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Abstract

In this paper, the Generalized Likelihood Ratio Test - Linear Quadratic (GLRT-LQ) has been extended

to the Multiple-Input Multiple-Output (MIMO) case where all transmit-receive subarrays are considered

jointly as a system such that only one detection threshold is used. The GLRT-LQ detector has been

derived based on the Spherically Invariant Random Vector (SIRV) model and is Constant False Alarm

Rate (CFAR) with respect to the clutter power fluctuations (also known as the texture). The new MIMO

detector is then shown to be texture-CFAR as well. The theoretical performance of this new detector

is first analytically derived and then validated using Monte-Carlo simulations. Its detection performance

is then compared to that of the well-known Optimum Gaussian Detector (OGD) under Gaussian and

non-Gaussian clutter. Next, the adaptive version of the detector is investigated. The covariance matrix

is estimated using the Fixed Point (FP) algorithm which enables the detector to remain texture- and

matrix-CFAR. The effects of the estimation of the covariance matrix on the detection performance are

also investigated.
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I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) is a technique used in communications to increase data

throughput and link range without additional bandwidth or transmit power. This is achieved by higher

spectral efficiency and link reliability or diversity. Recently, this concept has been used for radar ap-

plications [1]. In the context of radar, a (statistical) MIMO radar is one where both the transmit and

receive elements are sufficiently separated so as to provide spatial diversity. This reduces the fluctuations

of the target Radar Cross Section (RCS) due to the different target aspects seen by each pair of transmit-

receive elements [2]. It can also be used to improve the probability of detection [3] and resolutions [4].

Several applications including target classification and high-resolution imaging can be enhanced by a

MIMO radar. On top of that, each transmit element sends a different (orthogonal) waveform which can

be separated at the receive end. This provides waveform diversity which in turn increases the separation

between clutter and target returns [5]. According to [6], it also improves the identifiability of target

parameters, enables the direct application of adaptive arrays for target detection and enhances flexibility

for transmit beampattern design.

MIMO procedures for radar have been widely studied for the case of additive Gaussian noise. In [3],

[7], [8], the authors consider the detection performance for widely separated antennas while in [6], [9] the

authors consider colocated antennas. The combined case of having widely separated antenna subarrays

which contain colocated antenna elements is considered in [10]. However, these detectors may exhibit

poor performance when the additive noise is no longer Gaussian.

In the case of MIMO radar, it is even more important to consider non-Gaussian models. Firstly, as

mentioned earlier, one advantage of a MIMO imaging radar is improved resolution. Usually, in each

resolution cell, there is a large number of scatterers. According to the Central Limit Theorem (CLT), the

clutter power in each cell is almost constant and the clutter is considered to follow a Gaussian distribution.

However, as the resolution cell becomes smaller, there are fewer scatterers in it and the CLT will no

longer apply. Non-Gaussian models which take into account the variation in clutter power therefore have

to be used. Moreover, as the resolution cell becomes smaller, it is more likely for the illuminated area

to be non-homogeneous.

Secondly, for configurations with widely separated transmit-receive sub-systems, the target returns

received by each receive sub-system are different due to different aspect angles, thus reducing target RCS

fluctuations. Similarly, the clutter returns vary from sub-system to sub-system. Hence, it is important to

use non-Gaussian models which better reflect the clutter power fluctuations. Indeed, experimental radar
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clutter measurements [11], [12], [13], [14] have been found to fit non-Gaussian statistical models such

as the well-known Spherically Invariant Random Vector (SIRV) model [15], [16], [17] which has been

widely studied, particularly in terms of detection [18], [19], [20].

In this paper we consider MIMO radar detection under non-Gaussian heterogeneous and impulsive

clutter. The non-Gaussian statistical model we use is the SIRV model. This model writes clutter returns as

the product of a Gaussian random process (speckle) and the square-root of a non-negative random variable

τ (texture). Speckle models temporal fluctuations of clutter while texture models spatial fluctuations of

clutter power. The SIRV can model different non-Gaussian clutter depending on the chosen texture, with

Gaussian clutter as the special case where the texture is a constant. It also has a Gaussian kernel which

means that certain classical results can still be applied. For example, the Maximum Likelihood (ML)

estimates of target parameters are given by the maximization of the traditional matched filter.

In radar applications, the clutter covariance matrix is usually unknown and has to be estimated from

target-free secondary data. Under non-Gaussian clutter, the classical Sample Covariance Matrix (SCM)

is no longer the ML estimate. Hence, we consider here the Fixed Point Estimate (FPE) which was first

introduced in [21], [22] and then fully analyzed in [23], [24]. FPE is the exact ML estimate when the

texture is assumed to be deterministic and unknown. On the other hand, when τ is a positive random

variable, FPE is an approximate ML estimate.

