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Asynchronous CDMA Systems with Random

Spreading—Part |: Fundamental Limits

Laura Cottatellucci, Ralf R. Mller, and Merouane Debbah

Abstract

Spectral efficiency for asynchronous code division mudtgtcess (CDMA) with random spreading is calculated
in the large system limit. We allow for arbitrary chip wavefes and frequency-flat fading. Signal to interference and
noise ratios (SINRs) for suboptimal receivers, such asitigat minimum mean square error (MMSE) detectors, are
derived. The approach is general and optionally allows dgestatistics obtained by under-sampling the received
signal.

All performance measures are given as a function of the chieform and the delay distribution of the users in
the large system limit. It turns out that synchronizing ss@r a chip level impairs performance for all chip waveforms
with bandwidth greater than the Nyquist bandwidth, e.gitpesroll-off factors. For example, with the pulse shaping
demanded in the UMTS standard, user synchronization redsmectral efficiency up to 12% at 10 dB normalized
signal-to-noise ratio. The benefits of asynchronism stem fihe finding that the excess bandwidth of chip waveforms
actually spans additional dimensions in signal spaceegifers are de-synchronized on the chip-level.

The analysis of linear MMSE detectors shows that the lirgititerference effects can be decoupled both in the
user domain and in the frequency domain such that the contepe effective interference spectral density arises.
This generalizes and refines Tse and Hanly’s concept oftefésiaterference.

In Part I, the analysis is extended to any linear detectat éldlmits a representation as multistage detector and
guidelines for the design of low complexity multistage ad#bdes with universal weights are provided.

Index Terms Asynchronous code division multiple access (CDMA), chelrmapacity, multiuser detection, ran-
dom matrix theory, effective interference, linear minimumean square error (MMSE) detector, multistage detector,
random spreading sequences, spectral efficiency, excedw/luth, pulse shaping.
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|. INTRODUCTION

The fundamental limits of synchronous code-division nplgtiaccess (CDMA) systems and the loss in-
curred by the imposition of suboptimal receiving structumave been thoroughly studied in different scenar-
ios and from different perspectives. On the one hand, sagmfiefforts have been devoted to characterize
the optimal spreading sequences and the correspondingitapél], [2], [3]. On the other hand, very in-
sightful analysis [4], [5], [6], [7], [8] resulted from motimg the spreading sequences by random sequences
[9]. In fact, as both the{ transmitted signals and the spreading factotend to infinity with a fixed ratio,
CDMA systems with random spreading show self-averaginggnttes. These enable the description of the
system in terms of few macroscopic system parameters asgtbuide a deep understanding of the system
behavior.

In the literature, the fundamental limits of CDMA systemsl &éime asymptotic analysis of linear multiuser
detectors under the assumption of random spreading sesgienaverwhelmingly focused on synchronous
CDMA systems. While the assumption of user synchronizaitowed for accurate large-system analysis,
it is not realistic for the received signal on the uplink of@lalar CDMA system, in particular if users
move and cause varying delays. Therefore, it is of thealedied practical interest to extend the analysis of
CDMA systems with random spreading to asynchronous uséiis.hblds in particular, as we will see that
from a viewpoint of system performance, asynchronous wmerbeneficial.

The analysis of asynchronous CDMA systems using a singleruatched filter as receiver was first given
in [10]. A rich field of analysis of asynchronous CDMA systewith conventional detection at the receiver
is based on Gaussian approximation methods. An exhaustemview of these approaches exceeds the
scope of this work, which is focused on the analysis of assoradus CDMA systems witloptimal joint
decoding or linear multiuser detectioifhe interested reader is referred to [11] [12] and refezsriherein
for asynchronous CDMA with single-user receivers.

The analysis and design of asynchronous CDMA systems wigatidetectors is predominantly restricted
to consider symbol-asynchronous but chip-synchronousatsgi.e. the time delays of the signals are mul-
tiples of the chip interval. The effect of chip-asynchranis eventually analyzed independently [13]. In
this stream are works that optimize the spreading sequéoceaximize the sum capacity [14] and analyze
the performance of linear multiuser detectors [13], [1&B][ [17]. In [13], [15], the linear MMSE detec-
tor for symbol-asynchronous but chip-synchronous sysisrsisown to attain the performance of the linear

MMSE detector for synchronous systems as the size of thenadigm window tends to infinity by empirical
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and analytical means, respectively. However, they verifynarically that the performance of linear MMSE
detectors is severely impaired by the use of short observatindows. Additionally, [15] provides the
large-system SINR for a symbol whose chips are completelgived in an observation window of length
equal to the symbol intervdl,. In [16], [17], the analysis of linear multistage and MMSEealtdors is ex-
tended to observation windows of arbitrary length. Furtihae, a multistage detector structure that does
not suffer from windowing effects and performs as well asrthdtistage detector for synchronous systems
is proposed.

