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Abstract— This paper studies the fluctuations of the mu-
tual information of a class of multiple-input multiple-output
(MIMO) channels with arbitrary correlated noise in the large
system limit. We provide a deterministic approximation of the
ergodic mutual information, which is asymptotically accurate as
the number of antennas grows, and study its fluctuations around
this value under the form of a central limit theorem (CLT). This
result can be used to predict the outage capacity for slow fading
channels. The channel model considered in this contribution has
a particular application in the context of distributed antenna
or network MIMO systems where the path loss between any
pair of transmit and receive antennas has a different value. As
shown by simulations, the approximations are very accurate
for channels of small dimensions.

I. INTRODUCTION

Consider a wireless communication channel between n
single antenna transmitters and a receiver equipped with N
antennas. Let H ∈ C

N×n
be the channel matrix representing

the complex channel gains from the transmitters to the

receiver. The receive vector y ∈ C
N

at a given time instant

reads

y = Hx+ z (1)

where x ∈ C
n

is the vector of the transmitted signals

and z ∈ C
N

is a vector of complex Gaussian noise with

covariance matrix E

[

zzH
]

= ρIN + AAH. Typically, ρIN
represents an uncorrelated thermal noise component with

power ρ while AAH accounts for a source of correlated

interference whose covariance matrix has the non-negative

square root A ∈ C
N×m

. The (i, j)-entry hij of the channel

matrix H is modeled as

hij =
σij√
n
wij

where
(

σ2
ij

)

is a sequence of non-negative real numbers

called a variance profile and the wij are independent, stan-

dard complex Gaussian random variables with zero mean and

unit variance. For a complex Gaussian channel input vector

x with covariance matrix E

[

xxH
]

= In and full channel

knowledge at the receiver, the normalized ergodic capacity

of the channel is given by I(ρ) = E [I(ρ)], where

I(ρ) =
1

N
log det

(

IN +
(

ρI+AAH
)−1

HHH

)

. (2)
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The aim of this paper is to derive a deterministic approx-

imation V (ρ) of I(ρ) and to study the fluctuations of the

random variable N(I(ρ)− V (ρ)) in the large system limit,

i.e., for N,n → ∞ at the same pace. More precisely, the

notation N,n → ∞ will refer in the sequel to the two

following conditions on n, N and the number of columns

m of the matrix A:

0 < lim inf
n→∞

N

n
≤ lim sup

n→∞

N

n
< ∞

0 ≤ lim sup
n→∞

m

n
< ∞ . (3)

A well known result of random matrix theory states that

the empirical eigenvalue distribution of the Gram matrix

HHH converges weakly to a limit distribution function

when the elements of H are independent and identically

distributed (i.i.d), i.e., σ2
ij = 1 [1]. This fact leads also

to the convergence of I(ρ) to a deterministic limit which

can be given in closed form [2]. Similar results could

be established for more complicated models such as the

Kronecker model H = ΦRWΦT [3], [4], where W is

a N × n standard Gaussian matrix and ΦR and ΦT are

N ×N and n× n matrices capturing the effects of transmit

and receive antenna correlation, sums of matrices Hk each

having a Kronecker variance structure [5] and also non-

centered channel matrices with a variance profile [6]. These

works provide deterministic approximations V (ρ) of I(ρ),
only depending on N,n and the distribution of H, in the

sense that I(ρ)− V (ρ) → 0 for n,N → ∞ while satisfying

(3). Apart from some special cases, the function V (ρ) is

rarely available in closed-form and requires to solve a set of

implicit equations. However, their computation is in general

much less complex than the capacity evaluation by Monte

Carlo simulations. Moreover, the deterministic approxima-

tions have been shown by simulations to yield very accurate

results for small channel dimensions with as little as two

transmit and receive antennas. Recently, the fluctuations of

the mutual information have been studied under the form of

central limit theorems (CLTs). One is generally interested in

obtaining results of the form:

Nα

Θ
(I(ρ)− V (ρ)) → N (0, 1) (4)

in distribution, where α is a measure of the convergence

speed and Θ2 determines the variance. In a slow fading



scenario, these results allow to approximate the outage proba-

bility, i.e., Pr (NI(ρ) ≤ R), for a given desired target rate R.

