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†Alcatel-Lucent Chair on Flexible Radio, Supélec, 91192 Gif-sur-Yvette, France
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Abstract—In this paper, we present several applications of
recent results of large random matrix theory (RMT) to the
performance analysis of small cell networks (SCNs). In a nutshell,
SCNs are based on the idea of a very dense deployment of
low-cost low-power base stations (BSs) that are substantially
smaller than existing macro cell equipment. However, a massive
network densification causes many new challenges to the optimal
system design, such as interference and mobility management,
self-organization, security, coverage and performance prediction.
We focus especially on the last point and show how RMT
can be used to provide tight and tractable approximations
of key performance parameters, such as capacity and outage
probability, and demonstrate how it can be applied to related
optimization problems. Although the results are only tight in
the large system limit, they yield close approximations for small
systems with as little as three transmitters and receivers. Thus,
we believe that RMT offers many yet unexplored applications to
the study of SCNs and hope that this paper stimulates further
research in this direction.

Index Terms—Small cell networks (SCN), Coordinated Multi-
Point (CoMP), imperfect CSI, random matrix theory.

I. INTRODUCTION

The increasing demand for wireless multimedia services has

lead to exploding mobile data traffic. Recently, a big telecom-

munications equipment manufacturer announced that wireless

data traffic has surpassed voice globally and several market

forecasts, e.g. [1], prognosticate exponential traffic growth dur-

ing the next years. Traditionally, operators provide additional

capacity to metropolitan hot-spots through the deployment of

micro or pico cells. These devices are in essence scaled down

macro cell base stations (BSs) and require the same amount of

costly planning, management and maintenance as their bigger

brothers. A further network capacity increase based on an

even denser deployment of pico BSs would therefore incur

prohibitive costs. Also from and ecological perspective, the

increase in mobile data traffic has considerable consequences.

The SMART 2020 report [2] predicts that the carbon emissions

caused by information and communication technology (ICT)

will grow by roughly 10% per year until 2020, when its

contribution to the global emissions will amount to 2.5%. This

gives rise to the question how mobile operators can satisfy

the future traffic demands in an economical and ecologically

worthwhile manner.

“Small cell networks” (SCNs) [3] is a novel and radically

different network design concept which could provide a cost-

and energy efficient solution to cope with the forecasted

traffic growth. In short, the main idea behind SCNs is a

very dense deployment of low-cost low-power BSs carrying

most of the data traffic while macro cells are only needed

to ensure area coverage. SCNs could share the backhaul

infrastructure with already existing wireless or wireline access

points (e.g. FTTN/B/H or VDSL street cabinets) or could

be connected via power line carriers; small cell BSs could

be integrated into the available street-furniture (e.g. lamp

posts, bus stops, etc.) and made autonomous and independent

from human maintenance through extensive self-organization

functionalities. Thus, SCNs could eliminate the need for

costly cell site acquisition, detailed network planning and

regular maintenance, and reduce capital (CAPEX) as well as

operational (OPEX) expenditures while ensuring high data-

rates, uniformly delivered over the coverage area. Moreover,

by bringing mobiles and BSs closer together, SCNs require

less transmit power and have hence the potential to reduce the

carbon footprint of cellular networks.

However, decreasing the cell size causes significant changes

to the wireless link. While necessarily lower antennas heights

lead to less favorable and predictable propagation conditions,

user terminals (UTs) are more likely to be under line-of-

sight (LOS) conditions to one or several BSs. Moreover,

as the cell size decreases, hand-overs occur more often and

BS-cooperation might not only be beneficial for interference

reduction [4] but also necessary to handle user mobility. In a

cooperative SCN, several BSs operate as a distributed antenna

system which allows for joint signal processing and reduces

the frequency of hard hand-overs between the small cells.

Motivated by the scenario detailed above, we consider in

this paper a general class of channel models, well-suited for

the study of cooperative SCNs. More precisely, we assume a

Rician fading channel, composed of a random Rayleigh fading

and a deterministic LOS component, where each complex

channel gain between a transmitter and a receiver is allowed

to have a different variance. The latter assumption is relevant

to cooperative SCNs since a UT might be simultaneously

served by multiple BSs to each of which it has a channel

with a different path loss. In addition, we allow for arbitrary

correlated noise at the receiving antennas, an assumption

useful for the modeling of inter-cell/cluster interference.

For this general channel model, we review recent result of

large random matrix theory (RMT) related to the study of key

performance measures such as the mutual information and its

fluctuations. These results, although of a rather mathematical

flavor, have concrete applications in the performance analysis

of cooperative SCNs. For example, we determine the optimal

amount of channel training in a block fading uplink channel

and derive a close approximation of the outage probability.
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Fig. 1. Schematic system model for the case Mb = 2 ∀b.