The main contribution of this paper is the derivation of a MIMO non-Gaussian detector for Constant

False Alarm Rate (CFAR) detection and estimation. Previously, several Generalized Likelihood Ratio

Tests (GLRTs) like the GLRT-Linear Quadratic (GLRT-LQ) detector in [18], [19] and asymptotic Bayesian

Optimum Radar Detector (aBORD) in [20] have been derived based on the SIRV model and have been

shown to be CFAR with respect to the texture (texture-CFAR). We generalized the GLRT-LQ detector

to the MIMO case where all subarrays are considered jointly as a system such that only one detection

threshold is used to regulate the false alarm rate. The resulting MIMO detector is also texture-CFAR. The

Gaussian case is a special case of SIRV where the Probability Density Function of the texture is given

by p(τ) = σ2δ(τ − 1) and σ2 is the clutter power. Hence, this new detector is expected to give similar

results as the well-known Optimum Gaussian Detector (OGD) under Gaussian clutter and superior results

under non-Gaussian clutter.

The adaptive version of this new MIMO detector is then considered. Using the FPE to estimate the

covariance matrix, this detector is shown to be texture-CFAR. Moreover, it is matrix-CFAR as it does

not depend on the unknown covariance matrix. The detection performance depends on an additional

parameter, Lr: the number of secondary data containing only clutter returns which are used to obtain the
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FPE.

This paper is organized as follows. Firstly, we consider a general signal model for MIMO radar

(Section II). Instead of considering a single element at each location, we assume that there is a subarray

containing one or more elements. Section III-A shows the derivation of a MIMO non-Gaussian detector. In

Section III-B, the theoretical performance of this new detector is derived and verified using Monte-Carlo

simulations. The detection performance is then analyzed through Monte-Carlo simulations and compared

to that of the OGD (extended to the MIMO case in [7], [25]) under both Gaussian and non-Gaussian clutter

(Section III-C). Next, in Section IV-A, the adaptive version of this new detector is considered, using the

FPE as the covariance matrix estimate. The effects of the covariance matrix estimation on the detection

performance are investigated using Monte-Carlo simulations in Section IV-B. Finally, conclusions are

presented in Section V.

II. SIGNAL MODEL

In this article vectors and matrices are denoted by lower-case and upper-case bold, respectively. The

superscript ”†” denotes the Hermitian operator.

In this section, we consider a target located at (x, y). Let there be Ñ transmit subarrays and M̃ receive

subarrays. The n-th transmit and m-th receive subarray contain Nn and Mm elements respectively, for

n = 1, . . . , Ñ and m = 1, . . . , M̃ . The configuration can be seen in Fig. 1. The RCS of the target seen by

each receive-transmit pair is assumed to be different but deterministic. The elements within each subarray

are assumed to be closely-spaced such that the RCS is the same.

Fig. 1. The configuration where Ñ = M̃ = 3.

Let v(θt,n) and a(θr,m) be the steering vectors and θt,n and θr,m the angular location for the target

for the n-th transmit and m-th receive subarray respectively. Assuming that orthogonal waveforms are
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transmitted, the received signal after matched filtering can be expressed as:

ym,n(τm,n) = B(m,n)a(θr,m)⊗ v(θt,n) + zm,n,

= B(m,n)pm,n + zm,n, (1)

where τm,n is the corresponding time-delay for m-n receive-transmit pair and B is the M̃xÑ matrix

containing the RCS of the target seen by each receive-transmit pair. The vector pm,n is the MmNnx1

bistatic angular steering vector which is equal to a(θr,m) ⊗ v(θt,n) and ⊗ stands for the Kronecker

product.

The vector zm,n is a MmNnx1 vector containing the clutter returns and it is modeled by SIRV which

is essentially a non-homogeneous and non-Gaussian process with random power. The variation in the

power arises from the spatial variation in the backscattering of the clutter. According to [16], a SIRV is

the product of the square root of a positive random variable τ (texture) and a L-dimensional independent

complex circular Gaussian vector x:

z =
√
τx.

x has zero mean and covariance matrix M, denoted by CN (0,M). M = E[xx†] is assumed to be

normalized such that tr(M) = L for identifiability considerations [21]. E[·] denotes the expectation and

tr(·) the trace. The PDF of a SIRV is then given by:

pz(z) =
∫ ∞

0
gz(z, τ)p(τ)dτ,

where p(τ) is the texture PDF and

gz(z, τ) =
1

(πτ)L|M|
exp

(
−z†M−1z

τ

)
.

For each radar parameter to be determined, a steering vector is required. The resulting steering vector

is simply the Kronecker product of all the steering vectors. In the bistatic case, as the transmit and receive

angles are no longer the same, a separate steering vector is required for transmit (v(θt,n)) and receive

(a(θr,m)).

For simplicity of notation, ym,n(τm,n) will be written simply as ym,n.