A CLT for channel matrices with left-sided correlation was

established in [7] and the more general case of a variance

profile addressed in [8]. Also the fluctuations of the mutual

information in the presence of correlated interference and

noise under the Kronecker model were studied in [4] relying

on the replica method.

The novelty of the results derived in this paper in contrast

to [8] is the consideration of arbitrary correlated Gaussian

noise whose covariance matrix can be written in the form

ρIN +AAH. This model is more general than the particular

case where the interference term can be written in the form

HIxI , where HI is a random matrix which follows the

same statistical model as the channel matrix H and xI

is a standard complex Gaussian vector. Here, the mutual

information can be decomposed into two terms without inter-

ference, i.e., I(ρ) = 1
N log det

(

ρIN +HIH
H

I +HHH
)

−
1
N log det

(

ρIN +HIH
H

I

)

, where the first can be seen as the

mutual information of the compound channel [HHI ] and the

second as the mutual information of the interference channel

HI . Note that both matrices H and HI are considered

random while A in our model is assumed to be deterministic.

The channel model considered in this work has a particular

application in the context of distributed antenna or network

MIMO systems where the signals received at several spa-

tially separated antennas are jointly processed to provide

macro diversity. For more details on this topic we refer

the reader to the comprehensive surveys [9], [10]. More

precisely, the channel in (1) can be seen as a multiple access

channel (MAC) with macro diversity where the value of a

particular σ2
ij represents the inverse path loss between the

jth transmitter and the ith receiving antenna. For example,

assuming a log-distance path loss model, we have σ2
ij = d−β

ij ,

where dij is the distance between transmitter j and receive

antenna i and β is the path loss exponent whose value lies

usually in the range from 2 to 5 depending on the radio

environment. The application of random matrix theory to

the study of multi-cellular networks is not new. The sum-

capacity scaling of large cooperative cellular networks has

been studied in [11] and the downlink of large multi-cell

systems with optimal power allocation and user scheduling

was considered in [12]. However, both works build upon

the assumption that the inter-cell interference is of the form

HIxI as discussed above.

The remainder of the paper is structured as follows. A

first order result in form of a deterministic equivalent of

the normalized mutual information is derived in Section II.

That is, we find a deterministic function V (ρ) such that

I(ρ) − V (ρ) → 0, for N,n → ∞. The fluctuations of the

random variable N(I(ρ)− V (ρ)) are studied in Section III

where we establish a CLT of the form (4) and provide an

explicit expression for the asymptotic variance Θ2. Numer-

ical results are presented in Section IV which corroborate

the theoretical results and demonstrate their applicability

to channel matrices of even small dimensions. Section V

concludes the paper.

II. DETERMINISTIC APPROXIMATION OF I(ρ)

Recall that H is a N × n matrix, A is N ×m. The aim

of this section is to propose a deterministic equivalent to the

normalized ergodic mutual information

I(ρ) =
1

N
E

[

log det
(

ρIN +AAH +HHH
)]

− 1

N
log det

(

ρIN +AAH
)

as N,n → ∞. Consider the following technical assumptions

and assume that n, N and m satisfy (3):

A 1: Consider a family of non-negative real numbers

(σ
(n)
ij ; 1 ≤ i ≤ N ; 1 ≤ j ≤ n), then there exists a non-

negative real number σmax such that:

sup
i≤N,j≤n,n≥1

σ
(n)
ij ≤ σmax < ∞ .

A 2: Consider a family (AN,m;N ≥ 1, m ≥ 1) of

N×m matrices and denote by ‖An,m‖ the spectral norm of

matrix An,m, then there exists a non-negative real number

amax such that:

sup
N,m

‖AN,m‖ ≤ amax < ∞ .

A 3: Consider a family of non-negative real numbers

(σ
(n)
ij ; 1 ≤ i ≤ N ; 1 ≤ j ≤ n). Then there exists a positive

number σmin such that:

lim inf
n≥1

min
1≤j≤n

1

n

N
∑

i=1

σ
(n)
ij ≥ σ2

min .

In the sequel, we will drop the dependencies in N,n and

m and simply write σij and A instead of σ
(n)
ij and AN,m.

