on the communication network, then the resulting closed-loop is shown to be semiglobally
Input-to-State practically Stable (ISpS).
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1 Introduction

The always greater use of digital communication devices for control applications makes quanti-
zation a crucial issue. The limitations on the communication rate between the plant sensors and
its controller imposes to develop new approaches that are able to guarantee good performance
even when only limited information on the plant’s state is available. Despite strong technologi-
cal improvements, the bit rate available for a given control application may indeed be strongly
limited due to scalability or energy-saving concerns, or due to harsh environment constraints.
Stabilization in this context becomes particularly challenging in presence of model uncertainties,
measurement errors or exogenous disturbances.

These observations explain why limited-information control feedback has been widely studied
recently (see Nair et al. (2007), Hespanha et al. (2007), Liberzon (2008) and references therein
for representative examples). An important literature already exists for linear systems (cf. e.
g. Montestruque and Antsaklis (2004), Liberzon (2003), Petersen and Savkin (2001), Nair and
Evans (2004), Jaglin et al. (2008, 2009)). In particular, the results of Liberzon and Nešić (2007)
provide a coding/decoding strategy that achieves Input-to-State Stabilization of quantized lin-
ear control systems. The proposed control strategy relies on a discrete time zoom-in/zoom-out
procedure. This construction is based on the exact sampled dynamics of the system, or at most
on its discrete time approximation. This is why the closed loop system may lack robustness with
respect to parameter uncertainties. These results were subsequently generalized to nonlinear sys-
tems in Kameneva and Nešić (2008). It is then of interest to analyze the robustness of different
approaches to guarantee the same performance in the presence of model uncertainties.

In Sharon and Liberzon (2007), Input-to-State Stabilization of quantized linear and nonlin-
ear systems is achieved in the framework of continuous time quantized control systems, that is
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exploiting a hybrid dynamics. It is based on a generalization of the well known dynamic quan-
tization approach developed in Liberzon and Hespanha (2005) and Persis and Isidori (2004) for
ISS and global asymptotically stable systems respectively. For nonlinear systems this control
strategy leads to local ISS. The stability region and the size of tollerated perturbations can be
eventually enlarged by allowing larger overshoots of the transient dynamics, although this may
not hold true in general (see Section 5). Moreover, this approach is not robust to parametric
uncertainties as detailed in Section 5.

The purpose of this paper is then to propose an alternative dynamic quantization strategy,
able to cope with (time varying) model uncertainties. It is based on a simple and natural mod-
ification of the one proposed in Liberzon and Hespanha (2005). We show that the controlled
system is semiglobally Input-to-State practical Stable. The semiglobal characterization of our
results implies that for any compact set of initial conditions and for any bounded time varying
measurement error, disturbance and model uncertainty, it is possible to achieve the desired ro-
bustness properties by properly tuning the controller parameters. On the other hand, practical
stability does not guarantee convergence to the origin for vanishing perturbations, although the
size of the stable subset depends on the tuning parameters and can be somewhat reduced, pro-
vided a sufficient knowledge on the intensity of the perturbations. The main contributions of our
work are the robustness to model uncertainties and its semiglobal characterization for nonlinear
systems. At the light of the poorer performances of the proposed strategy in terms of the granted
steady-state error, one may think of implementing some switching strategy involving both the
methods methods.

The rest of the paper is organized as follows. In Section 2 we introduce the needed notation.
In Section 3 we formally state the problem. In Section 4 we introduce our dynamic quantization
strategy. We then present the main results of the paper and comment them in Section 5. In
Section 6 we check their application with numerical simulations on the illustrative example of a
DC motor with nonlinear load. Proofs are given in Section 7.

2 Notation

For a set A ⊂ R, and a ∈ A, A≥a denotes the set {x ∈ A : x ≥ a}. |x| denotes the infinity norm
of the vector x, that is, if x ∈ R

n, |x| := maxi=1,...,n |xi|. B(x, R) refers to the closed ball of radius
R centered at x in this norm, i.e. B(x, R) := {z ∈ R

n : |x − z| ≤ R}. ‖x‖ is the infinity norm
of the signal x(·), that is, if x : R≥0 → R

n, ‖x‖ = esssupt≥0 maxi=1,...,n |xi(t)|. A continuous
function α : R≥0 → R≥0 is said to be of class K if it is increasing and α(0) = 0. It is said to be
of class K∞ if it is of class K and α(s) → ∞ as s → ∞. A function β : R≥0 ×R≥0 → R≥0 is said
to be of class KL if β(·, t) ∈ K for any fixed t ≥ 0 and β(s, ·) is decreasing and tends to zero at
infinity for any fixed s ≥ 0.