III. MIMO NON-GAUSSIAN DETECTOR

A. Derivation

Let us now consider the detection problem as the following binary hypothesis test: H0 : ym,n = zm,n

H1 : ym,n = B(m,n)pm,n + zm,n
n = 1, . . . , Ñ ,m = 1, . . . , M̃
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Under the hypothesis H0, it is assumed that the received signal contains only clutter returns and hence

there is no target. Under the hypothesis H1, it is assumed that the received signal contains a deterministic

signal on top of the clutter returns and hence a target is present at the location (x,y).

The dimension of each received signal, MmNn, is assumed to be greater than one since the steering

vector does not give any information if its length is one.

a) M̃ = 1 and Ñ = 1

We begin with the case where M̃ = 1 and Ñ = 1. The dimension of the received signal is L = M1N1.

As there is only one received signal and steering vector, let them be denoted simply by y = y1,1 and

p = p1,1. The classical likelihood ratio test is given by:

Λ(y) =
p(y|H1)
p(y|H0)

H1

≷
H0

η.

If we assume that the covariance matrix M is known and according to [20], p(y|H1) and p(y|H0) are

replaced by their Bayesian estimates and asymptotically, we obtain:

Λ1(y)L =

 1

1− |p†M−1y|2
(p†M−1p)(y†M−1y)

L H1

≷
H0

η, (2)

which is equivalent to:

1− 1
Λ1(y)

=
|p†M−1y|2

(p†M−1p)(y†M−1y)

H1

≷
H0

L
√
η − 1
L
√
η

, (3)

and leads to the GLRT-LQ test. The same test is derived in [18] through an asymptotic development of

the test statistic in the GLRT and in [19] it is based on the ML estimation of the clutter power. In [18],

the probability of false alarm of the test is given by Pfa = ( L
√
η)−L+1. This expression gives us a Pfa

of one when L = 1. This implies that the test breaks down as more than one element is required to

estimate the clutter power. Note that no explicit form on the steering vector is assumed in the derivation

of the GLRT-LQ. Thus, these detectors can also be applied to our case where p = a(θr,1)⊗ v(θt,1).

b) M̃ ≥ 1 and Ñ ≥ 1

We consider now the general case where M̃ ≥ 1 and Ñ ≥ 1. As the transmit-receive subarrays are

widely separated, the clutter returns can be considered to be independent, hence zm,n are independent
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and the likelihood ratio test becomes:

Λ(Y) =
p(Y|H1)
p(Y|H0)

,

=

∏
m,n

p(ym,n|H1)∏
m,n

p(ym,n|H0)
,

=
∏
m,n

p(ym,n|H1)
p(ym,n|H0)

H1

≷
H0

η,

where Y is the matrix containing all the received signals Y = [y1,1, · · · ,yM̃,Ñ ].

Using Eqn. (2), the GLRT-LQ, extended to the MIMO case, is given by:

Λ(Y) =
∏
m,n

 1

1− |p†m,nM−1
m,nym,n|2

(p†m,nM
−1
m,npm,n)(y†m,nM

−1
m,nym,n)

MmNn
H1

≷
H0

η, (4)

where Mm,n is the covariance matrix for the m-n receive-transmit pair.

From Eqn. (4), we see that when the number of elements in each subarray, MmNn, is not a constant,

the expression for MIMO GLRT-LQ is very complicated and it is difficult for its detection performance

to be analyzed theoretically. Monte-Carlo simulations have to be run in such cases to obtain the detection

performance. Instead, in the next section, we will consider the particular case where MmNn = L is a

constant.

c) M̃ ≥ 1, Ñ ≥ 1 and MmNn = L

If we consider now that the number of elements in each transmit and receive subarray is the same, i.e. Mm = Mm′ m 6= m′

Nn = Nn′ n 6= n′,

then the total number of elements in each subarray is the same:

MmNn = L ∀ m = 1, . . . , M̃ , n = 1, . . . , Ñ .

Moreover, as the returns from each transmit-receive pair are independent, having Ñ transmit subarrays

and M̃ receive subarrays is equivalent to having one transmit subarray and K = ÑM̃ receive subarrays.

Eqn. (4) can thus be simplified to be:
K∏
i=1

Λi(yi)
H1

≷
H0

L
√
η = λ, (5)
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where

Λi(yi) =

 1

1− |p†iM
−1
i yi|2

(p†iM
−1
i pi)(y

†
iM
−1
i yi)

 , (6)

and Mi is the covariance matrix of yi.

B. Theoretical Performance

The probability of false alarm Pfa is the probability of choosing H1 when the target is absent (H0):

Pfa = P

(
K∏
i=1

Λi(yi) > λ|H0

)
.