Consider the following diagonal N ×N matrices:

Dj = diag
(

σ2
1j , . . . , σ

2
Nj

)

, 1 ≤ j ≤ n . (5)

Denote by C+ = {z ∈ C : Im(z) > 0}, and by S the class

of functions f analytic over C+, such that f : C+ → C+

and limy→∞ −iyf(iy) = 1, where i =
√
−1. 1 We are now

in position to state the first result of the paper:

Theorem 1 (Deterministic Equivalent): Assume that as-

sumptions (A1) and (A2) hold true, then:

(i) The following equation:

T(z) =



AAH − zIN +
1

n

n
∑

j=1

Dj

1 + 1
n trDjT(z)





−1

(6)

admits a unique solution T(z) in the space of N ×N
matrices such that there exists a N ×N matrix-valued

measure2 µ such that:

T(z) =

∫

R+

µ(dλ)

λ− z
where µ(R+) = IN . (7)

In particular, 1
N trT(z) ∈ S .

1Such functions are known to be Stieltjes transforms of probability
measures over R - see for instance [6, Proposition 2.2].

2For details, see for instance [6, Theorem 2.4].



(ii) Let ρ > 0. Denote Tρ = T(−ρ) and consider the

quantity:

V (ρ) = − 1

N
log det

(

Tρ

(

ρIN +AAH
))

+
1

N

n
∑

j=1

log

(

1 +
1

n
trDjTρ

)

− 1

Nn

∑

i=1,...,N
j=1,...,n

σ2
ijTii(−ρ)

1 + 1
n trDjTρ

.

Then, the following holds true:

I(ρ)− V (ρ) −−−−−→
N,n→∞

0 .

Proof: Theorem 1 is essentially a consequence of

Theorems 2.4 and 4.1 in [6]. The main idea is to cast

the model HHH + AAH into an extended model which

fits into the framework of [6]. Consider the N × (n + m)
matrices Z = [H 0N×m] and Γ = [0N×n A]; then

(Z + Γ)(Z + Γ)H = HHH +AAH, which is precisely the

model under investigation. Introduce the following notations,

for 1 ≤ i ≤ N and 1 ≤ j ≤ n+m:

ρij =

{ √

n+m
n × σij if j ≤ n

0 if j ≥ n+ 1

∆̃i = diag(ρ2ij ; 1 ≤ j ≤ n+m)

∆j = diag(ρ2ij ; 1 ≤ i ≤ N) .

Note that ∆j = 0N×N if j ≥ n+1. We can now write down

the equations associated to the model (Z + Γ)(Z + Γ)H as

given in [6, Theorem 2.4]. Let Ψ(z) = diag(Ψi(z), 1 ≤ i ≤
N) and Ψ̃(z) = diag(Ψ̃j(z), 1 ≤ j ≤ n+m) where:

Ψi(z) = − 1

z
(

1 + 1
n+m tr∆̃iT̃(z)

)

Ψ̃j(z) = − 1

z
(

1 + 1
n+m tr∆jT(z)

) (8)

and

T(z) =
(

Ψ(z)−1 − zΓΨ̃(z)ΓH

)−1

T̃(z) =
(

Ψ̃(z)−1 − zΓHΨ(z)Γ
)−1

. (9)

Then this system admits a unique solution

(Ψ1(z), . . . ,ΨN (z), Ψ̃1(z), . . . , Ψ̃n+m(z)) ∈ SN+n+m. In

particular, T(z) satisfies (7) for some measure µ. Taking

advantage of the particular forms of ρij and ∆j , one can

prove that T(z) as defined in the previous equation satisfies

T(z) =



−zIN +AAH +
1

n

n
∑

j=1

Dj

1 + 1
n trDjT(z)





−1

.

Hence, the existence of a solution T(z) to (6) is established;

moreover T(z) admits the representation (7).

To complete the proof of (i), it remains to check that such

a T(z) is unique. Assume that there exists T(z) satisfying

(6) with representation (7). Define Ψ̃(z) with the help of the

second part of (8), Ψ(z) with the help of the first part of

(9) and T̃(z) with the help of the second part of (9). It is

then a matter of routine to check that Ψ(z) and Ψ̃(z) satisfy

the system (8)-(9) (it remains basically to check that the first

part of (8) is satisfied). As T(z) admits the representation

(7), Ψi(z) and Ψ̃j(z) belong to S . Hence Ψ(z) and Ψ̃(z)
are uniquely defined and so is T(z).