In [13], [18], the effects of chip asynchronism are analyasduming bandlimited chip pulses. In [18],
the chip waveform is assumed to be an ideal Nyquist sinc fomgte. a sinc function with bandwidth equal
to half of the chip rate. The received signal is filtered bywadass filter (or, equivalently, a filter matched
to the chip waveform) and subsequently sampled at the tirasy @é the signal of the user of interest with
a frequency equal to the chip rateReference [18] proves that the SINR at the output of thealindMSE
detector converges in the mean-square sense to the SINReiquéaralent synchronous system. In [13] the
wider class of chip pulses which are inter-chip interfeeefree at the output of the chip matched filter is
considered. In the following we will refer to this class oflpulses as square root Nyquist chip pulses.

In [19], [20], the performance of the linear MMSE detectottwcompletely asynchronous users and
chip waveforms limited to a chip interval is analyzed. Hoem\the observation window in [19] spanned
only a single symbol interval not yielding sufficient disierdime statistics; the resulting degradation in
performance was pointed out later in [13], [15].

As discussed above, previous approaches to the analysgrflaonous CDMA with multiuser detection
were only concerned with, if and how asynchronism can begmtexd from causing performance degrada-
tion. However, asynchronism is known to be beneficial for Gb8§stems with demodulation by single-user
matched filters (e.g. [10]). It is the main contribution ofstpbaper to show that benefits from asynchronism
are not inherent to single-user matched filters but a gepevpkerty of CDMA systems and to quantify those
benefits in the large-system limit.

Compared to synchronous systems, the analysis of asyrmisd@DMA raises two additional issues:
() the way statistics are formed, trading complexity agaiperformance, and (ii) the effects of excess
bandwidth, chip-pulse shaping and the users’ delay digiah.

The optimum multiuser detector in [21] is based on the seffitstatistics obtained as output samples of

!The chip rate satisfies the condition of the sampling thedretinis case.
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a bank of filters matched to the symbol spreading wavefornadl obers. The decorrelating detector in [22]
and the linear MMSE detector in [23] benefit from the same @efiit statistics. A method to determine
the eigenvalue moments of a correlation matrix in asynabuerCDMA systems using such statistics and
square root Nyquist chip pulse waveforms is proposed in [24]

An alternative approach to generate useful statisticsghvim general are not sufficient is borrowed from
synchronous systems. The received signals are processadilbyr matched to the chip waveform and
sampled at the chip rate. This approach is optimum for singe¥ communications and chip-synchronous
multi-user communications, but causes aliasing to theassgof de-synchronized users if the chip wave-
form has non-zero excess bandwidth. Discretization schammg chip matched filters and sampling at
the Nyquist rate are studied in [25]. There, the notion ofrapimate sufficient statistics was introduced.
Furthermore, conventional CDMA systems with chip wavefetimt approximate sinc pulses were shown
to outperform systems using rectangular pulse shaping.eMe@r, it was conjectured that sinc pulses are
optimal for CDMA systems with linear MMSE multiuser detexti

In systems with bandlimited waveforms, sampling at a radéefahan the Nyquist rate leads to the same
performance as the optimal time-discretization proposd@1i], [22], [23] if the condition of the sampling
theorem is satisfied [13]. In contrast to the bank of symbdichred filters in [21], this approach has the
advantage that the time delays of the users’ signals neduokriatown before sampling.

The impact of the shape and excess bandwidth of the chip puteeived attention in [26], [27], [25].
In [26], [27] an algorithm for the design of chip-pulse wawets for CDMA systems witltonventional
detectionhas been proposed. The design criterion consists of mimmthe bit error rate at the output of
asingle user matched filten asynchronous CDMA systems while enforcing certain aamsts on the chip
waveforms.

This work is organized in six additional sections. Sectihrgives a brief overview of the main results
found in this work. Sections Ill and IV introduce notatiordaihe system model for asynchronous CDMA,
respectively. Section V focuses on the analysis of linear 3BWletectors and introduces the main math-
ematical tools for analysis of the fundamental limits of radyronous CDMA. In Section VI, the spectral
efficiency of optimal joint decoding is derived on the basighe results for the linear MMSE detector
exploiting the duality between mutual information and MMS&ection VII addresses the extension of the

presented results to more general settings. Some conatugie drawn in Section VIII.
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I[I. MAIN RESULTS

Before going into the main results of this work, it is helpfulget some intuition on asynchronous CDMA
systems. First of all, one might be interested in the questisich chip waveform gives the highest spectral
efficiency for otherwise arbitrary system parameters, jikése shape, pulse width in time and frequency,
system load, etc. There is a surprisingly easy answer tajtlgstion that does not require any sophisticated

mathematical tools:

Proposition 1 Nyquist sinc-pulses maximize spectral efficiency for etlesr free system parameters.