Theorem III.1

Given a MIMO radar system containing K sub-systems and L elements (L > 1) in each sub-system and

using the detector given in Eqn. (5), the probability of false alarm is given by:

Pfa = λ−L+1
K−1∑
k=0

(L− 1)k

k!
(lnλ)k. (7)

Remark III.1

• Pfa depends only on K and L and not on the clutter parameters, hence showing the texture-CFAR

property of the test given by Eqn. (5). Moreover, it is clear that the detector does not depend on the

covariance matrices which can be different for each transmit-receive subarray.

• The closed-form expression is useful for the analysis of detection performance. Using Eqn. (7), the

threshold to be used in the detection test is theoretically set to ensure a given Pfa.

Proof:

Under H0, the received signal contains only clutter returns:

yi = zi =
√
τixi,

where xi ∼ CN (0,Mi) and ∼ means to be distributed as. As τi is cancelled out in Eqn. (6), Λi(yi) =

Λi(xi).

According to [26], the GLRT-LQ detector can be expressed in terms of an F -statistics:

|p†iM
−1
i yi|2

(p†iM
−1
i pi)(y

†
iM
−1
i yi)

=
t

t+ 1
,

where (L− 1)t is a centralized F-distributed random variable with parameters v1 = 2 and v2 = 2L− 2.

The PDF of t′ = (L− 1)t can be expressed as:

f(t′) =
Γ(v1+v22 )

Γ(v12 )Γ(v22 )
1
t′

(
v1t
′

v1t′ + v2

) v1
2
(

1− v1t
′

v1t′ + v2

) v2
2

, (8)
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where Γ is the Gamma function as defined in [27]. As v1 and v2 are both positive integers, Eqn. (8) can

be simplied to:

f(t′) =
(

L− 1
t′ + L− 1

)L
.

Each Λi(xi) can also be expressed in terms of t′:

Λi(xi) =
1

1− t
t+1

= 1 + t = 1 +
t′

L− 1
.

Let ui = Λi(xi) such that t′ = (ui − 1)(L− 1),

f(ui) = f(t′) ·
∣∣∣∣ dt′dui

∣∣∣∣
= (L− 1)u−Li .

To find the PDF for u =
K∏
i=1

ui, we consider the bijective function from (u1, . . . , uK) to (u, v1, . . . , vK−1)

where:

u =
K∏
i=1

ui ∈ [1,+∞),

v1 = u1 ∈ [1, u],

vi = ui ∈ [1, vi−1] i = 2, . . . ,K − 1.

To obtain the PDF of u, we perform a change of variable:

f1(u1, . . . , uK) =
K∏
i

f(ui) = (L− 1)Ku−L,

f2(u, v1, . . . , vK−1) = 11u≥v1≥···≥uK−1f1(u1, . . . , uK)|J |−1 = (L− 1)Ku−L
1∏K−1

i=1 vi
,

f3(u, v1, . . . , vK−2) = 11u≥v1≥···≥uK−2

∫ vK−2

1
f2(u, v1, . . . , vK−1)dvK−1 = (L− 1)Ku−L

ln vK−2∏K−2
i=1 vi

,

f4(u, v1, . . . , vK−3) = 11u≥v1≥···≥uK−3

∫ vK−3

1
f3(u, v1, . . . , vK−2)dvK−2 = (L− 1)Ku−L

1
2

(ln vK−3)2∏K−3
i=1 vi

,

...

fK(u) =
∫ u

1
fK−1(u, v1)dv1 = (L− 1)Ku−L

1
(K − 1)!

(lnu)K−1.

To obtain the Pfa, we integrate fK(u) from the threshold λ to infinity:

Pfa =
∫ ∞
λ

fK(u)du,

= λ−L+1
K−1∑
k=0

(L− 1)k

k!
(lnλ)k.
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To verify Theorem III.1, Monte-Carlo simulations (Nr = 106) are carried out. The parameters used

can be seen in Table I.

M̃ Ñ Mm Nn K = M̃Ñ L = MmNn

3 2 4 3 6 12

TABLE I

PARAMETERS USED FOR MONTE-CARLO SIMULATIONS.

Due to Remark III.1, the covariance matrix Mi of each yi, without loss of generalities, is chosen

identically and equal to M. M is spatially colored and its elements are given by:

M(p, q) = ρ|p−q|ej
π

2
(p−q).

ρ is the correlation coefficient and it is chosen to be 0.2 such that there is a slight correlation between

different elements of the subarray.

Experimental radar clutter measurements have shown that the texture can be distributed according to

a Gamma distribution [12], [13] or a Weibull one [28], [29]. When the texture is Gamma-distributed, the

resulting clutter corresponds to one that is K-distributed. This has been widely studied in the litterature,

see e.g. [19], [30], [31].