3 Problem statement

We are interested in the robustness properties of nonlinear plants of the form

ẋ = f(x, µ, u, d) , (1)

where x ∈ R
n is the state, f : R

n × R
p × R

m × R
h → R

n is a locally Lipschitz function,
µ : R≥0 → P ⊂ R

p is a vector of (possibly time-varying) parameters, u : R≥0 → R
m is a control

input and d : R≥0 → D ⊂ R
h is a vector of measurable and locally essentially bounded exogenous

perturbations. We assume that f(0, µ, 0, 0) = 0 for all µ ∈ P.
As we are interested in limited-information feedback, we assume that only an estimate of the

state is available to the controller. This estimate is elaborated based on an encoded measurement
of the actual state. This encoded symbol is then sent over the communication channel. We
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Figure 1. Structure of the quantized control system

will assume, in this paper, that the communication channel is noiseless and delay-free. The
communication channel is defined by its constant sampling period τ and by the number of
symbols that can be transmitted at each sampling time Nn, N ∈ N>0. The overall structure of
the controlled systems can be summarized by the following figure.

At each reception of a symbol, that is, at each time instant kτ , k ∈ N, the decoder computes
the state estimate that will be used in the applied feedback law. The decoding is necessarily
imprecise due to the limited bandwidth of the channel. This imprecision is reinforced by the
uncertainty on the plant parameter µ, by the presence of exogenous disturbances and by the
possible measurement errors. We assume that only a constant1 approximation ν ∈ P of the (pos-
sibly time-varying) parameter vector µ is available and define µ−ν =: dp ∈ R

p as the parameter
uncertainty. We let de ∈ R

n denote the measurement error. Our first assumption imposes that,
when no communication constraint applies, the plant (1) can be stabilized by a state-feedback
law that makes it ISS with respect to exogenous disturbances, parameter uncertainties and
measurement errors.

Assumption 3.1 There exists a continuous feedback law κ : R
n × R

p → R
n, a continuously

differentiable function V : R
n → R and class K∞ functions α, α, α, χ,Γ, γ such that, for all

x ∈ R
n, d ∈ D, dp ∈ P and de ∈ R

n,

α(|x|) ≤ V (x) ≤ α(|x|),

where D ⊂ R
h and P ⊂ R

p, and the following implication holds true

|x| ≥ χ(|d|) + Γ(|dp|) + γ(|de|) ⇒ (2a)

∂V

∂x
f(x, µ, κ(x + de, µ + dp), d) ≤ −α(|x|) . (2b)

Based on the Lyapunov characterization of ISS systems Sontag and Wang (1995), condition
(2) is equivalent to ISS of (1) with respect to d, de, dp, at least locally as far as d and dp are
concerned. Assumption 3.1 therefore constitutes a strong requirement, but the following remarks
may help establishing it in some particular contexts.

Remark 1 : For all systems in strict feedback form it is possible to achieve conditions of
Assumption 3.1. This comes from the fact that a backstepping procedure can naturally be
applied to systems in that form. Such a procedure allows to iteratively make each state element
ISS with respect to (d, dp, de), using part of the state as a “virtual” control input (see Freeman
and Kokotovich (1993) for details).

Remark 2 : The conditions of Assumption 3.1 can be achieved for all systems which can be
stabilized by a globally Lipschitz state feedback that makes it ISS with respect to actuation errors.
Indeed if L denotes the global Lipschitz constant of the nominal control law κ, then the effects
due to parameter uncertainties dp and measurement errors de can be described explicitly as an

input disturbance d̃ satisfying |d̃| ≤ L|dp|+L|de|. Hence, if γ ∈ K∞ is the ISS gain, the presence

of measurement errors and parameter uncertainties simply adds γ(|d̃|) ≤ γ(2L|dp|) + γ(2L|de|)
to the solution estimate of the closed-loop solutions, hence proving ISS with respect to (dp, de).
Note that all systems which can be made ISS by differentiable bounded control (cf. e.g. (A.Isidori
1999, Chapters 12,13,14)) trivially satisfy this global Lipschitz condition. ⊳

1In a second stage one may think of implementing an adaptive control strategy.
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4 Quantized controller

In this section, we extend the encoding-decoding procedure presented in Liberzon and Hespanha
(2005) and Persis and Isidori (2004) to take into account exogenous disturbances, measurement
errors and parameter uncertainties. We assume that measurement errors are bounded by

E > 0, such that ‖de‖ ≤ E (3)

4.1 Quantization region

Given an estimate x̂ of the actual state x, the quantization region Q is defined by its centroid x̂
and its radius L > 0 as

Q := B(x̂, L).

