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Asymptotic Performance of Linear Receivers

in Network MIMO
(Invited Paper)

Jakob Hoydis, Mari Kobayashi, and Mérouane Debbah

Abstract—We consider the asymptotic performance of a class
of linear receivers in multiple-input multiple-output (MIMO)
multiple access channels (MAC). Under the assumption that the
number of transmitters K and the number of receive antennas
N grow large at the same rate and that the receiver has only an
imperfect estimate of the channel matrix, we derive deterministic
equivalents for the signal-to-interference-plus-noise-ratio (SINR)
at the receiver output. Since we assume that the channel matrix
has a variance profile, i.e., different matrix entries exhibit
different variances, the results are useful for the analysis of
network MIMO systems where a user terminal (UT) sees a
different path loss to different cooperative base stations (BSs).
Our simulation results show that the asymptotic performance
predictions are accurate for even small values of N and K.

I. INTRODUCTION

Multi-cell cooperation for joint transmission, detection or

interference coordination, also referred to as network multiple-

input multiple-output (MIMO), is a potential solution to over-

come the limiting inter-cell interference in current cellular

systems [1]. By exchanging user data and/or channel state

information (CSI) via highspeed backhaul links, several base

stations (BSs) can jointly process signals for user terminals

(UTs) in multiple cells. Without any constraints on the pro-

cessing complexity, availability of CSI and backhaul capacity,

a network MIMO system can be represented by a MIMO

multiple access channel (MAC) in the uplink or a MIMO

broadcast channel in the downlink whose capacity regions

are known [2], [3]. However, the aforementioned practical

limitations render the analysis difficult and more realistic

performance predictions of network MIMO systems are hard

to obtain analytically. For a comprehensive survey of recent

related results, we refer to [4].

The focus of this work is on two practical limitations

of uplink network MIMO systems: processing complexity

and imperfect CSI. Since joint optimal decoding might not

be possible due to prohibitive complexity and full CSI is

hardly available, it is of practical and theoretical interest to

study the performance of linear single-user receivers assuming

imperfect CSI at the BSs. Under this setting, we study the

signal-to-interference-plus-noise-ratio (SINR) at the output of

several linear receivers, such as the minimum-mean-square-

error (MMSE) receiver, the zero-forcing (ZF) receiver and

the matched filter (MF). The difficulty here is related to

the fact that a network MIMO system is characterized by a

random channel matrix whose elements have different vari-

ances, capturing the path loss differences between the links.

Therefore, exact expressions of the SINR distribution or even

its mean are intractable to obtain. This motivates us to study

the large system limit with many UTs and many coordinated

receive antennas and to derive deterministic approximations

of the SINR. These approximations are only asymptotically

tight but shown by simulations to yield accurate performance

predictions for small system dimensions.

The asymptotic behavior of the SINR of linear receivers has

been extensively studied in the context of CDMA and MIMO

systems with different assumptions on the random matrix

models describing the spreading sequences or channel matrices

[5]–[14]. The authors of [5], [6] consider linear receivers for

CDMA with random independent and identically distributed

(i.i.d.) spreading sequences while [8] extends these results

to the case of multipath fading channels and imperfect CSI.

The asymptotic performance of the MMSE receiver in CDMA

downlink systems with frequency-selective fading and random

unitary spreading sequences is studied in [9]. Multicarrier

CDMA over frequency-selective fading channels with random

i.i.d. spreading sequences is considered in [10].

A significant body of works deals also with the fluctuations

of the SINR. This is normally established under the form of a

central limit theorem (CLT) and expressions of the asymptotic

variance (or higher moments) are derived. The authors of [7]

consider MMSE and ZF receivers for random CDMA with

non-uniform power allocation while [11] assumes a Rayleigh

flat-fading MIMO channel with right-sided correlation. In

[12], the results of [7] are extended to non-Gaussian random

spreading and mismatched MMSE receivers. A CLT for the

mutual information of linear receivers in Rayleigh flat-fading

channels is derived in [14] while [13] studies the SINR-

fluctuations at the output of the MMSE receiver for arbitrary

flat-fading channels with a variance profile. The novelty of our

work with respect to [8], [10], [13] is the consideration of a

channel matrix with a variance profile and imperfect CSI. Our

results coincide with those reported in [10] for perfect CSI.