The PDF and the statistical mean of the Gamma distribution with parameters a and b are given by:

p(τ) =
1

baΓ(a)
τa−1e−τ/b, Γ(z) =

∫ ∞
0

tz−1e−tdt, (9)

E[τ ] = ab. (10)

The PDF and the statistical mean of the Weibull distribution on non-negative reals with parameters a

and b are given by:

p(τ) =
b

a

(τ
a

)b−1
e−( τ

a
)b , (11)

E[τ ] = aΓ
(

1 +
1
b

)
. (12)

The clutter power for each element, σ2, is given by:

σ2 = E[τ ].
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In order to keep σ2 constant, the two parameters of the distributions are set such that the statistical mean

of the texture, given in Eqn. (10) and (12), remains the same. In this simulation, σ2 is chosen to be one.

The parameters used to simulate the texture are shown in Table II. The parameters are chosen such that

for each texture, the first case is an instance of impulsive clutter while the second one is more similar

to the Gaussian case.

For comparison, the Gaussian case where p(τ) = σ2δ(τ −1), is also simulated. In this case, σ2 is also

equal to one.

Texture distribution a b

1 Gamma 0.5 σ2

a
= 2

2 Gamma 2 σ2

a
= 0.5

1 Weibull σ2

Γ(1+ 1
b

)
= 0.7418 0.658

2 Weibull σ2

Γ(1+ 1
b

)
= 1.1233 1.763

TABLE II

TEXTURE PARAMETERS USED FOR MONTE-CARLO SIMULATIONS.

On Fig. 2, we have plotted the ”Pfa-threshold” curves under different hypotheses of the clutter dis-

tribution: Gaussian, K-distributed and Weibull-distributed texture. We see that there is perfect agreement

between the theory given by Theorem III.1 and the simulation. The texture-CFAR property can also be

seen clearly since the curves do not depend on the distribution of the texture.

C. Simulation Results

The probability of detection Pd is the probability of correctly choosing H1 when the target is present:

Pd = P

(
K∏
i=1

Λi(yi) > λ|H1

)
.

Under H1, the received signal contains both a deterministic signal and clutter returns:

ym,n = B(m,n)pm,n + zm,n.

For a given Signal-to-Clutter Ratio (SCR), denoted by SCRm,n the amplitude of B(m,n) is given by:

|B(m,n)| =
√

SCRm,n · σ2.
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Fig. 2. Pfa against detection threshold λ for theoretical calculations and Monte-Carlo simulations under Gaussian

clutter and Gamma and Weibull texture.

If |B(m,n)| is considered to be different for each subarray, a multi-dimensional graph would be

necessary to represent the detection performance and it would be very difficult to interpret the results.

Hence, in this paper, we consider that |B(m,n)| is the same for all m and n.

For comparison, the OGD detector which is optimum under Gaussian clutter is considered. According

to [7] and [25], the OGD detector extended to MIMO case is given by:

Λ(Y) =
K∑
i=1

|p†iM
−1
i yi|2

p†iM
−1
i pi

, (13)

where Y = [y1, · · · ,yK ] and Mi which is the covariance matrix of yi, is assumed to be known. Under

Gaussian clutter, this detector has a Chi-square distribution with 2K degrees of freedom, denoted by

χ2
2K .

The same parameters as before are used (see Table I and II). The Pfa is set to be 0.001 and Nr = 104.

The detection performance for MIMO GLRT-LQ and MIMO OGD under K-distributed clutter is shown

in Fig. 3. The SCR values in the y-axis are for only one single subarray. The clutter is more impulsive

for smaller values of a. We see that when a = 0.5, MIMO GLRT-LQ performs much better than MIMO

OGD. This is because for MIMO OGD, the big variation of clutter power results in a high detection

threshold to maintain the same Pfa. The increase in threshold results in a drop in detection performance.
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On the other hand, there is a normalizing term y†M−1y in MIMO GLRT-LQ to take into account

this variation. When the clutter is less impulsive, it becomes more similar to Gaussian clutter and the

performance of both detectors tends to be similar.

The performance results for clutter with Weibull-distributed texture can be seen in Fig. 4. For this

case, the clutter is more impulsive for smaller values of b. As expected, MIMO GLRT-LQ performs

much better than MIMO OGD when the clutter is impulsive and almost the same when the clutter is less

impulsive.

In Fig. 5, we see that the new detector works slightly worse than MIMO OGD under Gaussian clutter.

This is expected since MIMO OGD is the optimal detector under Gaussian clutter. However, MIMO

GLRT-LQ is much more robust as it maintains good detection performance for different types of clutter.

IV. ADAPTIVE MIMO NON-GAUSSIAN DETECTOR

A. Derivation

In the previous sections, we assumed that the covariance matrix was known. However, it is usually

unknown in reality. Hence we consider the adaptive version of the detector; i.e. the covariance matrix

Mm,n is replaced by its estimate M̂m,n:

Λ̂(Y) =
∏
m,n

 1

1− |p†m,nM̂−1
m,nym,n|2

(p†m,nM̂
−1
m,npm,n)(y†m,nM̂

−1
m,nym,n)


MmNn

H1

≷
H0

η. (14)

Under Gaussian clutter, the classical SCM is the ML estimate, given by:

M̂m,n =
1
Lr

Lr∑
l=1

xm,n(l)x†m,n(l), (15)

where xm,n(l) ∼ CN (0,Mm,n) are the secondary data which are independent and identically distributed.