Due to measurement errors, the information available to the encoder about the system state, i.e.
x + de, belongs to the quantization region Q if and only if the estimation error e := x + de − x̂
is small enough, that is |e| ≤ |x − x̂| + |E| ≤ L. Note that the presence of the estimation error
e results from the combined effects of quantization (x − x̂) and measurement errors (de). Given
the number Nn of symbols that can be transmitted through the communication channel, we
partition the quantization region into Nn identical hypercubes. Q is then updated according to
the following encoding-decoding procedure.

4.2 Dynamics of the encoder

At each step k ∈ N, the centroid update law is given by the following hybrid dynamics

˙̂x = f(x̂, ν, κ(x̂, ν), 0), ∀t ∈ [kτ, (k + 1)τ), (4a)

x̂(kτ) = ĉ(kτ), k 6= 0, (4b)

x̂(0−) = 0, (4c)

where ĉ(kτ) is the centroid of the sub-region of Q(kτ) in which x(kτ) + de lies. This sub-region
is identified by the variable qk, which constitutes the output of the encoder. In other words,
qk ∈ N≤Nn denotes the index of the sub-region of Q(kτ) to which x(kτ) + de belongs. Then,
given some Λ > 1 and any ball of initial conditions B(0, ∆), with ∆ > 0, the radius update law
is given, at each step k ∈ N, by the following dynamics

L((k + 1)τ) = Λ

(

L(kτ)

N
+ E

)

+ E , (5a)

L(0) = ∆ + E . (5b)

This radius update law is a natural extension of the algorithms proposed in Liberzon and Hes-
panha (2005), Persis and Isidori (2004). It takes into account possible measurement errors. We
will show in the sequel (cf. Claim 7.2) that such a dynamics leads to a sequence {L(kτ)}k∈N

that decreases up to a constant depending on E, Λ and N . This in turn imposes a decrease of
the estimation error, modulo the measurement errors, as long as dynamics (5) applies. The idea
behind this dynamics can be roughly summarized as follows. The parameter Λ > 1 accounts for
the expansiveness between sampling times. The constant E appearing inside the round brackets
of (5a) accounts for the case in which the measurement error has let the encoder individuate
a wrong sub region. In such a situation the error between the real and the measured state is
indeed less than the size of the sub-region, L(kτ)/N , plus the measurement error. The second E
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appearing in (5a) avoids that the measured state falls out of the quantization region while the
real one is inside.

Note that, as long as x(kτ) + de lies in Q(kτ), the estimation error satisfies |e(kτ)| ≤ ē(kτ),
where

ē(kτ) :=
L(kτ)

N
+ E, ∀k ∈ N, (6)

is the maximum quantization error. Hence, at each sampling time, the quantization procedure
individuates a hypercube B(x̂(kτ), ē(kτ)) to which x(kτ) belongs, provided that x(kτ) + de ∈
Q(kτ).

However, due to uncertainties and disturbances, it may happen that x(kτ)+de falls out of the
quantization region anyway. Indeed, the expansion factor Λ in (5a) makes sure that the updated
quantization region is large enough to catch the measured state only if the quantization error
is large compared to the disturbances (see proof of Theorem 5.1 for details). This situation is
defined as an overflow. It is represented by the symbol qk = 0. If an overflow occurs at the k0th
sampling time, k0 ∈ N>0, the encoder updates the quantization region as follows:

x̂(k0τ) = x̂(k0τ
−), (7a)

L((k0 + 1)τ) = Λ(E + E) + E, (7b)

where E ∈ R>0 will be defined later on. This means that the hypercube individuated by the

quantization procedure, to which x(kτ) belongs, is no longer B(x̂(kτ), L(kτ)
N + E), but rather

B(x̂(kτ), E + E), while the rest of the update law remains as in (4)-(5).

4.3 Dynamics of the decoder

By implementing the same evolution laws as (4)-(7), the decoder is able to reconstruct the
evolution of the state estimate x̂ from the knowledge of {qk}k∈N.

4.4 Controller

Inspired by the principle of certainty equivalence, and in view of Assumption 3.1, the applied
control input is given by

û(t) = κ(x̂(t), ν), (8)

where x̂(·) is given by (4) along with (5)-(7).

5 Main Results

Our first result establishes robustness properties of the closed-loop system with the proposed
limited-information feedback in the case the number of transmittable bits is fixed and the sam-
pling period can be adjusted arbitrarily.