Notations: For a matrix X = {xij}, xk denotes the kth

column vector of X. X[k] (x[k]) is the matrix (vector) X (x)

with its kth column (element) removed. We denote trX, XT

and XH the trace, transpose and complex conjugate transpose

of X. IN is the identity matrix of size N and diag(x1, . . . , xN )
is a diagonal matrix with elements xi. We use x ∼ CN (m,R)
to state that the vector x has a circular symmetric complex

Gaussian distribution with mean m and covariance matrix R.

Let aN and bN denote a pair of infinite sequences of random

variables. We write aN ≍ bN , iff aN −bN
a.s.−−→ 0 for N → ∞,

where
a.s.−−→ denotes almost sure convergence.



II. SYSTEM MODEL

We consider a MIMO MAC from K single-antenna UTs

to a receiver equipped with N antennas. The receiver could

be either a single BS or several connected BSs with a total

number of N antennas. The received signal vector y ∈ C
N

at

a given time instant is modeled as

y = Hx+ n (1)

with transmit vector x = (x1, . . . , xK)T ∼ CN (0, P IK) and

noise vector n ∼ CN
(

0, σ2IN
)

. Denote H = {hij} ∈ C
N×K

the channel matrix whose entries are given as (1 ≤ i ≤
N , 1 ≤ j ≤ K)

hij =

√

vij
K

wij (2)

where wij are i.i.d. complex random variables, satisfying

E[wij ] = 0, E[|wij |2] = 1, E[w2
ij ] = 0 and E[|wij |12] < ∞,

and we denote V = {vij} ∈ R
N×K
+ the variance profile of the

channel matrix H. The transmit signal-to-noise-ratio (SNR) of

each UT is defined as ρ = P/σ2. We assume in the sequel

that the receiver has only an estimate Ĥ = {ĥij} ∈ C
N×K

of

the channel matrix H which satisfies

H = Ĥ+ H̃ (3)

where H̃ = {h̃ij} ∈ C
N×K

denotes the estimation error. We

further assume that the estimate and the estimation error are

mutually independent and given as ĥij =
√

v̂ij/Kw′
ij and

h̃ij =
√

ṽij/Kw′′
ij , respectively, where w′

ij and w′′
ij satisfy

the same conditions as wij . Denote V̂ = {v̂ij} ∈ R
N×K
+

the variance profile of the matrix Ĥ and define the following

diagonal matrices (1 ≤ j ≤ K)

Dj = diag(v1j , . . . , vNj)

D̂j = diag(v̂1j , . . . , v̂Nj) (4)

D̃j = diag(ṽ1j , . . . , ṽNj) .

In this correspondence, we consider several linear receive

filters gk ∈ C
N

, namely the MF receiver, the ZF receiver or

decorrelator, and the MMSE receiver, defined respectively by

[15]:

gMF
k

△

= ĥk

gZF
k

△

= Π̂kĥk (5)

gMMSE
k

△

=

(

Ĥ[k]Ĥ
H

[k] + Z̃+
1

ρ
IN

)−1

ĥk

where

Π̂k
△

= IN − Ĥ[k]

(

ĤH

[k]Ĥ[k]

)−1

ĤH

[k] (6)

is the projection onto the sub-space orthogonal to the column-

space of the matrix Ĥ[k] and Z̃ ∈ R
N×N
+ is given as

Z̃
△

= E

[

H̃H̃H

]

=
1

K

K
∑

j=1

D̃j . (7)

The receiver tries to decode the message xk of UT k based

on the scalar observation

gH

ky = gH

k ĥkxk + gH

k

(

H[k]x[k] + h̃kxk + n
)

. (8)

The corresponding received SINR γk of UT k reads

γk =

∣

∣

∣
gH

k ĥk

∣

∣

∣

2

gH

k

(

H[k]H
H

[k] + h̃kh̃
H

k + 1
ρ
IN

)

gk

(9)

with the associated instantaneous rate Rk defined as

Rk = log2 (1 + γk) [bits/s/Hz] . (10)

Remark 2.1: The MMSE receiver gMMSE
k is based on the

assumption that the estimation error h̃kxk and the useful signal

ĥkxk are independent. Although this is not the case for finite

dimensions, it follows from Lemma 4 that both terms are

asymptotically independent, i.e., x∗
kĥ

H

k h̃kxk
a.s.−−→ 0. Note also

that the MMSE receiver requires a perfect knowledge of the

variance of the estimation error to compute the matrix Z̃.