Part (ii) of the theorem is a direct application of [6,

Theorem 4.1]; details are therefore omitted.

III. FLUCTUATIONS OF I(ρ): A CENTRAL LIMIT

THEOREM

A number of studies has been devoted to the fluctuations of

the mutual information, with various statistical assumptions

for the channel H; see for instance [4], [13], and in a

more mathematical flavor [14] (separable variance profile),

[8] (general variance profile) and [15] (Rician channel with

separable variance profile). A common feature of these

works, although perhaps not much known, is the nice and

concise closed-form expression of the variance of the mutual

information which always writes

Θ2 = − log det (I− J)

where J is a Jacobian matrix associated to the set of

fundamental equations of the matrix model under study. The

fluctuations of the model HHH+AAH have not been studied

yet, but relying on the previous observation, it is easy to

infer the formula for the variance. Let δj = 1
n trDjTρ.

Multiplying Tρ in (6) by Dj and taking the normalized trace

yields the following system of n equations:

δj =
1

n
trDj

(

ρIN +AAH +
1

n

n
∑

k=1

Dk

1 + δk

)−1

△
= Γj(δ1, . . . , δn) .

The computation of the n × n Jacobian matrix Jn of the

function Γ = (Γ1, · · · ,Γn) is then straightforward:

[Jn]kℓ =
∂Γk

∂δℓ
=

1

n

1
n trDkTρDℓTρ

(1 + δℓ)
2 .

Based on the previous remarks, we are now in position

to state the claim related to the fluctuations of the mutual

information for the channel model under investigation.

Claim 1 (The CLT): Assume that Assumptions (A1),

(A2) and (A3) hold true. Recall the definition of Tρ =
T(−ρ) and consider the following n× n matrix Jn defined

by:

[Jn]k,ℓ =
1

n

1
n trDkTρDℓTρ
(

1 + 1
n trDℓTρ

)2 . (10)

Then:

(i) The real number Θ2
n = − log det (In − Jn) is well-

defined and satisfies

0 < lim inf
N,n→∞

Θ2
n ≤ lim sup

N,n→∞
Θ2

n < ∞ .



(ii) The following convergence holds true

N

Θn
(I(ρ)− V (ρ))

D−−−−−→
N,n→∞

N (0, 1)

where D stands for the convergence in distribution.

The proof of part (i) closely follows [8, Theorem 3.1]

and is therefore omitted. Due to the term AAH in the model

HHH+AAH, the proof of the fluctuations (ii) is not a simple

consequence of Theorems 3.2 and 3.3 in [8] and necessitates

special mathematical developments. We however provide the

proof of the fluctuations in two specific cases, namely:

1) The case where AAH = Λ is a N×N diagonal matrix.

2) The case where the variance profile is separable, i.e.,

σij =
√

did̃j .

Beyond the proof of the fluctuations for these cases, simula-

tions are provided that suggest the exactness of the variance

formula in the general case.

Proof: [Proof of Claim 1 in case 1)] Let AAH = Λ =
diag(λ2

i ; 1 ≤ i ≤ N). Denote ∆ = (Λ+ ρIN )−1, then:

log det(HHH +Λ+ ρIN ) =

− log det∆+ log det
(

∆1/2HHH∆1/2 + IN

)

.

Consider H̃ = ∆1/2H, then H̃ is a centered matrix with a

variance profile given by: κij = σij/
√

λ2
i + ρ. Hence, the

fluctuations of log det(H̃H̃H+IN ) fall into the framework of

Theorems 3.2 and 3.3 in [8]. In particular, N(I(ρ)−V (ρ)) →
0 as N,n → ∞ and Θ̃−1

n N(I(ρ) − I(ρ)) → N (0, 1) in

distribution, where:

Θ̃n = − log det(In − J̃n) , [J̃n]k,ℓ =
1

n

1
n trDkΥDℓΥ
(

1 + 1
n trDℓΥ

)2

and where Υ satisfies the following equation:

Υ =



IN +
1

n

n
∑

j=1

∆j

1 + 1
n tr∆jΥ





−1

with ∆j = Dj∆ .