II. SYSTEM MODEL

We consider a general model for the wireless uplink channel

from K single-antenna UTs to B BSs, equipped with Mb, b =
1, . . . , B antennas, respectively, as shown in Fig. 1. Denote

N =
∑B

b=1
Mb the total number of receive antennas. The

BSs are assumed to be oblivious to the applied user codebooks

and forward compressed versions of their received signals to

a central station (CS) via error-, delay- and interference-free

backhaul links of capacity C bits per channel use. The CS

jointly decodes the messages of all users. At a given time

instant, the received signal vector y ∈ C
N

at the CS reads

y =
√
ρ (H+A)x+ z (1)

where x ∼ CN (0, IK) is the vector of transmitted signals

from all K UTs and ρ > 0 is the transmit power per UT. The

noise vector z ∼ CN (0,Z) is used to model the contributions

of several sources of complex Gaussian noise: (i) thermal noise

at the BS-antennas normalized to unit variance, (ii) quantiza-

tion noise due to signal compression with covariance matrix

Q(C) and (iii) intercell-interference with covariance matrix

∆. Thus, the overall noise covariance matrix Z ∈ R
N×N
+

is given as Z = IN + Q(C) + ∆. The quantization noise

covariance matrix Q(C) depends in general on the backhaul

capacity C and the applied compression scheme. For further

information on this topic we refer the reader to [5] and

references therein. We model the wireless channel by the

random Rayleigh fading component H ∈ C
N×K

and the

deterministic LOS component A ∈ C
N×K

. The elements hij

and aij of the matrices H and A, respectively, are given as

hij =

√

(1− κij)σ2
ij

K
wij (2)

aij =

√

κijσ
2
ij

K
ejφij (3)

where wij are i.i.d. standard complex Gaussian random vari-

ables, κij ∈ [0, 1] is the Rician parameter, φij ∈ [0, 2π) the

phase of the LOS component and σ2
ij the inverse path loss of

the channel between the jth UT and the ith receiving antenna.

Under the assumption of perfect knowledge of H and A at

the CS and Gaussian signaling of the UTs, the normalized

ergodic mutual information of the channel in (1) is given by

I(ρ) = E [I(ρ)], where

I(ρ) = 1

N
log

∣

∣

∣
IN + ρZ−1 (H+A) (H+A)

H

∣

∣

∣
. (4)

III. PERFORMANCE ANALYSIS

Key performance measures of the wireless channel in (1) are

the ergodic mutual information I(ρ) and the outage probability

Pout(r) = P (NI(ρ) < r) for a given target rate r > 0.

Unfortunately, closed-form expressions for both quantities can

only be obtained for certain academic cases, such as A = 0

and σ2
ij = 1 ∀i, j [6]. For more realistic models, performance

analyses have been often carried out in the asymptotic regime

[7], i.e., for N,K → ∞ while

0 < lim inf
N

K
≤ lim sup

N

K
< ∞ . (5)

Although this approach does not lead to closed-form expres-

sions in general, it provides implicit equations whose solutions

depend only on the statistical properties of the random matrix

model at hand, e.g. [8], [9]. The evaluation of these equations

is in general much less complex than Monte Carlo simulations

and, most importantly, the asymptotic results provide tight

approximations for even small values of N and K.

A. Deterministic Equivalents of the Mutual Information

In a recent work [10, Theorem 1], building upon the results

of [8], we have derived an approximation Ī(ρ) of the ergodic

mutual information I(ρ) for the case of Rayleigh fading

channels with arbitrary correlated noise, i.e., A = 0, in the

sense that

I(ρ)− Ī(ρ) −−−−−−→
N,K→∞

0 . (6)

A similar result for Rician fading channels with white noise,

i.e., A 6= 0 and Z diagonal, has been established earlier in

[8, Theorem 4.1]. Due to space reasons, we spare the rather

lengthy expression of Ī(ρ) which can be found in [10].

Application 1: Optimal Channel Training: An important

aspect of the performance analysis of SCNs is the question of

how many resources should be used for channel estimation. A

well-known model to study this problem, is the block fading

channel model of [11], [12], where the channel H remains

constant in time for a coherence block of T channel uses

and then changes randomly from one block to the other. The

matrix A is assumed to be known and deterministic. This is a

reasonable assumption as the LOS components vary on a much

slower time-scale than the fast fading channel fluctuations. A

priori, neither the UTs, nor the BSs or the CS are aware of

the realization of H. The UTs broadcast orthogonal training

sequences of length τ ≥ K to the BSs. Based on these training

sequences, the CS computes the minimum-mean-square-error

(MMSE) estimate of all channel coefficients. This leads to the

estimated channel matrix Ĥ and the independent estimation
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error H̃, such that H = Ĥ+ H̃. While increasing τ improves

the channel estimate it also reduces the available time for

data transmission. It is therefore natural to ask, what is the

optimal training length τ∗? Similar to [11], [12], we tackle

this problem by considering a lower bound R(τ) on the mutual

information, given by

R(τ) =
1

N
E

[

log

∣

∣

∣

∣

IN + ρZ̃−1

(

Ĥ+A
)(

Ĥ+A
)H

∣

∣

∣

∣

]