III. ASYMPTOTIC ANALYSIS

In this section, we will derive deterministic equivalents γk

of the SINR γk of UT k. This means that, as N and K grow

infinitely large at the same rate, γk approximates γk arbitrarily

close while being independent of the actual channel realization

H. More precisely, the notation N → ∞ will refer in the

sequel to the following condition on N and K:

0 < lim inf
N

K
≤ lim sup

N

K
< ∞ . (11)

Under this assumption, we will show that

γk − γk
a.s.−−−−→

N→∞
0 (12)

or in shorter notation: γk ≍ γk. We will subsequently consider

the MMSE, MF and ZF receiver. Note that the almost sure

convergence of the SINR implies also that

Rk − log2 (1 + γk)
a.s.−−−−→

N→∞
0 . (13)

A. Main results

In this section, we state our main results. The proofs

are provided in Section III-B while necessary lemmas and

theorems are given in the Appendix. Our first result is a

deterministic equivalent of the SINR of the MMSE receiver:

Theorem 1 (MMSE receiver): Let γMMSE
k be the SINR of

UT k at the output of the receive filter gMMSE
k . Then γMMSE

k ≍
γMMSE
k , where

γMMSE
k =

1

K
tr D̂kT(−1/ρ, V̂, Z̃)

with matrix T(−1/ρ, V̂, Z̃) given by Theorem 4.

We obtain the following result for the MF receiver:



Theorem 2 (Matched filter): Let γMF
k be the SINR of UT k

at the output of the receive filter gMF
k , then γMF

k ≍ γMF
k , where

γMF
k =

(

1
K

tr D̂k

)2

1
ρK

tr D̂k + 1
K2 tr D̂k

(

∑K
j=1 Dj

) .

Our last result is a deterministic equivalent of the SINR at

the output of the decorrelator:

Theorem 3 (ZF receiver): Let γZF
k be the SINR of UT k at

the output of the receive filter gZF
k . Assume lim inf N

K
> 1.

Then γZF
k ≍ γZF

k , where

γZF
k =

r2k
1
ρ
rk + 1

K
tr Z̃Sk

with

rk =
1

K
tr D̂k

(

IN −R(0, V̂)
)

Sk = D̂k

(

IN − 2R(0, V̂)
)

+Q(V̂, D̂k)

where the matrices R(0, V̂) and Q(V̂, D̂k) are given by

Theorems 5 and 6, respectively, and Z̃ is defined in (7).

Remark 3.1: For Theorem 1 and 3, the matrix V̂ can be

replaced by V̂[k] to achieve a better approximation for small

values of N and K. Similarly, for Theorem 2, the term
1

K2 tr D̂2
k can be subtracted from the denominator.

We will now study the asymptotic behavior of the deter-

ministic equivalent SINR expressions in the low and high

SNR regimes. At low SNR (ρ → 0), we get the following

approximations after straight-forward computations:

γk, low ≈











ρ 1
K

tr D̂k (MMSE)

ρ 1
K

tr D̂k (MF)

ρ 1
K

tr D̂k − 1
K

tr D̂kR(0, V̂) (ZF) .

(14)

Clearly, MMSE and MF receiver achieve a similar perfor-

mance at low SNR and outperform the ZF receiver. Moreover,

the performance of all receivers is independent of the estima-

tion error.

At high SNR (ρ → ∞), we obtain the following results:

γk, high ≈



















1
K

tr D̂kT(0, V̂, Z̃) (MMSE)

( 1
K

tr D̂k)
2

1

K2 tr D̂k(
∑

K
j=1

Dj)
(MF)

r2k
1
K

tr Z̃Sk

(ZF) .

(15)

Note that the SINR saturates for all receivers if the estimation

error does not vanish with increasing SNR, i.e., Z̃ has full

rank. For perfect CSI, the SINR of the MMSE and ZF receiver

grows without bound.