Theorem 5.1 : Let Assumption 3.1 hold for the system (1). Then, there exist class K∞ func-
tions χ,Γ, γ and, given any compact sets P ⊂ R

p and D ⊂ R
d, any constant ∆ ∈ R>0 and

any N ∈ N>1, there exist positive constants τ,Λ, E,E and a class KL function β such that the
trajectories of the closed-loop system

ẋ = f(x, µ, û, d), (9)
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where û(t) is the output of the digital controller defined by (4)-(8), satisfy, for all x(0) ∈ B(0,∆),
all ν ∈ P, all µ : R≥0 → P, all d : R≥0 → D and all de : R≥0 → B(0, E),

|x(t)| ≤ β(∆, t) + χ(‖d‖) + Γ(‖µ − ν‖) + δ, (10)

where δ = γ
(

Λ(E + E) +
(

2 + Λ+1
1− Λ

N

)

E
)

.

That is, (9) is semiglobally ISpS (Input-to-State practically Stable) in the sense of Jiang et al.
(1994).

Our proof, provided in Section 7.1, is constructive and the comparison functions involved
in (10) are given explicitly (cf. (25)). Due to the particular design of the encoding-decoding
procedure, measurement errors no longer appear as an input. Indeed, their effects are embedded
in the last term of (10), which depends only on the parameters of the digital controller. As already
anticipated in Section 4, the constant Λ is a measure of the expansion of the system between
two successive sampling times. More precisely, as shown in the proof of Theorem 5.1, Λ = eLτ ,
where L is the Lipschitz constant of f over the region where, by construction, the solutions are
guaranteed to lie. On the other hand, the constants E and E are proportional to the upper bound
on the size of disturbances-uncertainties and measurement errors, respectively, as defined in (3)
and (20). Hence, the last term in (10), which constitutes an upper bound to the steady-state
error, is a continuous function of the known upper bound on the size of exogenous disturbances,
that vanishes at zero. This guarantees that the steady-state error is small if disturbances are
small, provided a sufficient knowledge of the plant. Moreover, when no perturbations apply, we
recover the exact same result as Liberzon and Hespanha (2005). It is interesting to note that
the required data-rate to guarantee this robustness, expressed by relation (14), is the same as
in Liberzon and Hespanha (2005).

Robustness to model uncertainties is the main contribution of this work if compared to the
existing representative examples in the literature (Kameneva and Nešić (2008) and Sharon
and Liberzon (2007)). In Kameneva and Nešić (2008) this lack of robustness is due to the
digital nature of the controller, which is based on the exact dynamics or at most on its discrete
time approximation (cf. equation (2) and the text below in that reference). In Sharon and
Liberzon (2007) this possible lack of robustness comes from the fact that ISS of the quantized
closed-loop system is achieved through a cascade reasoning from the quantization error (which is
ISS with respect to external disturbances thanks to the particular encoding/decoding strategy)
to the system’s state (which is ISS by hypothesis). This is possible because the evolution of
the quantization error is shown to be independent from both the controller’s and the system’s
state (cf. equation (12) in that reference). This is no longer achievable if one introduces if one
introduces parametric uncertainties, as the state of the controller is fed back in the evolution
equation of the quantization error.

Another contribution compared to Sharon and Liberzon (2007) is the non-local characteriza-
tion of robustness, which turns out to be semiglobal. In the statement of Theorem 2 in that
reference, which gives an extension of the proposed algorithm to nonlinear systems, the admissi-
ble ball of initial conditions and external disturbances are built starting from the K∞ functions
βcl and γcl, whose explicit expression depends on the Lipschitz constant of the system (cf. proof
of Theorem 1 in that reference). Indeed, given a region on which define the Lipschitz constant is
defined (|x| < lx and |w| < lw), it is possible to find the size of the ball of admissible initial con-
ditions δ and allowed disturbances ǫ by satisfying the two relations βcl(δ)+γ(ǫ) < lx and ǫ < lw.
It follows that the value of δ and ǫ cannot be chosen a priori, and may result to be impossible
to be arbitrarily enlarged, depending on the explicit expression of the two K∞ functions βcl and
γcl. On the other hand, given a ball of initial conditions and a bound on the size of exogenous
disturbances, it is not possible either to build the K∞ functions used in the statement of the
theorem, as it is not possible to build an “overshoot” region in which the Lipschitz constant
would be defined. These observations show that in Sharon and Liberzon (2007) the extension to
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nonlinear systems is only local. In this paper we give a constructive way to build the overshoot
region starting from an arbitrary ball of initial conditions and an arbitrary size for the exogenous
disturbances.