Lr is the number of secondary data used to estimate the SCM. SCM follows the complex Wishart

distribution, denoted as CW(Lr, L; Mm,n).

However, under non-Gaussian clutter, ym,n(l) = √τm,nxm,n(l):

M̂m,n =
1
Lr

Lr∑
l=1

ym,n(l)y†m,n(l),

=
1
Lr

Lr∑
l=1

τm,nxm,n(l)x†m,n(l),

we see that the SCM is no longer the ML estimate. Instead, we consider the FPE [21], [22], [23]. In [23],

it has been shown that the FPE is unique up to a scalar factor. Here, due to the matrix normalization,
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(a) a = 0.5

(b) a = 2

Fig. 3. Pd against SCR for Monte-Carlo simulations where the texture has a Gamma distribution with different

parameters, with Pfa = 0.001.
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(a) b = 0.658

(b) a = 1.763

Fig. 4. Pd against SCR for Monte-Carlo simulations where the texture has a Weibull distribution with different

parameters, with Pfa = 0.001.
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Fig. 5. Pd against SNR for Monte-Carlo simulations where the clutter is Gaussian, with Pfa = 0.001.

the resulting FPE is unique and it is defined as the unique solution of the equation:

M̂m,n =
L

Lr

Lr∑
l=1

ym,n(l)y†m,n(l)

y†m,n(l)M̂−1
m,nym,n(l)

. (16)

Due to the normalizing term in the denominator, the FPE does not depend on the texture of the clutter.

Moreover, the FPE is the ML estimate when the texture is deterministic but unknown [23]. In the case

where the texture is a random variable, the FPE is the approximate ML estimate [21], [22].

The FPE is computed using the following iterative algorithm:

M̂m,n(k + 1) =
L

Lr

Lr∑
l=1

ym,n(l)y†m,n(l)

y†m,n(l)M̂−1
m,n(k)ym,n(l)

. (17)

The solution converges towards the FPE irregardless of the choice of the initial matrix M̂m,n(0) as

shown in [23]. One obvious choice is I which will give the normalized SCM as the first estimate.

Consequently, the detector is also matrix-CFAR when the FPE is used [32].

More importantly, it has been shown in [24] that the asymptotic distribution of M̂FP is the same as

that of the SCM with L
L+1Lr secondary data under Gaussian clutter.
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d) M̃ = 1 and Ñ = 1 (Adaptive

As before, we begin with the case where M̃ = 1 and Ñ = 1. The dimension of the received signal is

L = M1N1. As there is only one received signal and steering vector, let them be denoted simply by

y = y1,1 and p = p1,1. The adaptive detector is given by:

Λ̂1(y) =

 1

1− |p†M̂−1y|2
(p†M̂−1p)(y†M̂−1y)

 ≷H1
H0

L
√
η = λ.

According to [26], under H0, considering Gaussian clutter and using the SCM as the estimated

covariance matrix, Λ̂1(y) can be expressed with a random variable F̂ which in turn depends on another

random variable B:

Λ̂1(y) = 1 + F̂ .

The distributions of the two variables are as follows: F̂ |B ∼ β1
1,Lr−L+1 and B ∼ β1

Lr−L+2,L−1. The

PDF of β1
a,b and β2

a,b are defined in [27] as:

β1
a,b(x) =

Γ(a+ b)
Γ(a)Γ(b)

xa−1(1− x)b−111[0,1](x), (18)

β2
a,b(x) =

Γ(a+ b)
Γ(a)Γ(b)

xa−1

(1 + x)a+b
, x > 0. (19)

Here, we consider instead non-Gaussian clutter modeled as a SIRV. Using the FPE, Λ̂1(y) can still be

expressed with a conditional random variable F̂ |B but with Lr replaced by L
L+1Lr. Hence the distribution

becomes F̂ |B ∼ β1
1,a−1 with B ∼ β1

a,b−a−1 where a = L
L+1Lr − L+ 2 and b = L

L+1Lr + 2.