B. Proofs of Theorems 1, 2, and 3

All proofs follow in essence the same steps: First, we

derive deterministic equivalents of the useful signal power

(numerator of (9)) and the power of the interference and noise

(denominator of (9)). Since all quantities are (almost surely)

bounded, it follows then from Lemma 1 that their ratio is a

deterministic equivalent of the SINR.

Proof of Theorem 1 (MMSE receiver): For brevity, we

write gk instead of gMMSE
k .

1) Signal Power: The deterministic equivalent of the nu-

merator of (9) can be derived as follows:

∣

∣

∣
gH

k ĥk

∣

∣

∣

2

= gH

k ĥkĥ
H

kgk

(a)≍
(

1

K
tr D̂k

(

Ĥ[k]Ĥ
H

[k] + Z̃+ ρ−1IN

)−1
)2

(b)≍
(

1

K
tr D̂k

(

ĤĤH + Z̃+ ρ−1IN

)−1
)2

(c)≍
(

1

K
tr D̂kT(−1/ρ, V̂, Z̃)

)2

where (a) is obtained from a direct application of Lemma 3,

(b) is due to Lemma 5 and (c) results from Theorem 4 together

with Lemma 1. Notice that the accuracy of the approximation

for small N,K can be improved by ignoring step (b) and

replacing V̂ in the last line by V̂[k].

2) Interference and noise power: The deterministic equiva-

lent of the denominator of (9) can be derived by the following

sequence of equations:

gH

k

(

H[k]H
H

[k] + h̃kh̃
H

k + ρ−1IN

)

gk

= ĥH

k

(

Ĥ[k]Ĥ
H

[k] + Z̃+ ρ−1IN

)−1

ĥk − gH

k Z̃gk

+ gH

k

(

H̃H̃H + Ĥ[k]H̃
H

[k] + H̃[k]Ĥ
H

[k]

)

gk

(a)≍ 1

K
tr D̂kT(−1/ρ, V̂, Z̃)

− gH

k

1

K

K
∑

j=1

D̃jgk + gH

k

K
∑

j=1

h̃jh̃
H

j gk

(b)≍ 1

K
tr D̂kT(−1/ρ, V̂, Z̃)

where (a) is obtained by applying Lemmas 3 and 5 and then

Theorem 4 to the first term and realizing that terms involving

products of the matrices Ĥ[k] and H̃H

[k] vanish due to Lemma 4,

(b) is a simple consequence of Lemma 3. Again, we can

replace V̂ by V̂[k] for a higher accuracy for small N,K.

Since the denominator and numerator of (9) are almost

surely bounded and their respective deterministic equivalent

approximations are bounded over N and K, we can apply

Lemma 1 to their ratio to conclude the proof.

Proof of Theorem 2 (Matched filter): The proof follows

along the same lines as the proof of Theorem 1 and will not

be given in full length here.



Fig. 1. Cellular example with B = 3 cooperative BSs and K = 12 UTs.

Proof of Theorem 3 (ZF receiver):

1) Signal Power: A deterministic equivalent of the numer-

ator of (9) can be derived as follows:
∣

∣

∣g
H

k ĥk

∣

∣

∣

2

=
∣

∣

∣
ĥH

k Π̂kĥk

∣

∣

∣

2

(a)≍
(

1

K
tr D̂kΠ̂k

)2

(b)≍
(

1

K
tr D̂k

(

IN −R(0, V̂
)

)2

= r2k

where (a) follows from Lemma 3 and (b) is due to Theorem 5

and Lemma 5. Note that Lemma 5 is not valid for z = 0.

However, we claim that similar to [16], the smallest eigenvalue

of ĤH

k Ĥk is almost surely bounded away from zero by some

ǫ > 0 for lim inf N
K

> 1, so that we can work with the almost

surely nonnegative definite matrix ĤH

k Ĥk − ǫIK instead (see

proof of Theorem 5). If we do not apply Lemma 5 here, the

matrix V̂ is replaced by V̂[k].