(11)

In order to establish Claim 1 in this case, it remains to

prove that Θ̃n as just defined is equal to Θn. From (11),

it is straightforward to prove that ∆Υ satisfies (6) with

z = −ρ, and is thus equal to T due to the uniqueness of

the solution of (6). It readily follows that Jn = J̃n, which

implies Θn = Θ̃n. Claim 1 is proved in the case where

AAH = Λ.

Proof: [Proof of Claim 1 in case 2)] In the case where

the variance profile is separable, i.e., σij =
√

did̃j , H writes

H = n−1/2D1/2WD̃1/2, where D = diag(di, 1 ≤ i ≤ N)
and D̃ = diag(d̃j , 1 ≤ j ≤ n) and where W has i.i.d.

standard complex Gaussian entries. Consider the following

extended model: W̃ = [WW1], where W1 is a N × m
matrix with i.i.d. standard complex Gaussian entries; ∆ =

αD, where α =
√

n+m
n ; Γ = [0N×n A]; and finally ∆̃ =

α diag(D̃,0m×m).

Then HHH +AAH writes
(

∆1/2 W̃√
n+m

∆̃
1/2

+ Γ

)(

∆1/2 W̃√
n+m

∆̃
1/2

+ Γ

)H

.

The CLT of the mutual information associated to this model

has recently been established in [15]:

N

Θ̃n

(I(ρ)− I(ρ))
D−−−−−→

N,n→∞
N (0, 1) .

Moreover, it has been proved in [16, Theorem 2] that

N(I(ρ) − V (ρ)) → 0. Let us first provide the equations

associated to this model in order to describe the variance

Θ̃2
n. The following system in (δ, δ̃) admits a unique pair of

nonnegative solutions (δ > 0, δ̃ > 0) (see for instance [16,

Theorem 1]):

δ =
1

n+m
tr∆

(

ρ(IN + δ̃∆) + Γ(In+m + δ∆̃)−1ΓH

)−1

δ̃ =
1

n+m
tr ∆̃

(

ρ(In+m + δ∆̃) + ΓH(IN + δ̃∆)−1Γ
)−1

.

Introduce the matrices

Υ =
(

ρ(IN + δ̃∆) + Γ(In+m + δ∆̃)−1ΓH

)−1

,

Υ̃ =
(

ρ(In+m + δ∆̃) + ΓH(IN + δ̃∆)−1Γ
)−1

and the quantities γ = (n + m)−1tr∆2Υ2 and γ̃ = (n +

m)−1tr ∆̃
2
Υ̃2. These quantities enable us to express the

variance Θ̃2
n associated to the CLT as given in (12) at the top

of the next page. Due to the particular form of the matrices

associated to the extended model, one can readily prove that

the variance takes the simpler form Θ̃2
n = − log(1− ρ2γγ̃).

It remains now to prove that Θ̃n = Θn. Easy matrix

computations yield to the fact that

Υ =
[

ρ
(

I+ δ̃∆
)

+AAH

]−1

Υ̃ =





ρ
(

I+ αδD̃
)

0

0 ρI+AH

(

I+ αδ̃D
)

A





−1

(13)

Hence, considering Υ̃ as a block-diagonal matrix of inverses,

we get:

δ̃ =
α

ρ(n+m)
tr D̃

[

I+ αδD̃
]−1

γ̃ =
1

n+m
tr ∆̃

2
Υ̃2 =

1

ρ2n
tr D̃2

[

I+ δD̃α
]−2

. (14)

Consider (6), which defines T, for z = −ρ; note that

Dj = d̃jD and introduce κ = 1
n trDTρ so that Tρ satisfies

the equation:

Tρ =



ρI+AAH +
1

n

n
∑

j=1

d̃jD

1 + κd̃j





−1

=

[

ρI+AAH +

(

1

n
tr D̃(I+ κD̃)−1

)

D

]−1

.