However, considered the superior performances in the steady-state error of the algorithm
proposed in Sharon and Liberzon (2007), that achieves ISS instead of ISpS, one may think of
implementing some switching strategy between the two methods. In a first step one would catch
the state with the algorithm proposed here even in the case of parametric uncertainties. In a
second time, once the parameters of the systems have been identified and the state has entered
a sufficiently small region around the origin, one would switch to the one proposed in Sharon
and Liberzon (2007).

In case of overflow, the size of quantization region is set to Λ(E + E) + E (cf. (7)), It may
happen, in particular for large sampling period, that Λ ≫ 1. In this case, the quantization error
may become very large as E depends linearly on Λ (cf. (20)), leading to a drop in performances.
This can be easily avoided by using, even when no measurement errors are considered, a strictly
positive E in the encoding-decoding procedure. Indeed it follows from Claim 7.2 that, as long
as no overflow occurs, the size of the quantization region converges to

Q∞ := σ∞E,

where σ∞ is defined in (22). It follows that the maximum quantization error (6) converges from
above to

e∞ = (
σ∞

N
+ 1)E. (11)

From (18) it follows that an overflow can occur only if the maximum quantization error gets
smaller than η, defined in (15). Hence it suffices to set E such that

e∞ ≥ η (12)

to avoid overflows. We then have the following theorem, whose proof follows directly from that
of Theorem 5.1, together with Equations (11) and (12).

Theorem 5.2 : Under the same assumption of Theorem 5.1, the design parameters τ,Λ, E,E

can be picked is such a way that (10) holds with δ = γ
((

1 + Λ+1
1− Λ

N

)

E
)

.

We point out that the size of the steady state error δ defined in Theorem 5.2 can be either
larger or smaller than the one obtained in Theorem 5.1, depending on the parameters involved.

We now state a similar result for the case when the sampling time is fixed and we can only
adjust the number of transmittable bits. In this context, it appears that, due to the presence of
exogenous perturbations, τ cannot be chosen arbitrarily large, as it happens in the ideal case
(cf. Liberzon and Hespanha (2005)). This intuitive fact is detailed in the proof, given in Section
7.4.

Theorem 5.3 : Let Assumption 3.1 hold for the system (1). Then, there exist class K∞ func-
tions χ,Γ, γ and, given any compact sets P ⊂ R

p, D ⊂ R
d and any ∆ ∈ R>0, there exists a time

τmax ∈ R>0 such that, for all τ ∈ (0, τmax), there exist positive constants N, Λ, E,E and a class
KL function β such that trajectories of the closed-loop system (9), where û(t) is the output of
the digital controller defined by equations (4)-(8), satisfy (10) for all x(0) ∈ B(0, ∆), all ν ∈ P,
all µ : R≥0 → P, all d : R≥0 → D and all de : R≥0 → B(0, E). That is, (9) is semiglobally ISpS.

The comparison functions involved in the trajectories estimate of this result are the same as
for Theorem 5.1.

Remark 3 : Theorem 5.1, main delta N - no overflows and 5.3 can be easily generalized to
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Figure 2. Evolution of the norm of the state from x(0) = [−10,−10].

non constant sampling period, provided that the time between two samples does not exceed the
value τ defined in the above statements. ⊳

6 Illustrative Example

We check the application of our strategy on the control of a model of a DC motor with a load
modelled as a nonlinear torque. The uncertainty on the load is modeled by unknown time-varying
variables µ and d1. Actuator errors are represented by an exogenous disturbance d2:

ẋ1 = x2 + µx3
1 + d1

ẋ2 = u + d2.

For the needs of the numerical simulations, we have chosen µ(t) = 1 + P sin(t), d1(t) = D sin(t)
and d2(t) = D cos(t). At each sampling time the measurement available to the encoder is per-
turbed by the measurement error de(t) = E(sin(t), cos(t))T . The system being in strict feedback
form, we follow Freeman and Kokotovich (1993) to construct a continuous ISS(d, dp, de) feed-
back law. We assume that only 2 bytes can be transmitted at each sampling time. Our aim is
to stabilize every solution starting in B(0, 10), i.e ∆ = 10, assuming the following values for the
perturbation amplitudes, P = 0.5, D = 1.0, E = 0.1. Note that this correspond to a 50% uncer-
tainty on the load parameter. Our control scheme with parameters τ = 0.1s, Λ = 64, E = 64, E
and ν = 1 successfully stabilizes the system (cf. fig. 2).

Since E > 0, the size of the quantization region remains sufficiently large and no overflow
occurs, as anticipated in Section 5. If an overflow had occurred then the size of the quantization
region would have jumped to Λ(E +E)+E (cf. (7)), leading to a big drop in performances. This
illustrates the fact that, even when no measurement error applies, setting an appropriate E > 0
may be very profitable in practice.