2) Interference and noise power: The deterministic equiv-

alent of the denominator of (9) is obtained as follows:

gH

k

(

H[k]H
H

[k] + h̃kh̃
H +

1

ρ
IN

)

gk

(a)
= gH

k H̃H̃Hgk +
1

ρ
ĥH

k Π̂kĥk

(b)≍ 1

K2
tr





K
∑

j=1

D̃j



 Π̂kD̂kΠ̂k +
1

ρ
rk

(c)≍ 1

K
tr Z̃Sk +

1

ρ
rk

where (a) is due to Π̂kĤk = 0 and Π̂kΠ̂
H

k = Π̂k, (b) follows

from Lemma 3 and Theorem 5, and (c) results from Lemma 3,

Lemma 5 and Theorems 5 and 6.

IV. NUMERICAL RESULTS

In order to verify the analysis in the previous sections,

we consider a simple cellular system consisting of B = 3
cooperative BSs, equipped with M = 6 antennas each (i.e.,

N = BM = 18), serving K = 12 UTs uniformly distributed

over three cell sectors. An example is shown in Fig. 1. The

inverse path loss factor ℓbj between UT j and BS b is given

as

ℓbj = d−3.6
bj

where dbj is the distance between UT j and BS b, normalized

to the maximum distance within a cell. Since the path loss

between a UT and all antennas of a BS is assumed to be the

same, this results in the variance profile V with elements vij =
ℓ⌈ i

M
⌉j . We further assume that the variance of the channel

estimate and the estimation error satisfy

v̂ij = (1− τ)vij , ṽij = τvij

where τ ∈ [0, 1]. We consider one random snapshot of

user distributions which defines V and average over many

different realizations of Ĥ and H̃. We consider Rayleigh

fading channels, i.e., wij ∼ CN (0, 1).
Fig. 2 compares the received SINR γk of a randomly picked

UT versus the transmit SNR ρ for the three different linear

receivers with perfect (τ = 0) and imperfect (τ = 0.05)

CSI. Simulation results are shown by markers, where the

errorbars represent one standard deviation in each direction.

The deterministic equivalent approximations γk are drawn by

solid and dashed lines. We observe a very good approximation

of the average SINR by the deterministic equivalents with a

standard deviation of the instantaneous SINR of about 2.5 dB.

As expected, the performance of the MMSE and MF receiver

are identical at low SNR while MMSE and ZF receiver achieve

a similar performance at high SNR. Note that for imperfect

CSI, both receivers are not identical at high SNR (see (5)).

Fig. 3 shows the corresponding rates Rk versus ρ and their

deterministic approximations Rk = log2(1 + γk). Again, Rk

provides a good approximation of the average rate Rk for

all three receive filters with perfect and and imperfect CSI.

The standard deviation of the instantaneous rates is about

0.5 bits/s/Hz in each direction.

V. CONCLUSION

Based on asymptotic results from random matrix theory,

we have derived deterministic approximations of the SINR at

the output of several linear receivers for arbitrary flat-fading

channel matrices with a variance profile and imperfect CSI

at the receiver. Simulations show that the asymptotic results

provide tight approximations of the SINR and the associated

rates for channels of rather small dimensions. Our results find

applications in the context of network MIMO systems were a

UT sees a different path loss to each of the cooperative BSs.

APPENDIX

Lemma 1: [17, Lemma 1] Denote aN , aN , bN and bN
four infinite sequences of complex random variables indexed

by N and assume aN ≍ aN and bN ≍ bN . If |aN |, |bN |
and/or |aN |,|bN | are uniformly bounded above over N (almost

surely), then aNbN ≍ aNbN . Similarly, if |aN |, |bN |−1 and/or

|aN |,|bN |−1 are uniformly bounded above over N (almost

surely), then aN/bN ≍ aN/bN .
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Lemma 2 (Matrix inversion lemma): [18, Eq. (2.2)] Let

A ∈ C
N×N

be Hermitian invertible. Then, for any vector

x ∈ C
N

and any scalar τ ∈ C such that A + τxxH is

invertible,

xH(A+ τxxH)−1 =
xHA−1

1 + τxHA−1x
.

Lemma 3 (Trace lemma): Let A ∈ C
N×N

be a determin-

istic matrix and let x = [x1, . . . , xN ]T ∈ C
N

be a random

vector of i.i.d. entries with zero mean and variance 1/N ,

independent of A. Consider p ≥ 1, q ≥ 2 and assume that

E

[

|
√
Nx1|4q(p−1)

]

< ∞. Then there exists a constant Cpq ,

independent of N and A, such that

E

[∣

∣

∣

∣

(

xHAx
)p −

(

1

N
trA

)p∣
∣

∣

∣

q]

≤ Cpq‖A‖pq
N

q

2

.

