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Kernel Generalized Canonical Correlation
Analysis

Arthur Tenenhaus

SUPELEC Sciences des Systèmes (E3S)-Département Signaux et Systèmes Electroniques
3, rue Joliot Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex

Résumé Un problème classique en statistique est d’étudier les liens entre plusieurs blocs
de variables. L’objectif est de trouver les variables d’un bloc influençant les variables
d’autres blocs. L’Analyse Canonique Généralisée Régularisée (ACGR) est un cadre très
attractif pour traiter ce type de problématique. Cependant, l’ACGR ne capture que des
relations linéaires entre blocs et pour accéder à des liens non linéaires nous proposons une
extension à noyau de l’ACGR.

Mots-clés: Méthodes à noyau, Analyse de tableaux Multiples, Analyse Canonique Généralisée
Régularisée, Approche PLS

Abstract A classical problem in statistics is to study relationships between several blocks
of variables. The goal is to find variables of one block directly related to variables of other
blocks. The Regularized Generalized Canonical Correlation Analysis (RGCCA) is a very
attractive framework to study such a kind of relationships between blocks. However,
RGCCA captures linear relations between blocks and to assess nonlinear relations we
propose a kernel extension of RGCCA.

Keywords: Kernel Methods, Multiblock Data Analysis, Regularized Generalized Canon-
ical Correlaton Analysis, PLS approach

1 Introduction

A common problem in applied statistics is to relate several blocks of variables to each
other in order to find variables of one block directly related to variables of other blocks.
Typical examples are found in large variety of fields such as bioinformatics, sensory anal-
ysis, marketing, food research.... To study such a kind of relationships between blocks,
the starting point of the paper is the generalized canonical correlation analysis (gCCA)
proposed in [4]. This version of gCCA captures linear relationships between blocks and
to assess nonlinear relations, we propose in this paper a kernel extension of gCCA. The
paper is organized as follows: the first part presents the initial formulation of gCCA and
the second part is devoted to its nonlinear version.
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2 Population generalized canonical correlation anal-

ysis

Let us consider J random pj-dimensional centered column vectors xj and J pj-dimensional
non random column vectors ξj. We also consider a network of connections between the
random vectors by defining a design matrix C = (cjk) : cjk = 1 if xj and xk are connected
and 0 otherwise. Now consider two linear combinations ηj = ξtjxj and ηk = ξtkxk. The
correlation between ηj and ηk is :

ρ(ξtjxj, ξ
t
kxk) =

ξtjΣjkξk

(ξtjΣjjξj)1/2(ξtkΣkkξk)1/2
(1)

where Σjj = E
(
xjx

t
j

)
and Σjk = E (xjx

t
k).

The population generalized canonical correlation analysis is defined as the following op-
timization problem [4]:{

argmax
ξ1,ξ2,...,ξJ

∑
1≤j<k≤J cjk g

(
ρ(ξtjxj, ξ

t
kxk)

)
s.c. var(ξtjxj) = 1, j = 1, ..., J

(2)

where g is the identity, the absolute value or the square function. Problem (2) is equivalent
to the following optimization problem:{

argmax
ξ1,ξ2,...,ξJ

∑
1≤j<k≤J cjk g

(
ξtjΣjkξk

)
s.c. ξtjΣjjξj = 1, j = 1, ..., J

(3)

By considering the derivates with respect to ξj and λj of the Lagrangian function associ-
ated to optimization problem (3), we obtain J stationnary equations :

1

ϕ
Σ−1jj

J∑
k=1,k 6=j

cjk g′(ξtjΣjkξk)Σjkξk = λjξj, j = 1, ..., J (4)

subject to the constraints:
ξtjΣjjξj = 1, j = 1, ..., J (5)