For ∆ = 5, and the same parameters, the sampling period can be taken as large as 0.3s. We
point out that the good performance of our strategy are also due to the ISS characteristics of
the feedback strategy provided in Freeman and Kokotovich (1993).

In conclusion, with only two bytes, with a sampling period of the order of the plant’s time
scale, and with disturbance magnitude of the order of the nominal controlled dynamics values,
our proposed approach succeeds in stabilizing the system, with a steady-state error of the same
magnitude as the perturbations.

7 Proof of the main results

7.1 Proof of Theorem 5.1

Contraction of the quantization region: Suppose there are no measurement errors, i.e E = 0.
Then we want the estimation error to decrease as long as no overflow occurs, that is, as long as
x(kτ) ∈ Q(kτ), we impose L(kτ) < L((k − 1)τ). This means, in view of (5), that

Λ

N
< 1. (14)

Divergence between sampling times: During the time intervals separating two consecutive
sampling times, the estimation error may increase. To evaluate this expansion, let us assume
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that a number Ŵ > 0 is known1 such that x(t) + de ∈ B(0, Ŵ ) and x̂(t) ∈ B(0, Ŵ ) for
all t ≥ 0. In this case, it results from the continuity of κ that, for all t ≥ 0, |û(t)| ≤

maxx̂∈B(0,Ŵ ),ν∈P |κ(x̂, ν)| =: U < ∞. Let L(Ŵ ) be the Lipschitz constant of f over the re-

gion {(x, µ, u, d) ∈ R
n+p+m+h : |x| ≤ Ŵ , µ ∈ P, |u| ≤ U, d ∈ D}, then, in view of (4)

and exploiting the Bellman-Gronwell Lemma, it holds that, for all x, x̂ ∈ B(0, Ŵ ), d
dt |e(t)| ≤

|f(x, µ(t), û, d(t)) − f(x̂, ν, û, 0)| ≤ L(Ŵ ) max {|e(t)|, η(t)}, where η(t) = max{|µ(t) − ν|, |d(t)|}.
Note that η(t) ≤ η, where

η = max

{

sup
µ′,ν′∈P

|µ′ − ν ′|, sup
d′∈D

|d′|

}

. (15)

Hence, it holds that, for all t 6= kτ , k ∈ N,
|e(t)| ≥ η(t) ⇒ d

dt |e(t)| = L(Ŵ )|e(t)|, and

|e(t)| < η(t) ⇒ d
dt |e(t)| = L(Ŵ )η(t).

By the fact that |e(0)|eL(Ŵ )t < |e(0)| + ηL(Ŵ )t only if |e(0)| < η L(Ŵ )t

eL(Ŵ )t−1
≤ η, it follows that,

for all t ∈ [0, τ ],

|e(0)| ≥ η ⇒ |e(t)| ≤ |e(0)|eL(Ŵ )t . (16)

Defining Λ = eL(Ŵ )τ , we can give a natural interpretation to (5). The constant N−1 describes
the effect of measuring the state, which individuates a smaller hypercube to which the state
belongs, while Λ describes the increase in the size of this hypercube during the time before the
next sampling to make sure the state belongs to the new quantization region. Recalling that
|e(kτ)| ≤ ē(kτ) for all k ∈ N, we claim that

ē(kτ) ≥ η ⇒ |e((k + 1)τ−| ≤ Λē(kτ), (17)

that is x((k + 1)τ) ∈ Q((k + 1)τ) and, consequently, qk+1 > 0 (i.e. no overflow at step k + 1).
Indeed, note that if η ≤ |e(kτ)| ≤ ē(kτ), then (17) follows from (16), while, if |e(kτ)| < η, there

exists t̃ := min{t ≥ 0 : |e(kτ)|+ ηL(Ŵ )t ≥ η}. If t̃ ≥ τ then |e((k + 1)τ−)| < η < Λē(kτ), while,

if t̃ < τ , then, by (16), |e((k + 1)τ−)| ≤ ηe(τ−t̃)L(Ŵ ) < Λη ≤ Λē(kτ), which shows (17).
Furthermore, by reversing (17), we obtain that |e((k + 1)τ−| > Λē(kτ) only if ē(kτ) < η, that

is, defining E = supd′
e
∈E |de|, |e((k + 1)τ−| + E > L((k + 1)τ) only if ē(kτ) < η, which implies

that an overflow may occur only when the maximum quantization error (6) is below the bound
η:

qk+1 = 0 ⇒ ē(kτ) < η. (18)

Moreover, we establish the following upper bound on the size of the estimation error right before
an overflow:

qk+1 = 0 ⇒ |e((k + 1)τ−)| < Λη. (19)

Note that, from (18), there exists a time t̃′ := min{t > 0 : |e(kτ)| + ηL(Ŵ )t ≥ η}. If t̃′ ≥ τ
then |e((k + 1)τ−)| ≤ η < Λη. On the other hand, if t̃′ < τ then, by (16), |e((k + 1)τ−)| ≤

ηe(τ−t̃′)L(Ŵ ) < Λη, which establishes (19).