This implies for A with uniformly bounded spectral norm

(

xHAx
)p −

(

1

N
trA

)p
a.s.−−−−→

N→∞
0 .

Proof: The case p = 1 was already proved in [16, Lemma
2.7]. The general proof unfolds directly from the following
chain of inequalities:

E

[∣

∣

∣

∣

(

x
H
Ax
)p

−

(

1

N
trA

)p∣
∣

∣

∣

q]

(a)
= E

[

∣

∣

∣

∣

x
H
Ax−

1

N
trA

∣

∣

∣

∣

q
∣

∣

∣

∣

∣

p−1
∑

k=0

(

1

N
trA

)p−1−k
(

x
H
Ax
)k

∣

∣

∣

∣

∣

q]

(b)

≤

√

√

√

√

E

[

∣

∣

∣

∣

xHAx−
1

N
trA

∣

∣

∣

∣

2q
]

×

√

√

√

√

√E





∣

∣

∣

∣

∣

p−1
∑

k=0

(

1

N
trA

)p−1−k

(xHAx)k

∣

∣

∣

∣

∣

2q




(c)

≤
C′‖A‖q

N
q
2

√

√

√

√

E

[

p2q−1

p−1
∑

k=0

∣

∣

∣

∣

1

N
trA

∣

∣

∣

∣

2q(p−1−k)

|xHAx|2qk
]

(d)

≤
C′‖A‖q

N
q
2

√

√

√

√p2q−1

p−1
∑

k=0

‖A‖2q(p−1−k)
E

[

|xHAx|2qk
]

(e)

≤
C′‖A‖pq

N
q
2

√

√

√

√p2q−1

p−1
∑

k=0

K2qk

≤
Cpq‖A‖pq

N
q
2

for some Cpq ≥ C ′
√

p2q−1
∑p−1

k=0 K2qk, where (a) follows

from an−bn = (a−b)
∑n−1

k=0 a
n−1−kbk, (b) follows from the

Cauchy-Schwarz inequality, (c) is a result of Lemma 3 with

p = 1 and Hölder’s inequality, (d) follows from 1
N

trA ≤
‖A‖, and (e) results from

E

[

∣

∣xHAx
∣

∣

r
]

= E









∑

i1,...,ir
j1...jr

x∗
i1
· · ·x∗

ir
xj1 · · ·xjr

× [A]i1j1 [A
H]i2j2 · · · [A]ir−1jr−1

[AH]irjr
]

≤ Kr

∣

∣

∣

∣

∣

∣

1

N

∑

i1,j1

[A]i1j1

∣

∣

∣

∣

∣

∣

· · ·

∣

∣

∣

∣

∣

∣

1

N

∑

ir,jr

[A]irjr

∣

∣

∣

∣

∣

∣

≤ Kr‖A‖r

where Kr = E

[

Nr|xi1 |2r
]

< ∞ and the last inequality

follows from | 1
N

∑

ij [A]ij | = | 1
N
1T

NA1N | ≤ ‖A‖.



Lemma 4: [19, Theorem 17] Let A ∈ C
N×N

be a deter-

ministic matrix with uniformly bounded spectral norm. Let

x ∈ C
N

and y ∈ C
N

be two random vectors of i.i.d. entries

with zero mean, variance 1/N and finite fourth moment, both

independent of A. Then there exists a constant C, independent

of N and A, such that

E

[

∣

∣xHAy
∣

∣

4
]

≤ C

N2
.

This implies in particular

xHAy
a.s.−−−−→

N→∞
0 and |xHAy|2 a.s.−−−−→

N→∞
0 .

Lemma 5 (Rank-1 perturbation lemma [18]): Let z < 0,

A ∈ C
N×N

, B ∈ C
N×N

with B Hermitian nonnegative

definite, and v ∈ C
N

. Then,

∣

∣tr
(

(B− zIN )−1 − (B+ vvH − zIN )−1
)

A
∣

∣ ≤ ‖A‖
|z| .