2.1 Regularized Generalized Canonical Correlation Analysis

In practice, we have to estimate the ξjs’ from a finite sample. Let’s consider J blocks
X1, ...,XJ of centered variables measured on a set of n individuals (a row of Xj represents
a realization of the row-random vector xtj). C = {cjk} is now a design matrix describing
a network of relationships between blocks: cjk = 1 for two connected blocks, and 0
otherwise. In the case of high multi-colinearity or when the number of observations is
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smaller than the number of variables, the sample covariance matrix Sjj = 1
n
Xt
jXj is

a bad estimation of the true covariance matrix Σjj. A suggestion for finding a better
estimation of the true covariance matrix is to consider the class of linear combinations
{Ŝjj = τjI + (1 − τj)Sjj} of the identity matrix I and the sample covariance matrix Sjj
[3]. We then consider a sample version of stationnary equations (4) with the constraints
(5) in replacing Σjj by Ŝjj and Σjk by Sjk = 1

n
Xt
jXk. This leads to J sample stationary

equations which are the stationary equations associated to the regularized generalized
canonical correlation analysis (RGCCA) defined below:{

argmax
a1,a2,...,aJ

∑
1≤j<k≤J cjk g(ĉov(Xjaj,Xkak))

s.c. (1− τj)v̂ar(Xjaj) + τj‖aj‖2 = 1, j = 1, ..., J
(6)

The regularisation parameters τj ∈ [0, 1], j = 1, ..., J interpolate smoothly between the
maximisation of the covariance (all τjs = 1) and the maximisation of the correlation (all
τjs = 0). More details on RGCCA can be found in [4]. This formulation of RGCCA
detects only linear relations between blocks and in the next section, we introduce a kernel
extension of RGCCA allowing extracting nonlinear relations between blocks.

3 Kernel generalized Canonical Correlation Analysis

For each j = 1, ..., J , let Hj be a Reproducing Kernel Hilbert space (RKHS) with as-
sociated kernel kj(·, ·) and feature map Φj(x) = kj(·, x). We define Kernel Generalized
Canonical Correlation Analysis (KGCCA) as the following optimization problem.

argmax
f1,...,fJ∈H1×...×HJ

∑
1≤j<k≤J cjk g (ρ (fj(xj), fk(xk)))

s.c. var(fj(xj)) = 1, j = 1, ..., J

(7)

where

ρ(fj(xj), fk(xk)) =
cov(fj(xj), fk(xk))

var(fj(xj))1/2 var(fk(xk))1/2
(8)

is the correlation between the random variables fj(xj) and fk(xk). The functions fj and
fk are decided up to scale.
From the reproducing property of RKHS, ρ(fj(xj), fk(xk)) = cor(〈Φj(xj), fj〉, 〈Φk(xk), fk〉).
Therefore, ρ(fj(xj), fk(xk)) is the correlation between one dimensional linear projection
of Φj(xj) onto fj and Φk(xk) onto fk. The canonical correlation between Φj(xj) and
Φj(xj) is exactly the maximal possible correlation between these two projections.
Now, the main objective is to estimate f1, ..., fJ from a finite sample. For each j = 1, ..., J ,
let {x1j , ..., xnj } be a set of n observations of xj, K̃j be the associated Gram matrix defined

as (K̃j)rs = kj(x
r
j , x

s
j) and Kj be the Gram matrix of the centered data points in the
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feature space defined as Kj = PK̃jP where P = I − 1
n
1, where 1 is a n × n matrix

composed of 1. For fixed fj and fk, it can be shown [1] that the empirical covariance of
the projections in the feature space can be written as:

ĉov (〈Φj(xj), fj〉, 〈Φk(xk), fk〉) =
1

n
αtjKjKkαk (9)

where Kj and Kk are the Gram matrices associated with the data sets {xij}ni=1 and {xik}ni=1

respectively. Combining optimization problem (7) with equation (9) and adding constraint
on the smoothness of the fj through ‖fj‖Hj

= αtjKjαj, the empirical counterpart of
KGCCA becomes that of performing the following maximization :{

argmax
α1,...,αJ

∑
1≤j<k≤J cjk g(ĉov(Kjαj,Kkαk))

s.c. αtj
(
(1− τj) 1

n
K2
j + τjKj

)
αj = 1, j = 1, ..., J

(10)

The regularisation parameters not only makes this optimisation problem well posed nu-
merically and statistically ([1];[2]) but also provide control over the capacity of the function
space where the solution is sought. The larger the values of τj are, the less sensitive the
method to the input data is and the more stable (less prone to finding spurious relations)
the solution becomes. Since the Gram matrices Kj, j = 1, ..., J are symmetric semidefi-
nite, an (incomplete) cholesky decomposition is applied to solve optimimization problem
(10) efficiently. Therefore, Kj = Rt

jRj where Rj is a rank(Kj) = nj ×n upper triangular
matrix. Therefore, by noting wj = Rjαj optimization problem (10) becomes{

argmax
w1,...,wJ

∑
1≤j<k≤J cjk g(ĉov(Rt

jwj,R
t
kwk))

s.c. wt
j

(
(1− τj) 1

n
RjR

t
j + τjInj

)
wj = 1, j = 1, ..., J

(11)