Θ̃2
n = − log

(

(

1− 1

m+ n
tr∆1/2ΥΓ(I+ δ∆̃)−1∆̃(I+ δ∆̃)−1ΓHΥ∆1/2

)2

− ρ2γγ̃

)

(12)

Considering the definitions of Υ and δ̃ as given in (13) and

(14), one can prove that Tρ and Υ satisfy the same equation

and hence are equal. In particular, κ = αδ and Θ̃2
n writes:

Θ̃2
n = − log

(

1− 1

n
trD2T2

ρ ×
1

n
trD2

[

I+ κD̃
]−2
)

.

We now rewrite Θ2
n as given in Claim 1:

Jkℓ =
1

n

1
n d̃kd̃ℓtrD

2T2
ρ

(1 + d̃ℓ)2
.

Hence,

J =

(

1

n2
trD2T2

ρ

)

uHv

where u = [d̃1, . . . , d̃n] and v = [d̃1(1+κd̃1)
−2, . . . , d̃n(1+

κd̃n)
−2]. Now,

− log det

(

I−
(

1

n2
trD2T2

ρ

)

uHv

)

= − log

(

1−
(

1

n2
trD2T2

ρ

)

vuH

)

= − log

(

1− 1

n
trD2T2

ρ ×
1

n
trD2

[

I+ κD̃
]−2
)

which is exactly the expression of Θ̃2
n and the proof is

completed.

IV. NUMERICAL RESULTS

In order to verify the accuracy of the analysis in the

previous sections, we provide now some simulation results.

We consider a variance profile where each σ2
ij is drawn ran-

domly from the interval [0, 10]. The interference covariance

matrix AAH is also generated in a random fashion by letting

A = 1√
N
X, where X is a standard complex Gaussian N×m

matrix. Both the variance profile (σ2
ij) and A are chosen at

random at the beginning of the simulations and then kept

constant. We define the signal-to-noise-ratio as SNR = 1/ρ
and let m = 3.

Fig. 1 shows the normalized ergodic mutual information

I(ρ) versus the SNR for several different values of N
and n. Solid lines represent the deterministic equivalent

approximation V (ρ) as given by Theorem 1. Markers are

obtained by Monte Carlo simulations for 10, 000 different

realizations of H. We observe a very accurate fit between

both results which demonstrates that the asymptotic analysis

yields accurate approximations for small channel dimensions.

Fig. 2 and Fig. 3 depict the histogram of the random

variable N
Θn

(I(ρ) − V (ρ)) in comparison with the normal

distribution N (0, 1) for two different pairs of parameters N ,

n. The overlap is almost perfect for a rather large system with

N = 16 receive antennas and n = 8 transmitters (Fig. 3).

In the case N = 2 and n = 1 (Fig. 2), the fluctuations
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Fig. 1. Normalized ergodic mutual information I(ρ) versus SNR for
different channel dimensions N , n. Solid lines correspond to the deter-
ministic equivalent approximation V (ρ). Markers are obtained by Monte
Carlo simulations.

match also surprisingly well although there is clearly a bias.

This bias has a simple explanation: While the fluctuations

of N(I − V ) arise from those of N(I − EI) = N(I − I),
the deterministic difference N(I −V ) yields a bias of order

O(N−1) (see for instance [16, Theorem 2]). Although this

bias vanishes quickly with N , it is of order one, as noticed

in Figure 2, for very small values of n,N . Hence, these plots

further validate the CLT as stated in Claim 1.

V. CONCLUSIONS

We have studied the fluctuations of the mutual information

of a class of large-dimensional MIMO channels with arbi-

trary colored noise. First, we have provided a deterministic

approximation of the mutual information, which is tight

in the asymptotic limit. Second, we have established the

fluctuations of the mutual information around this approx-

imation in form of a CLT. Both analytical results have then

been confirmed by simulations and it was shown that the

asymptotic results yield accurate approximations for even

small channel dimensions. The results can be readily applied

in various settings of interfering multi-user MIMO networks

or distributed antenna systems.
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Fig. 2. Histogram of N

Θn

(I(ρ) − V (ρ)) in comparison with the normal

distribution N (0, 1) for N = 2, n = 1.
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distribution N (0, 1) for N = 16, n = 8.
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Ph.D. dissertation, Télécom Paristech (Paris) and Université Hassan II
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