Proof: The proof is by contradiction. First, it is well-known thagetspectral efficiency of a single user
channel is maximized by Nyquist sinc-pulses. Further, wankfrom [4] that the spectral efficiency of a
synchronous CDMA system with Nyquist sinc-pulses becomestical to the spectral efficiency of a single
user channel, as the load converges to infinity. Finallyntiiuser system can never outperform the single
user system, since we could otherwise improve a single ysera by virtually splitting the single user into

many virtual users. Thus, the Nyquist sinc pulse is optimisa tor the multi-user system. [ |
Note that, from the previous proof, the Nyquist sinc pulsgasmum for an infinite system load. However,
we cannot judge whether the optimum is unique from the linthofight proposed in our proof. In fact, a

straightforward application of a more general result is Faper (shown in the Appendix V) is the following:

Proposition 2 Asynchronous CDMA systems with any sinc-pulses, no matiether they are constrained
to the Nyquist bandwidth or to a larger, or even to a smallendaidth, and users whose empirical delays
are uniformly distributed within a symbol interval achiethee same spectral efficiency as a single user

channel, if the load converges to infinity.

The optimization of the system load neither gives the themaky most interesting cases to consider
nor the practically most relevant. Let us, thus, look at \whsbip waveforms achieve the highest spectral

efficiency for a fixed load. Surprisingly, the result is nottdd bit more useful for practical applications:

Corollary 1 The chip waveform that maximizes the spectral efficienca épven finite load and given chip
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rate has vanishing bandwidth. Furthermore, the maximunetsgkefficiency is the same as the one for the

single user channel.

Proof: The corollary follows directly from Proposition 2. Note tiRroposition 2 holds for an arbitrary
chip rate and an arbitrary bandwidth of the chip waveform states that the single user bound is reached
at infinite load. Though, the corollary is stated for a giverté load, we are free to split each physical user
into M virtual users and let/ increase to infinity such that the virtual load becomes itdinrherefore, we
take a user’s signal and divide it infid data streams that are time-multiplexed in such a way as it ias
the same physical transmit signal for that user. Applying itea to each of th& physical users, we have
createdV/ K virtual users. Furthermore, the chip interval has growmfi@ to A/ T, and the virtual users are
asynchronous with a discrete uniform distribution of delaygthin the virtual chip interval of length/T...
Consider now a sinc pulse of bandwidt(2MT.) as chip waveform. If we take the limi/ — oo for the
system of virtual users, the delay distribution convergethé uniform distribution within the virtual chip
interval and the number of virtual users converges to infiffihus, Proposition 2 applies and the single user
bound is reached. Therefore, this choice of chip waveforimsse bandwidth vanishes is optimal. W

Optimizing chip waveforms to maximize spectral efficien@glproven to hardly aid the practical design
of CDMA systems, since the optima are achieved for systerampeaters, e.g. infinite load and/or vanish-
ing bandwidth, that are far from the limits of practical irapientation. Furthermore, the choice of the
chip waveform is influenced by many other factors than speefficiency like the difficulty to implement
steeply decaying frequency filters and the need to keep thie-joeaverage power ratio of the continuous-
time transmit signal moderate. Therefore, many commefCi2MA systems, e.g. the Universal Mobile
Telecommunication System (UMTS), use chip waveforms wixbess bandwidth. The UMTS standard
uses root-raised cosine pulses with roll-off factor 0.22tiMated by the theoretical findings above and the
practical constraints on the design of chip waveforms, #st of this paper puts the focus on the perfor-
mance analysis of CDMA system with a given fixed chip wavefoAs it will be seen, this gives rise to a
rich collection of insights into CDMA systems with asynchows users. The main results are summarized
in the following.

CDMA systems using chip pulse waveforms with bandwigtimot greater than half of the chip ra&;,
l.e.B < 2—;0, perform identically irrespective of whether the users grechronized or not for a large class of
performance measures. Furthermore, our result genesahzesquivalence result for the ideal Nyquist sinc

waveform (with bandwidtlg;—c) in [18] to any chip pulse satisfying the mentioned bandtvictinstraint and
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to any linear multistage detector and the optimal capaantyieving joint decoder. Note that the performance
is independent of the time delay distribution. Increashmgtiandwidth of the chip waveform ab%, i.e.
allowing for some excess bandwidth as it is customary imatilemented systems, the behaviors of CDMA
systems change substantially. They depend on the time digaybution and the equivalence between
synchronous and asynchronous systems is lost.

For any choice of chip waveform, we capture the performahedarge CDMA system with linear MMSE
detection by a positive definite frequency-dependent H&ammatrix Y (2) whose size is the ratio of sam-
pling rate to chip rate (the sampling rate is a multiple of thg rate). We require neither the absence of
inter-chip interference, nor that the samples provide @efii statistics, nor a certain delay distribution. Un-
like for synchronous users, the multiuser efficiency [28fha large-system limit is not necessarily unique
for all users. The matriX(2) reduces to a scalar frequency dependent funetiar in cases where over-
sampling is not needed. Interestingly, the same holds tree @ cases with excess bandwidth if the delay
distribution is uniform. The scalaf(w) can be understood as a multiuser efficiency spectral dewsity
the multiuser efficiency being its integral over frequencyWe find that in large systems, the effects of
interference from different users and interference aedsift frequencies decouple. We, thus, generalize
Tse and Hanly's [5] concept of effective interference todbacept of effective interference spectral density
which decouples the effects of interference in both userfagiency domain.