Theorem 4 (Deterministic equivalent): [20, Theorem 1 (see

also [21, Lemmas 6.1 and 6.6]] Let H = {hij} ∈ C
N×K

be a random matrix whose elements are given as hij =
√

vij/Kwij , where wij are i.i.d., have zero mean, unit vari-

ance, and there exists ǫ > 0 such that E[|wij |4+ǫ] < ∞. De-

note V = {vij} ∈ R
N×K
+ the variance profile of H. Let A ∈

C
N×N

, A ∈ C
K×K

, B ∈ C
N×N

and B ∈ C
K×K

be deter-
ministic nonnegative hermitian matrices with bounded spectral
norm and assume that maxi,j vij ≤ vmax < ∞. Define the
following diagonal matrices Dj = diag(v1j , . . . , vNj), j =
1, . . . ,K, and Di = diag(vi1, . . . , viK), i = 1, . . . , N . Then,
for z ∈ C \R+, the following implicit equations:

T(z,V,A) =

(

1

K

K
∑

j=1

Dj

1 + 1
K

trDjT(z,V,A)
+A− zIN

)−1

T(z,V,A) =

(

1

K

N
∑

i=1

Di

1 + 1
K

trDiT(z,V,A)
+A− zIK

)−1

admit unique solutions T(z,V,A) ∈ C
N×N

, T(z,V,A) ∈
C

K×K
, such there exist matrix-valued measures µ and

µ, satisfying T(z,V,A) =
∫

R+

µ(dλ)
λ−z

, T(z,V,A) =
∫

R+

µ(dλ)
λ−z

where µ(R+) = IN , µ(R+) = IK . In particular,
1
N

trT(z,V,A) and 1
K

trT(z,V,A) are Stieltjes transforms

of probability measures over R+.

Moreover, assume that N,K grow to infinity, satisfying 0 <
lim inf N

K
≤ lim sup N

K
< ∞. Then, the following limits hold

for any z ∈ C \R+:

1

K
trB

[

(

HHH +A− zIN
)−1 −T(z,V,A)

]

a.s.−−−−−−→
N,K→∞

0

1

K
trB

[

(

HHH+A− zIK
)−1 −T(z,V,A)

]

a.s.−−−−−−→
N,K→∞

0 .

Theorem 5: Under the assumptions of Theorem 4, let C =
diag(c1, . . . , cN ) ∈ R

N×N
+ be a deterministic matrix with

bounded spectral norm. Define δi = 1
K

trDiT(z,V,0), i =

1, . . . , N , where T(z,V,0) is given by Theorem 4, and

consider the matrix R(z,V) ∈ C
N×N

, given as

R(z,V) = diag

(

δ1

1 + δ1
, . . . ,

δN

1 + δN

)

.

Then, for any z ∈ C \R+:

1

K
trC

[

H
(

HHH− zIK
)−1

HH −R(z,V)
]

a.s.−−−−−−→
N,K→∞

0 .

Proof: Direct application of Lemmas 2, 3, 5, Theorem 4

and Lemma 1 together with the fact that 1
K

trDiT(z,V,0) ≤
‖Di‖/|z| leads to

1

K
trCH

(

HHH− zIK
)−1

HH

≍ 1

K

N
∑

i=1

ci

1
K

trDiT(z,V,0)

1 + 1
K

trDiT(z,V,0)

=
1

K
trCR(z,V) .

Note that for K < N , the matrix HHH has full rank with

probability one and its inverse is therefore well defined. Al-

though not proved, we argue that, similar to [16], the smallest

eigenvalue of HHH is almost surely uniformly bounded away

from 0 as N,K → ∞ while lim inf N
K

> 1, so that T(0,V,0)
is well-defined and the convergence region can be extended

to z ∈ C \ R+ ∪ {0}. To give an intuition why this holds,

write HHH − ǫIK + ǫIK for some ǫ > 0, such that almost

surely HHH − ǫIK is a hermitian nonnegative matrix. This

implies that 1
K

tr
(

HHH− ǫIK + ǫIK
)−1 ≤ 1

ǫ
. Using this

bound, Theorem 4 can be extended to the case z = 0.

Remark A.1: Moreover, we claim that for lim inf N
K

> 1,

the convergence holds also for z = 0.