Using Eqn. (18) and (19), we obtain the PDF of F̂ :

f(F̂ ) =
∫ 1

0

Γ(a)
Γ(a− 1)

1−B
(1 + F̂ (1−B))a

Γ(b− 1)
Γ(a)Γ(b− a− 1)

Ba−1(1−B)b−a−2dB,

=
Γ(b− 1)

Γ(a− 1)Γ(b− a− 1)
1

(1 + F̂ )a

∫ 1

0

Ba−1(1−B)b−a−1(
1− F̂

1+F̂
B
)a dB,

=
Γ(b− 1)

Γ(a− 1)Γ(b− a− 1)
Γ(a)Γ(b− a)

Γ(b)
1

(1 + F̂ )a
2F1

(
a, a, b,

F̂

1 + F̂

)
,

=
(a− 1)(b− a− 1)

(b− 1)
1

(1 + F̂ )a
2F1

(
a, a, b,

F̂

1 + F̂

)
,

where 2F1(a, b, c, x) is the hypergeometric function as defined in [27]:

2F1(a, b, c, x) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tx)a
dt. (20)
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Letting Λ̂1(y) = u1 = 1 + F̂ , the PDF becomes:

f(u1) =
(a− 1)(b− a− 1)

(b− 1)
u−a1 2F1

(
a, a, b, 1− 1

u1

)
. (21)

To obtain the Pfa, we integrate the PDF from λ to ∞:

Pfa =
∫ ∞
λ

f(u1)du1.

Through a change of variable x = 1− 1
u1

and the Euler Transformation for hypergeometric functions

(Eqn. (15.3.4) in [27]), we get:

Pfa =
∫ 1

1−1/λ

(a− 1)(b− a− 1)
(b− 1)

(1− x)a2F1(a, a, b, x)
1

(1− x)2
dx,

=
∫ 1

1−1/λ

(a− 1)(b− a− 1)
(b− 1) 2F1

(
a, b− a, b, x

x− 1

)
1

(1− x)2
dx.

Consider the hypergeometric function F = 2F1(a− 1, b− a− 1, b− 1, x
x−1), the derivative of F is then:

dF

dx
=

(a− 1)(b− a− 1)
(b− 1) 2F1

(
a, b− a, b, x

x− 1

)
−1

(1− x)2
.

Using this derivative, we can obtain the final expression for Pfa:

Pfa =
∫ 1

1−1/λ
−dF
dx

dx

= 2F1(a− 1, b− a− 1, b− 1, 1− λ). (22)

From Eqns. (21) and (22), we see that the distribution of the detector and the Pfa, respectively, depends

only on Lr and L. This means that the adaptive detector is also CFAR.

As Lr →∞, a− 1 ≈ b− 1. Using the identity Eqn. (15.1.8) in [27], 2F1(a, b, b, z) = 2F1(b, a, b, z) =

(1− z)−a, we see that, asymptotically, Pfa tends to

Pfa → λ−(b−a−1) = λ−L+1,

which is the same expression as that for the case where the covariance matrix is known and K = 1.

e) M̃ ≥ 1, Ñ ≥ 1 and MmNn = L (Adaptive)

As before, we consider the product of all the individual detection tests for each subsystem u =
K∏
i=1

ui.

The joint density function is given by:

f(u1, . . . , uK) =
(

(a− 1)(b− a− 1)
(b− 1)

)K K∏
i=1

u−ai 2F1

(
a, a, b, 1− 1

ui

)
.
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As before, we consider the bijective function from (u1, . . . , uK) to (u, v1, . . . , vK−1):

f(u, v1, . . . , vK−1) =(
(a− 1)(b− a− 1)

(b− 1)

)K
u−a

K−1∏
i=1

2F1

(
a, a, b, 1− 1

ui

)
2F1

(
a, a, b, 1−

∏K−1
j=1 uj

u

)
1∏K−1

i=1 vi
.

Due to the complexity of the above expression, the PDF of f(u) and consequently Pfa has not been

obtained analytically. Instead, Pfa is computed empirically using Monte Carlo simulations.

B. Simulation Results (Adaptive)

The same parameters as before (Table I and II) are used. To study the effects of the estimation of

the covariance matrix on the detection performance, we consider 2 cases: Lr = 2L and Lr = 20L to

compute M̂i using the Fixed Point algorithm, and compare them to the case where Mi is known.

As a rule of thumb, it is considered that Lr has to be at least 2L and this will give a loss of

approximately 3dB in detection performance [33]. On the other hand, Lr = 20L has been chosen to

approach the asymptotic case where M is known.

The FPE is obtained using Eqn. (17) with 10 iterations. However, from an operational point of view,

it suffices to compute the estimate with 4 or 5 iterations to achieve a relative error of 10−2 [23].

As expected, when Lr is large, the detection performance of the adaptive detector tends towards that

of the detector where the covariance matrices are known (Fig. 6).

f) Under Gaussian Clutter (Adaptive)

For comparison, the MIMO Adaptive Matched Filter (MIMO AMF), the adaptive version of MIMO-OGD,

has been considered. It is obtained simply by replacing the estimated covariance matrix in Eqn. (13):

Λ̂(Y) =
K∑
i=1

|p†iM̂
−1
i yi|2

p†iM̂
−1
i pi

. (23)

The SCM given in Eqn. (15) is used in the MIMO AMF since it is the ML estimate under Gaussian

clutter. In Fig. 7, we have the detection performance, under Gaussian clutter, of both the adaptive MIMO

GLRT-LQ using FPE and the MIMO AMF using SCM. Even in this case, the estimation of the covariance

matrix does not affect the performance of the adaptive MIMO GLRT-LQ much and it remains comparable

to that of the MIMO AMF.