Excess bandwidth can be utilized if users are asynchrondiindle excess bandwidth is useless for syn-
chronized systems in terms of multiuser efficiency, i.e.sgliare root Nyquist pulses perform the same
regardless of their bandwidth, desynchronizing users avgs the performance of any system with non-

vanishing excess bandwidth.

[1I. NOTATION AND SOME USEFUL DEFINITIONS

Throughout this work, upper and lower boldface symbols aspectively used for matrices and vectors
spanning a single symbol interval. Matrices and vectorsril@ag signals spanning more than a symbol
interval are denoted by upper boldface calligraphic lstter

In the following, we utilizeunitary Fourier transforms both in the continuous time and in therdig
time domain. The unitary Fourier transform of a sigrél) in the continuous time domain is given by
S(w) = V%? ff;o s(t)e~7#tdt. The unitary Fourier transform of a sequence.,c_1,cq,cy,...} in the

1 +oo

discrete time domain is given by(Q)) = T 2o c,e 79" We will refer to them shortly as Fourier
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transform. Throughout this worky, and () denote the angular frequency and the normalized angular fre

quency, respectively. A function 1 has support in the intervél-r, ], or translations of it.

For further studies it is convenient to define the conceptlaibck-wise circulant matrices of ordéy:

Definition 1 Letr and NV be positive integers. Antblock-wise circulant matrix of ordeN is anrN x N

matrix of the form

B, B, --- By
By, By -+ By
C = (1)
B, B, B,

. T
with B; = (c1,i, €245 - -5 Cri) "

In the matrixC, anr x N block row is obtained by a circular right shift of the prevéoblock. Since the

matrix C' is univocally defined by the unitary Fourier transforms & sequences
cs(Q) = L ch,ke_mk s=1,...,r7 (2)
there exists a bijectioff from the frequency d_ependent vectdf2) = [c1(), c2(2),...,¢.(Q)]to C. Thus,
§{e(@)} = C. (3)

Furthermore, the superscripfs and- denote the transpose and the conjugate transpose of thix matr
argument, respectivelyl,, is the identity matrix of sizex x n andC, Z, Z*,N, andR are the fields of

complex, integer, nonnegative integer, positive integied, real numbers, respectivety(-),

.||, and|-| are
the trace, the Frobenius norm, and the spectral norm of theveent, respectively, i.d A || = |/tr(AA™),
|A| = max xA AAfx. diag(-) : C" — C™*" transforms am-dimensional vector into a diagonal matrix of
sizen x n having as diagonal elements the components of the vectbeisame ordeiZ{-} andPr{-} are
the expectation and probability operators, respectivelys the Kronecker symbol anti\) is Dirac’s delta

7j=1,...,n2

IZ1 s then, x ny matrix whose(i, j)-element is the scalar;. X = (X;;)/Z

function. X = (y;);=, 777
is then,¢; x naqe block matrix whoses, j)-block is theg; x ¢, matrix X;;. The notation -| is adopted for
the operator that yields the maximum integer not greater itisaargument andmody denotes the modulus,
l.e.zmody = x — EJ x. Furthermorey (z € A) denotes the indicator function of the variabi®n the set

Aandy(x € A) = 1if z € A and zero otherwise.
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IV. SYSTEM MODEL

Let us consider an asynchronous CDMA system witlusers in the uplink channel. Each user and the
base station are equipped with a single antenna. The chiarfitef fading and impaired by additive white
Gaussian noise. Then, the signal received at the baserstaticomplex base-band notation, is given by

K

y(t) = agsi(t — 7) +w(t)  t € (—00,+00). (4)

Here,a, is the received signal amplitude of usemwhich takes into account the transmitted amplitude, the
effects of the flat fading, and the carrier phase offsgtis the time delay of usek; w(t) is a zero mean
white, complex Gaussian process with power spectral dengit and s (¢) is the spread signal of usér

We have

set) =Y be[mley™ (1), (5)

cém)(t) = Skm|n|Y(t —mTs — nT,) (6)

(m

is its spreading waveform at time. Here, s, ) is the spreading sequence vector of usen the m'™"
symbol interval with elements, ,,,[n], n = 0,..., N — 1. T, and7, = TW are the symbol and chip interval,
respectively.