1We will demonstrate the existence of such Ŵ , by constructing it, in the sequel (cf. Claim 7.1).
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Trajectory boundness: Fix any Λ > 1 and let

E = Λη . (20)

By equation (19) and as long as x(t) + de ∈ B(0, Ŵ ), this implies that, in the eventuality of an
overflow at time k0τ (i.e. qk0

= 0),

x(k0τ), x(k0τ) + de ∈ B(x̂(k0τ), E + E) , (21)

In view of (18) and (7), this implies that x((k0 + 1)τ) ∈ Q((k0 + 1)τ), that is qk0+1 > 0. This
means that it is not possible to have two successive overflows.

Let Ωc := {x ∈ R
n : V (x) ≤ c}, where

c = α
(

χ(supd′∈D |d′|) + Γ(supµ′,ν′∈P |µ′ − ν ′|) + γ
(

max
{

∆ + E + σ∞E,Λ(E + E) + E
})

)

,

where σ∞ is defined as

σ∞ := (Λ + 1)N/(N − Λ) . (22)

Let

Ŵ := W + max
{

∆ + E + σ∞E,Λ(E + E) + E
}

, (23)

W := max
{

∆, supx,z∈Ωc
|x − z|

}

, (24)

and pick the sampling period τ as τ = ln(Λ)

L(Ŵ )
. We prove the following in Sections 7.2 and 7.3

respectively.

Claim 7.1 The solutions of the closed-loop system satisfy |x(t)| ≤ W , |x̂(t)| ≤ Ŵ , ∀t ≥ 0.

Claim 7.2 As long as no overflow occurs, it holds that |e(t)| ≤
(

Λ
N

)t/τ
L(0) + σ∞E.

Conclusion: From the proof Claim 7.1, it results that, for all t ≥ 0, |e(t)| ≤ max
{

(∆+E)e−λt+

σ∞E,Λ(E + E) + E
}

≤ ∆e−λt + Λ(E + E) + (2 + σ∞)E, ∀t ≥ 0. From Assumption 3.1, this

implies that the trajectories of the closed loop system (9), with parameters {N, τ, Λ, E, ν, E},
satisfy

|x(t)| ≤ α−1

(

α
(

γ(∆e−λt) + χ(‖d‖) + Γ(‖µ − ν‖) + γ(Λ(E + E) + (2 + σ∞)E)
)

)

,

for all x(0) ∈ B(0,∆), all ν ∈ P, all µ : R≥0 → P, all d : R≥0 → D and all de : R≥0 → B(0, E).
From this and from the fact that σ(a + b) ≤ σ(2a) + σ(2b) for all nondecreasing function σ and
all a, b ≥ 0, the theorem is proved with

β(·, t) = α−1(α(2γ(·)γ(e−λt))) (25a)

χ(·) = α−1(α(4χ(·))) (25b)

Γ(·) = α−1(α(8Γ(·))) (25c)

γ(·) = α−1(α(8γ(·))) . (25d)

7.2 Proof of Claim 7.1

Let Θ := inf{t ∈ R>0 : |x(t)| > W or |x̂(t)| > Ŵ}. This time is well defined as |x(0)| ≤

∆ ≤ W and, from the fact that q0 > 0 by construction, x̂(0) ∈ B(0,∆ + E) ⊂ B(0, Ŵ ). For all
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t ∈ [0, Θ), L(Ŵ ) can be correctly interprated as an upper bound on the expansion of the system.
In particular, Claim 7.2, (18) and (19) hold for all t ∈ [0,Θ).