(7)

where Z̃ = Z + ρE
[

H̃H̃H

]

. As this expression does not

account for the rate loss due to channel training, it is our goal

to maximize the net ergodic achievable rate

Rnet(τ) =
(

1− τ

T

)

R(τ) . (8)

This optimization problem is intractable for finite dimension

of the channel matrix H. However, leveraging the results pre-

sented above, one can approximate R(τ) by its deterministic

equivalent R(τ) and maximize the new objective function
(

1− τ
T

)

R(τ) instead. This leads to the approximative solu-

tion τ̄∗. We have recently shown in [13], that this approach is

asymptotically optimal for Rayleigh fading channels, i.e., τ̄∗

satisfies τ∗ − τ̄∗ −−−−−−→
N,K→∞

0.

B. Fluctuations of the Mutual Information

The fluctuations of the random variable NI(ρ) have been

also analyzed in several recent works [14]. One is generally

interested in results of the form

N

Θ

(

I(ρ)− Ī(ρ)
) D−−−−−−→

N,K→∞

N (0, 1) (9)

where D stands for convergence in distribution. Two recent

publications [10], [15], provide explicit expressions for the

asymptotic variance Θ2 for the case of Rayleigh fading

channels with colored noise, i.e., A = 0, [10, Claim 1] and

Rician fading with white noise, i.e., A 6= 0 and Z diagonal,

[15, Claim 1].

Application 2: Approximation of the Outage Probability:

The results of the previous section have a direct application in

the computation of the outage probability. Using the explicit

expression of the asymptotic variance Θ2, one can approxi-

mate the outage probability Pout(r) by

Pout(r) ≈ 1−Q

(

r −NĪ(ρ)

Θ

)

(10)

where Q(x) is the Q-function.

IV. NUMERICAL RESULTS

In order to visualize the theoretical results of the previous

sections, we consider a simple cellular system consisting of

B = 3 BSs with M = 2 antennas and K = {3, 6, 9} UTs,

as shown in Fig. 2. The locations of the UTs are randomly

chosen according to a uniform distribution. The inverse path

loss factors σ2
ij are given as σ2

ij = d−3.6
ij , where dij is the

distance between between UT j and the ith receive antenna,

normalized to the maximum distance within a cell. The UTs

are assumed to have a Rician fading channel with parameters

Fig. 2. Cellular example with B = 3 BSs and K = 3 UTs.

κij = κ to their closest BS while the channels to all other

BSs are purely Rayleigh faded, i.e., κij = 0. The phases φij

of the corresponding LOS components are drawn randomly

from the interval [0, 2π). The cell edge signal-to-noise-ratio

is defined as SNR = ρ. We consider one random snapshot of

user distributions, which defines the matrix A and the values

of σ2
ij , and average over many different realizations of H.

Numerical Results for Application 1: We assume SNR =
0 dB, channel coherence time T = 100 and backhaul capacity

C = 1 bits per channel use. There is no inter-cell interference,

i.e., ∆ = 0. In Fig. 3, we depict the optimal training length

τ∗ as a function of the Rician parameter κ. We see a very

good fit between the values of τ∗ obtained by an exhaustive

search based on extensive simulations and the approximative

solution τ̄∗. With growing κ, the channel becomes more and

more deterministic and less channel training is necessary.

Numerical Results for Application 2: We assume a noise

covariance matrix Z = IN . Before presenting the results

for the outage probability approximation, we show in Fig. 4

the ergodic mutual information I(ρ) versus SNR for three

different numbers of UTs K = {3, 6, 9}. The markers are

obtained through simulations while the solid lines correspond

to the approximation by the deterministic equivalent Ī(ρ).
We observe an almost perfect overlap between both results

over the full range of SNR for all values of K. Fig. 5

shows the performance of the approximation of the outage

probability Pout(R) as given by (10) for a target rate of

r = K × 3 [nats/s/Hz]. The solid lines as calculated with

the help of [15, Claim 1] are compared to simulation results,

represented by dashed lines. Obviously the approximation gets

better with a growing number of UTs but is still very accurate

for a small system with three UTs and BSs.

V. CONCLUSION

In this paper, we have provided several applications of

large random matrix theory to the performance analysis of

cooperative small cell networks. We have considered a very

general channel model for SCNs which accounts for several

realistic aspects such as LOS components, path loss, correlated

interference, quantization noise and imperfect CSI. For this

general model, we have shown that RMT can provide tight and
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analytically tractable approximations of information-theoretic

quantities such as the mutual information and the outage prob-

ability. Moreover, we have demonstrated that RMT can be used

to solve related optimization problems which were otherwise

either intractable or needed to rely on massive Monte Carlo

simulations. In summary, RMT provides a powerful tool for

the study of information-theoretic performance limits of SCNs

and allows, thus, to assess possible gains of this novel network

architecture in contrast to other competing solutions.
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