The users’ symbol$,[m] are independent and identically distributed (i.i.d.) ramdvariables with
E{|bx[m]|?’} = 1 andE{bi[m]} = 0. The elements of the spreading sequens(é@%[n] are assumed to
be i.i.d. random variables with{|s . [n]|*} = % andE{s,[n]} = 0. This assumption properly models
the spreading sequences of some CDMA systems currentlyeinsush as the long spreading codes of the
FDD (Frequency Division Duplex) mode in the UMTS uplink chah

The chip waveformy(t) is limited to bandwidth3 and energyE, = [ [y(t)|?dt. Because of the

constraint on the variance of the chips, &d/s. ,,[k]|*} = +, the mean energy of the signature waveform

1
N’
satisfiest) {ff;o B (t)Pdt} = E,. We assume

1) user 1 as reference user so that 0,

2) the users are ordered according to increasing time deatayr@spect to the reference user,
2Flat fading is no restriction of generality here as long asekcess delay is much smaller than the symbol intéfyalThis is, as the effect

of multi-path can be incorporated into the shape of the clapeform.
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3) the time delay to be, at most, one chip interval so that [0, 7).

Assumptions 1 and 2 are without loss of generality [29]. Aggtion 3 is made for the sake of clarity and it
will be removed in Section VIl where the results are extendettie general case with € [0, 7}).

At the receiver front-end, the base band signal is passedghra filter with impulse respongét) and
corresponding transfer functiofi(w) normalized such thaff;o lg(t)|?dt = 1. We denote bys(t) the
response of the filter to the input(?), i.e. ¢(t) = g(t) * ¥ (t) and by®(w) its Fourier transform. The filter
output is sampled at ratg with » € N. For further convenience, we also defifig = ffoc;o | (1) |*dt.

Throughout this work we assume that the filtered chip pulseefeam ¢(¢) is much shorter than the
symbol waveform, i.ep(t) becomes negligible far| > t, andt, < 7. This technical assumption is usually
verified in the systems with large spreading factor we aresicemning. It allows to neglect intersymbol
interference. Thus, focusing on a given symbol interval case omit the symbol index. and the discrete-

time signal at the front-end output is given by

ylp] = Z arbiCr (%Tc — Tk> + w|p| (7)

Cr = sk[n]o (t —nT,). (8)

Here,w[p] is discrete-time, complex-valued noise. In genetdh)] is not white, although the continuous
process was white. Howeverjstwhite, if g(¢) * g(—t) is Nyquist with respect to the sampling rate.
In order to cope with the effects of oversampling, we consate extended signal space with virtual

spreading sequences of lengtN. The virtual spreading sequence of useés given by theNVr-dimensional

vector
[ 9)
Wheresk = (Sk[O] C Sk[N — 1])T,
¢*Tk ¢7ch7—k s ¢(7N+1)Tc#k
¢(N—1)Tc—frk, ¢(N—2)Tc—frk, e ¢—'rk
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is a Nr x N block matrix taking into account the effects of delay andspushaping. Its blocks are the
vectorsp, = (d(z), ¢ (z+ L) ,..., ¢ (z + TT‘ch))T. In that way, we have described u$és continuous-
time channel with continuous delays canonically by the réigstime channel matri®,. Note that®,
solely depends on the delay of ugethe oversampling factor, the chip waveform, and the receive filter.

Structuring the matrixp,, in blocks of dimensions x 1, it is block-wise Toeplitz. As well known [30],
[31], block-Toeplitz and block-circulant matrices are mgyotically equivalent in terms of spectral distribu-
tion. This asymptotic equivalence is sufficient for us, sicir only concern in this work are performance
measures of CDMA systems which depend only on the asymgf@value distribution. Similar asymp-
totically tight approximations are used in the large sysseralysis of CDMA in frequency-selective fading
[32], [33], [34].

The equivalent block-circulant matrix is given by

&, — S{[qﬁ(Q,m),gb Q- L), o (Q,Tk _ ﬂ)}} (11)
where o
6(0,7) 2 Ti _Z o g (L6 4 270)) (12)

is the spectrum of the chip waveforait) delayed byr and sampled at rate/7,.. Thus, we replace the
block-Toeplitz matrix®,, for our asymptotic analysis by the block-circulant mathix in the following and
use the virtual spreading sequences

Vi = <I>ksk. (13)

Let S be ther N x K matrix of virtual spreading, i.eS = (®;s1, ®2sy,... Prsk), Athe K x K

diagonal matrix of received amplitude, = S A, andb and
y=Hb+ w (14)

the vectors of transmitted and received signals, respdgtiddditionally, ), denotes th&'" column of the

matrix H . Finally, we define the correlation matric€s= HH", R = H" H and the system load = £.