A new procedure is proposed to solve (11). The first step of the procedure is to cancel
the derivatives of the Lagrangian function related to the maximization problem (11) with
respect to wj and λj. This yields to the following J stationary equations:

1

ϕ
N−1j

J∑
k=1,k 6=j

cjk g′(
1

n
wt
jRjR

t
kwk)RjR

t
kwk = λjwj, j = 1, ..., J (12)

subject to the constraints:

wt
jNjwj = 1, j = 1, ..., J (13)

where Nj = (1− τj) 1
n
RjR

t
j + τjInj

.
From the PLS terminology, we introduce for each block an outer component yj = Rt

jwj

and an inner component zj defined as follows:

zj =
1

ϕ

J∑
j=1,k 6=j

cjk g′ (ĉov(yj,yk)) yk (14)
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Then combining equations (12), (14) and (13), we obtain the outer weights:

wj =
[
ztjR

t
jN
−1
j Rjzj

]−1/2
N−1j Rjzj, j = 1, ..., J (15)

We then propose an iterative ”PLS style” algorithm for finding a solution of the J sta-
tionary equations (see Table 1). This algorithm is monotonically convergent that means
that the bounded criterion to be maximized is increasing at each step of the procedure
(the proof of this result is beyond the scope of the paper).

Table 1: Kernel Generalized Canonical Correlation Analysis Algorithm
A. Initialisation

• A.1. Choose J arbitrary vectors w̃
(0)
1 , ..., w̃

(0)
J

• A.2. Compute vectors w
(0)
1 , ...,w

(0)
J verifying the constraints as:

w
(0)
j =

[
(w̃

(0)
j )tN−1j w̃

(0)
j

]−1/2
N−1j w̃

(0)
j

• A.3. Compute the outer components : y
(0)
1 = Rt

1w
(0)
1 , ...,y

(0)
J = Rt

Jw
(0)
J

B. Inner component for the block Xi

• Compute the inner component according to the choice og g:

z
(s)
j =

1

ϕ

[
j−1∑
k=1

cjkg
′
[
cov
(
y
(s)
j ,y

(s+1)
k

)]
y
(s+1)
k +

J∑
k=j+1

cjkg
′
[
cov
(
y
(s)
j ,y

(s)
k

)]
y
(s)
k

]

where g′(x)/ϕ = 1 for g equal to the identity, x for g equal to the square and
sign(x) for g equal to the absolute value.

C. Outer component for the block

• C.1. Compute the outer weight : w
(s+1)
j =

[
(z

(s)
j )tRt

jN
−1
j Rjz

(s)
j

]−1/2
N−1j Rjz

(s)
j

• C.2. Compute the outer component : y
(s+1)
j = Rt

jw
(s+1)
j

The procedure begins by an arbitrary choice of initialisation (A). Suppose the outer

components y
(s+1)
1 ,y

(s+1)
2 , ...,y

(s+1)
j−1 are constructed for the blocks 1, ..., j − 1. The outer

component y
(s+1)
j is computed by considering the inner component z

(s)
j for the block j

(B), then by considering the outer one (C). The procedure is iterated until convergence.
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The essential feature of this algorithm is that each replacement is optimal, and sequential,
that is to say that w

(s)
j must be replaced by w

(s+1)
j before replacing w

(s)
j+1. This is the

essence of the Gauss-Seigel Algorithm; this sequential approach leads to the monotone
convergence of this algorithm.

4 Conclusion

KGGCA is a very attractive framework for non linear multiblock data analysis and cov-
ers a large spectrum of existing methods depending on the values of the regularisation
parameters. Moreover, the proposed algorithm is computationally efficient but have some
limitations: (1) There is no guarantee that the algorithm converges towards a fixed point
of the stationary equations. (2) There is no guarantee that the algorithm converges to-
wards a global optimum of the criterion.
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