Define k0τ as the time of the first overflow. Then, by Claim 7.2, it holds that, for all t ∈

[0,min(Θ, (k0 − 1)τ)), |e(t)| < L(0)e−λt + σ∞E ≤ ∆ + E + σ∞E, where λ :=
| ln( Λ

N
)|

τ .
If Θ < (k0 − 1)τ , then, from Assumption 3.1 and (A.Isidori 1999, Section 10.4), it results that
the set Ωc̃ = {x ∈ R

n : V (x) ≤ c̃}, where c̃ := α(χ(supd′∈D |d′|) + Γ(supµ′,ν′∈P |µ′ − ν ′|) + γ(∆ +
E +σ∞E)), is an invariant attractive set, and, noting that c̃ ≤ c, it follows that Ωc̃ ⊆ Ωc, which,
by the definition of W in (24), implies |x(t)| ≤ W for all t ∈ [0,Θ]. This in turn ensures that

supt∈[0,Θ] |x̂(t)| ≤ W +supt∈[0,Θ] |e(t)| ≤ W +∆+E +σ∞E ≤ Ŵ (cf. (23)). This contradicts the
definition of Θ and hence we conclude that Θ ≥ (k0 − 1)τ .

If Θ ∈ [(k0 − 1)τ, k0τ), then, by (18) and (19) and the definition of E in (20), it results that
|e(t)| < E for all t ∈ [t0−τ,Θ]. With the same arguments as before, this contradicts the definition
of Θ and hence we conclude Θ ≥ k0τ .

If Θ ∈ [k0τ, (k0 + 1)τ), by E > η and (21), we get that |e(t)| ≤ Λ(E + E) for all t ∈ [k0τ,Θ],
again contradicting the definition of Θ. Hence we can conclude Θ ≥ (k0 + 1)τ .

If Θ = (k0 + 1)τ , then by construction qk0+1 > 0 and |e((k0 + 1)τ)| ≤ L((k0 + 1)τ) =
Λ(E + E) + E, again contradicting the definition of Θ. Hence Θ > (k0 + 1)τ .

The system properties established along the whole proof being uniform in time, we can set
t′ = t−(k0+1)τ and apply the same arguments with new “initial” condition L(0) = Λ(E+E)+E
until the next overflow. By reiterating for successive overflows, we conclude Θ = ∞, which is
enough to prove the claim.

7.3 Proof of Claim 7.2

The first line in (5), can be rewritten as

L(kτ) = RkL(0) + E(Λ + 1)
k

∑

i=0

Ri < L̃(kτ), (26)

where L̃ : R≥0 → R>0 is defined as

L̃(t) = Rt/τL(0) + E(Λ + 1)
∞

∑

i=0

Ri, (27)

and R := Λ/N < 1 (cf. (14)).
If Λ is chosen appropriately to compensate for error divergences between sampling times, if
no overflow occurs, then, recalling the definition of the maximum quantization error (6), forall

t ∈ [kτ, (k + 1)τ), |e(t)| ≤ Λ
t−kτ

τ

(

L(kτ)
N + E

)

. Substituting (26) in the this equation, we obtain

that, for all t ∈ [kτ, (k + 1)τ),

|e(t)| ≤

(

Λ

N

)t/τ

L(0) +
Λ

t−kτ

τ

N
E(Λ + 1)

k
∑

i=0

(

Λ

N

)i

+ ΛE < L̃(t).

Recalling finally that the geometric series in the definition of L̃ in (27) converges,
∑∞

i=0

(

Λ
N

)i
=

N
N−Λ , this finishes to establish Claim 7.2 by recalling the definition of σ∞ in (22) and by noticing
that the error can only decrease at the sampling times.
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7.4 Proof of Theorem 5.3

The proof follows along the same lines as that of Theorem 5.1. The difference stands in the fact

that Λ can no longer be chosen arbitrarily. Instead, given any τ > 0, we define Λ = eL(Ŵ )τ , where
Ŵ is defined as before (cf. (23)). Note that Λ enters the definition of Ŵ , in particular Ŵ and

L(Ŵ ) are both continuous increasing functions of Λ. Hence, Λ is required to satisfy the following

two equations Λ = eL(Ŵ )τ and Ŵ = Ŵ (Λ). This set of equations admits other solutions than
the trivial one (Λ = 1, τ = 0) provided that

τeL(Ŵ (Λ))τ d

dΛ
L(Ŵ (Λ))

∣

∣

∣

Λ=1
< 1 .

By continuity of the equations in τ and Λ, we conclude that there exists τmax > 0 such that a
solution exists for all τ ∈ (0, τmax). The rest of the proof follows that of Theorem 5.1.

8 Conclusion

The proposed strategy for limited-information feedback control of nonlinear plants is shown to be
robust to exogenous disturbances and measurement errors, even in presence of parametric uncer-
tainty. Its application is illustrated by the numerical simulation of a DC motor control. Possible
future extensions concern output feedback (see Sharon and Liberzon (2008) for a representative
example) and robustness to delays.
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