V. LINEAR MMSE DETECTION

The linear MMSE detectad,, generates a soft decisiop = di'y of the transmitted symbaj. based on

the observationy. It can be derived from the Wiener-Hopf theorem [35] and v&giby

dy, = E{yy"} "E{bjy} (15)
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with the expectation taken over the transmitted symlbotsxd the noise. Specializing the Wiener-Hopf

equation to the system model (14) yields

d, = (HH" +5°I)"'h, (16)

= ¢ - (H.H! +0°I)7'h,y, (17)

for somec € R. Here,H;, is the matrix obtained fronHd suppressing columh,. The second step follows
from the matrix inversion lemma.
The performance of the linear MMSE detector is measured &idnal-to-interference-and-noise ratio
at its output [28]
SINR, = hi(H,HY + o°T) ' hy,. (18)

The SINR can be conveniently expressed in terms of the nseitiefficiencyy,. [28]

2
E
SINR,, = lar]Eq k. (19)
No

The multiuser efficiency is a useful measure, since for lagggems it is identical for all users in special
cases [7] and it is related to the spectral efficiency [7]],[B&7].

The SINR depends on the spreading sequences, the recewedspaf all users, the chip pulse shaping,
and the time delays of all users. To get deeper insight onrtbad MMSE detector it is convenient to analyze
the performance for random spreading sequences in thedgstrem limits, i.e. a&’, N — oo with the ratio
% — (3 kept fixed. The large-system analysis will identify the noscopic parameters that characterize a
chip-asynchronous CDMA system and the influences of chipgpsthaping and delay distribution.

In this section we present the large system analysis of aliNMSE detector for chip-asynchronous
CDMA systems with random spreading. Provided that the nais@e output of the front end is white,
the analysis applies to CDMA systems using either optimusuboptimum statistics, any chip pulse wave-
forms, and any set of time delays|[in 7..) if their empirical distribution function converges to aelehinistic
limit.

In Appendix I, we derive the following theorem on the larggstem performance of chip-asynchronous

CDMA:

Theorem 1 Let A € CK*X pe a diagonal matrix with:™" diagonal element;, € C and 7, a positive

real. Given a functionb(w) : R — C, let (X2, 7) be as in (12). Given a positive integer let ®,

OcCTOBER21, 2009



SUBMITTED MANUSCRIPT TOIEEE TRANSACTIONS ONINFORMATION THEORY 13
k =1,..., K, ber-block-wise circulant matrices of orde¥ defined in (11). LeiH = SA with S =
(@51, Pysy, ..., Pysk]ands, € CV*L,

Assume that the functidf(w)| is upper bounded and has finite support. The receive filtardh shat the
sampled discrete-time noise process is white. The vegfase independent with i.i.d. circularly symmetric
Gaussian elements. Furthermore, the elemeptsf the matrixA are uniformly bounded for ani. The
sequence of the empirical joint distributioﬂ%j;T(A,T) = %Z,ﬁ; XA > Jag|*)x(r > 7) converges
almost surely, ag{ — oo, to a non-random distribution functiof 42 (A, 7).

Then, given the received power,|?, the time delayr, and the variance of the white noisé = ’"Tﬂ

the SINR of usek at the output of a linear MMSE detector for a CDMA system widéimgfer matrix H

converges in probability a&’, N — oo with % — [ andr fixed to
. o ‘ak|2 f H
K:%JI\Ifl—wo SINR,k = ? A 7T(Q, TR)T(Q)Ad),T(Q, Tk)dQ (20)
whereY (Q2) is the unique positive definitex r matrix solution of the fixed point matrix equation

AA (1) AY (Q,7)dF a2 7 (N, T)

- 2
T =07, +5/1+ 2 TAT (O, )T (Q) Ay, (2, 7)d0 cr<fsmo @D
and
o(Q,7)
Q’ _ I
Ay (1) = AT =) . (22)
(b(QvT - TC(2_1)>

The performance of the linear MMSE detector operating onneaessarily sufficient statistics is com-
pletely characterized by
1) anr x r matrix-valued transfer functio® ({2) and

2) the frequency and delay dependent vedior, (2, 7)

3Here, the integration measure is meant to deddte, 2,7 (A, 7) = flaj2,7 (N, T)dAdT in case such a representation exists.
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The multiuser efficiency varies from user to user and dependkbe time delay of the user of interest only
throughA (€2, 7). We can define an SINR spectrum

ag)?

SINRk(Q) - ?Agr(gv Tk)T(Q)Aqﬁ,T’(Qa Tk) (23)

in the normalized frequency domairr < Q0 < 7, or, equivalently, a spectrum of the multiuser efficiency.
The system performance is in both cases obtained by integm@ter the spectral components.

The fixed point equation (21) clearly reveals how and why Bymgous users are the worst case for a given
chip waveform. We know from [37] that to each large multiusgstem, there is an equivalent single user
system with enhanced noise, but otherwise identical pmdoce. In the present case with oversampling
factorr, the equivalent single user system is a frequency-seeeMiO (multiple-input multiple-output)

system withr transmit and- receive antenna and governed by the r channel transfer matrix

/ )\Ad),r(Q,T)Agr(Q,T)dF‘AP,T(A,T)

. 24
1+ 2 [T AL (Q 7)Y (A, (2, 7)d0 (24)

Note that this matrix is an integral of an outer product owerdelay distribution. Thus, for constant delay,
I.e. chip-synchronization, the matrix has rank one. No tlal dimensions in signal space can be spanned.
For distributed delays, the rank of the matrix can be as laggéhe oversampling facter Driving the
equivalence even further, the equivalent MIMO system candmsformed into an equivalent CDMA system
with spreading factor and spreading sequencas, , (€2, 7;,). In this model, equal delays in the real COMA
system correspond to users with identical signature segsan the equivalent CDMA system.