Theorem 6: Assume lim inf N
K

> 1. Under the assumptions

of Theorem 4, let C = diag(c1, . . . , cN ) ∈ R
N×N
+ , D =

diag(d1, . . . , dN ) ∈ R
N×N
+ be deterministic matrices with

bounded spectral norm. Define δi =
1
K

trDiT, i = 1, . . . , N ,

where T = T(0,V,0) is given by Theorem 4 (see also

Remark A.1). Let v = [v1, . . . , vN ]T ∈ C
N

and J ∈ C
N×N

which are respectively given as

[

J
]

kl
=

1
K

trDkTDlT

K(1 + δl)2

vk =

N
∑

l=1

1
K

trDkTdlDlT

K(1 + δl)
.

Let the vector δ
′
= [δ

′

1, . . . , δ
′

N ]T ∈ C
N

be defined as

δ
′
=
(

IN − J
)−1

v

and consider the matrix

Q(V,D) = diag

(

δ
′

1

(1 + δ1)2
, . . . ,

δ
′

N

(1 + δN )2

)

.



Denote Q = Q(V,D). Then

1

K
trC

[

H
(

H
H
H
)

−1

H
H
DH

(

H
H
H
)

−1

H
H −Q

]

a.s.
−−−−−−→
N,K→∞

0 .

Proof: Consider the following function:

f(x, z) =
1

K
trCH

(

HH (IN − xD)H− zIK
)−1

HH

for x < inf‖D‖−1. One can easily verify that its derivative

f ′
x(x, z) =

df(x,z)
dx

evaluated at x = z = 0 equals

f ′
x(0, 0) =

1

K
trCH

(

HHH
)−1

HHDH
(

HHH
)−1

HH .

It remains now to find a deterministic equivalent of f ′
x(0, 0).

First notice that for K < N the matrix HHH has full

rank with probability one and f(0, 0) as well as f ′
x(0, 0) are

consequently well defined. A straight-forward application of

Theorem 5 leads to

f(x, z)− 1

K
trCR(z, (IN − xD)V)

a.s.−−−−−−→
N,K→∞

0 .

In particular, we have f(0, 0) ≍ 1
K

trCR(0,V) (see Re-

mark A.1). One can show that both functions f(x, z) and

f(x, z) = 1
K

trCR(z, (IN − xD)V) are Stieltjes transforms

of finite measures over R+ which we denote by µ and µ,

respectively. Theorem 5 implies that µ−µ ⇒ 0 almost surely

(see also [21, Proposition 2.2]). Further notice that the deriva-

tive f ′
x(x, z) can be written under the form

∫

F (λ, z)µ(dλ),
where F (x, z) is a bounded continuous function. An ap-

plication of the bounded convergence theorem ensures that
∫

F (λ, z)µ(dλ) −
∫

F (λ, z)µ(dλ) → 0 almost surely. This

implies that f
′

x(x, z) = d
dx

1
K

trCR(z, (IN − xD)V) is a

deterministic equivalent of f ′
x(x, z). Therefore,

f ′
x(0, 0)−

1

K
trCQ(V,D)

a.s.−−−−−−→
N,K→∞

0

where Q(V,D) = d
dx
R(0, (IN − xD)V)|x=0. Now,

Q(V,D) = diag

(

δ
′

1

(1 + δ1)2
, . . . ,

δ
′

N

(1 + δN )2

)

where δ
′

k = dδk
dx

= d
dx

1
K

trDkT(0, (I − xD)V)|x=0 can be

calculated as (1 ≤ k ≤ N):

δ
′

k =

N
∑

l=1

1
K

trDkTdlDlT

K(1 + δl)
+

N
∑

l=1

1
K

trDkTDlT

K(1 + δl)2
δ
′

k .

With the above definitions of δ
′

and J, the last equation can

be written in matrix form. By [20, Claim 1] (see also [22,

Theorem 3.1]), we have 0 < det(IN −J) < ∞ which implies

that IN − J has full rank and is thus invertible. Therefore,

δ
′

and, hence, Q(V,D) are uniquely defined. Similarly to

the proof of Theorem 5 we argue that [20, Claim 1] can be

shown to hold for z = 0 since the smallest eigenvalue of the

matrix HHH is almost surely uniformly bounded away from

zero. This concludes the proof.
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