According to [34], under Gaussian clutter, the AMF is expected to perform worse than Kelly’s Test [35]

as the signal vector yi is not used in the estimation of the covariance matrix. The Kelly’s Test, for the
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Fig. 6. Pd against SCR for Monte-Carlo simulations with the adaptive MIMO GLRT-LQ using FPEs and clutter

with Gamma-distributed texture (a = 2).

case where K = 1, is given by:

Λ̂(y1) =
|p†1M̂

−1
1 y1|2

(p†1M̂
−1
1 p1)(1 + 1

Lr
y†1M̂

−1
1 y1)

.

When Lr is large, Kelly’s Test is similar to the AMF. However, when Lr is small, the term y†1M̂
−1
1 y1

is no longer negligible and Kelly’s Test is more similar to the adaptive GLRT-LQ test. Thus, in Fig. 7,

we see that the performance of the adaptive MIMO GLRT-LQ is actually slightly better than that of the

MIMO AMF when Lr = 2L.

g) Under Non-Gaussian Clutter (Adaptive)

Fig. 8 and Fig. 9 show the detection performance for both the adaptive MIMO GLRT-LQ with FPE

and the MIMO AMF with SCM when the texture has Gamma and Weibull distribution, respectively. As

expected, the adaptive MIMO GLRT-LQ performs much better than the MIMO AMF when the clutter

is impulsive. When the clutter is less impulsive, the detection performance of both detectors is similar

but the adaptive MIMO GLRT-LQ still works better. Moreover, the MIMO AMF is more sensitive to the

estimation of the covariance matrix than the adaptive MIMO GLRT-LQ. This is not surprising since the
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Fig. 7. Pd against SCR for Monte-Carlo simulations for both the adaptive MIMO GLRT-LQ using FPEs and the

MIMO AMF using SCM with Gaussian clutter. Pd against SCR for MIMO OGD is given as reference. Pfa = 0.001.

SCM is no longer the ML estimate under non-Gaussian clutter.

V. CONCLUSIONS

The CFAR GLRT-LQ detector for detection under non-Gaussian clutter has been extended to the MIMO

case where all subarrays are considered jointly as a system such that only one detection threshold is used.

Theoretical performance for the new detector is also derived and validated using Monte Carlo simulations.

Detection performance is then analyzed through simulations. Compared to the classical OGD detector,

the new detector shows significant improvements in detection performance under non-Gaussian clutter

especially in very impulsive clutter. It has a slight loss in performance when the clutter is Gaussian. This

is expected since the MIMO OGD is the optimal detector under Gaussian clutter. However, the robustness

of the MIMO GLRT-LQ detector under non-Gaussian clutter more than compensates this slight loss under

Gaussian clutter.

Next, the adaptive version of this new detector is considered. The FPE is used to estimate the covariance

matrix as the classical SCM no longer works under non-Gaussian clutter. The theoretical performance

of the adaptive version is shown to be texture-CFAR and matrix-CFAR for the case where there is only

one subarray. On top of that, the detection performance tends to that of the case where the covariance
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(a) a = 0.5

(b) a = 2

Fig. 8. Pd against SCR for Monte-Carlo simulations for both the adaptive MIMO GLRT-LQ using FPEs and the

MIMO AMF using SCM with K-distributed clutter. Pfa = 0.001.
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(a) b = 0.658

(b) b = 1.763

Fig. 9. Pd against SCR for Monte-Carlo simulations for both the adaptive MIMO GLRT-LQ using FPEs and the

MIMO AMF using SCM and clutter with Weibull-distributed texture. Pfa = 0.001.
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matrix is known when the number of secondary data is large. Due to the complexity of equations, the

case where there are more than one subarray is studied only empirically using simulations.

The detection performance of the adaptive non-Gaussian detector using the FPE is then compared to

the MIMO AMF using the SCM through simulations. As expected, the new detector performs much

better under non-Gaussian clutter, especially when the clutter is very impulsive and it has comparable

performance under Gaussian clutter.

The main conclusion is that it is always preferable to use the adaptive GLRT-LQ with the FPE, whatever

the clutter distribution, because of the robustness of these tools with respect to the covariance matrix

and the texture. Even in the case where the clutter is Gaussian for all subarrays, the covariance matrix

and clutter power for each subarray is expected to be different. Hence it is still better to use the new

non-Gaussian detector.
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