One cannot increase performance unboundedly by fastesawgling, as not all modes of the equivalent
r-dimensional MIMO system can be excited with a chip wavefofriimited excess bandwidth due to the
projection onto the spectral support of the chip waveforr(2®). In order to utilize the excess bandwidth
of the system, we need two ingredients: 1) Time delays s@épgrthe users by making the signatures in
the equivalent system differ. 2) A receiver that transfothescontinuous-time receive signal into sufficient
discrete-time statistics, e.g. by oversampling. A lackiiécent delays leads to a system where only a single
eigenmode of the equivalent MIMO system is excited. A lac&a@rsampling leads to a system where more
eigenmodes are excited, but are not converted into distnete

Additional intuitive insight into the behavior of the asymonus CDMA systems can be gained by focus-
ing on CDMA systems with uniformly distributed delay. Inglgase, Theorem 1 can be formulated with a
single scalar fixed point equation by moving from the frequyei that is normalized to the chip rate to the

unnormalized frequency. This yields the following corollary:
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Corollary 2 Let us adopt the same definitions as in Theorem 1 and let therggBns of Theorem 1 be
satisfied. Additionally, assume that the random variablesd 7 in I} 42 r()\, 7) are statistically indepen-
dent and the random variable is uniformly distributed in0, 7..). Furthermore, letd(w) vanish outside
the interval[—2n B; +27 B] with B < 5. Then, the multiuser efficiency of the linear MMSE deteator f

CDMA converges in probability a&”, N — oo with % — 3 andr fixed to

+2mB
, 1
cm me=1= 5 / 1 (w) dw (25)
—2nB

where the multiuser efficiency spectral density) is the unique solution to the fixed point equation

(26)

1 E¢ ] / AdFap(2)

n(w) Lo +M7

and is zero fojw| > 27 B.

Theorem 1 is specialized to Corollary 2 in Appendix III.

Under the conditions of Corollary 2 the multiuser efficiernéyhe linear MMSE detector in asynchronous
systems is the same for all users.

Rewriting (25) and (26) in terms of SINRs, these equatiomsbeainterpreted similarly to the correspond-
ing equations in [5] for synchronous systems when the cdrafegifective interference is generalized to the
concept of effective interference spectral density. Pet, \) = % |® (w)|” be the power spectral density of

the received signal for a user having received poWwerhen, the result in Corollary 2 can be expressed as

1 +27B
SINRy, = . / sinrg (w)dw (27)
7T

—27B

where the SINR spectral densitiyir, (w) is given by

- Pl )
sinrg (w) = No + BEA{I(P(w, |ax|?), P(w, \),SINR;,)} (28)

with the effective interference spectral density

P P(w, A
[(P(w, |ag|?), P(w, ), SINRy) = e |a<:|’2’)‘aj|P>(w( )\’)S)INR;C' (29)

Heuristically, this means that for large systems the SIN&Bpl density is deterministic and given by

. P(w, |ax]?)
sinry (w) ~ . 30
) No+ %52, I(P(w, [ax]?), P(w, |a;]?), SINRy) (50)
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This result yields an interpretation of the effects of eatlhe interfering users on the SINR of usker
similar to the case of synchronous systems in [5]. The impait at frequency can be decoupled into
a sum of the background noise and an interference term frarn efthe users at the same frequency.
The cumulated interference spectral density at frequendgpends only on the received power density
of the user of interest at this frequency, the received p@pectral density of the interfering users at this
frequency, and the attained SINR of ugein other words, in asynchronous systems we have a decguplin
of the effects of interferers like in synchronous systemd am additional decoupling in frequency. The
term(P(w, |ax|?), P(w, |a,|*), SINRy) is the effective interference spectral density of usento userk at
frequencyw for a given SINR of usek.

Sinc waveforms have a particular theoretical interesthinfollowing we specialize Corollary 2 to this

case.

Corollary 3 Let us adopt the definitions in Theorem 1 and let the assumgpbb Corollary 2 be satisfied.

Given a positive real, we assume that

L for | 2| <57,

D(w) = (31)

0 otherwise.

l\?|€

corresponding to a sinc waveform with bandwidth= ;7- and unit energy. Then, the multiuser efficiency

of the linear MMSE detector converges in probability/asN — oo with % — [ to

. lglgioo Mk = Tsinc (32)

where the multiuser efficieney,,. is the unique positive solution to the fixed point equation

1 AF
48 / AdFiaz () (33)
nsinc NO + )\nsmc

We recall that the multiuser efficiency of a linear MMSE d&edor a synchronous CDMA system

AAE] A2
\AI
34
6 / N0+Ansyn (34)

satisfies [5]

nsyn

This result holds for synchronous CDMA systems using ang plise waveform with bandwidtB > 2Tc

and satisfying the Nyquist criterion. Thus, it also appliessinc pulses whose bandwidth is an integer
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multiple ofﬁ. Then, Corollary 3 shows the interesting effect that an elssggnous CDMA system using a
sinc function with bandwidtiB = 7- as chip pulse waveform performs as well as a synchronous CDMA
system with bandwidthz, r € N, with system load?’ = g. This implies that only asynchronous CDMA
has the capability to trade the excess bandwidth of the chigepvaveform against the spreading factor
while synchronous CDMA has not. In other words, asynchrer@DMA offers to trade degrees of freedom
in the frequency domain provided by the excess bandwidth@thip pulse waveform against degrees of
freedom in the time domain provided by spreading.

This phenomenon is similar to the resource pooling in CDMAtsms with spatial diversity discovered
in [38]. There, the degrees of freedom in space provided hyipleiantennas at the receiver could be traded
against degrees of freedom in time provided by the spreadiingrder to make resource pooling happen, it
is necessary that the steering vectors of the antenna groaysinto different directions. This condition is
equivalent to requiring de-synchronization among usdrall lsers experience the same delay, this is like
having totally correlated antenna elements.

In Corollary 3, the bandwidth of the sinc waveform may beaitlarger or smaller than the Nyquist band-
width. For larger bandwidth, we get a resource pooling éfflec smaller bandwidth we create inter-chip
interference and what could be calladti-resource poolinginter-chip interference is no particular cause of
concern. In contrast, the effect of anti-resource poolstpivirtually increase the load, i.e. squeezing the
same number of data into a smaller spectrum or equivalegtligezing more users into the same spectrum.
Since spectral efficiency of optimum joint decoding is arré@asing function of the load [4], anti-resource

pooling is beneficial for spectral efficiency, though its Iempentation may cause some practical challenges.

In the following theorem, we extend anti-resource poolmgrbitrary delay distributions:

Theorem 2 Let A € CX*X be a diagonal matrix withk™ diagonal element;, € C and 7, a positive
real. Given a functiond(w) : R — C, let ¢(£2,7) be as in (12). Given a positive integer let &,
k =1,..., K, ber-block-wise circulant matrices of orde¥ defined in (11). LeiH = SA with S =
(@51, Pysy, ..., Pysk] ands, € CV*L,

Assume that the functid®(w)| is upper bounded and has support contained in the inte{va;z, TL]
The receive filter is such that the sampled discrete-timsenpiocess is white. The vectaisare indepen-

dent with i.i.d. circularly symmetric Gaussian elementartRermore, the elements, of the matrixA are
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uniformly bounded for anjk’. The sequence of the empirical distributidﬁg(lg()\) =% SO < Jagl?)
converges in law almost surely, & — oo, to a non-random distribution functiof 42 ().
Then, the multiuser efficiency of the linear MMSE detectoCIDMA with transfer matrixH converges

in probability asK, N — oo with £ — 3 andr fixed to

+7T/Tc

, 1
(Jm me=0= g 1 (w) dw (35)
—7/Te

where the multiuser efficiency spectral density) is the unique solution to the fixed point equation

1 E¢ 8 / AdF 4z (A) 6)

n(w) o+ An

for all w in the support ofb(w) and zero elsewhere.

Theorem 2 is proven in Appendix IV.
No constraint is imposed on the set of time delays in Theoremtilds for any se{r, ... 7x} and
we conclude that linear MMSE detectors for synchronous agdaronous CDMA systems have the same

performance if the bandwidth of the chip pulse waveformsgas the constrainB < ﬁ

VI. SPECTRAL EFFICIENCY

There exists a close relation between the total capacityCaidA system and the multiuser efficiency of a
linear MMSE detector for the same system [7], [36], [37]. Tagonale behind this relation is a fundamental
connection between mutual information and minimum mearaseg error in Gaussian channels [39]. In the
following, we extend the results in Section V to get insigitbithe spectral efficiency of an asynchronous
CDMA system.

The capacity of the CDMA channel was found in [40] for synceioos CDMA systems. The total capacity
per chip for large synchronous CDMA systems with square Ryojuist pulses and random spreading in the

presence of AWGN (additive white Gaussian noise) is [4]

C (3, SNR) = S log, (1 +SNR — iF(SNR, ﬁ)) + log, (1 + ASNR — iF(SNR, ﬁ))

log, e

4SNR

F (SNR, 3) (37)
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(\/y1+\/_ +1—\/y1— +1)2. (38)

With the normalizations adopted in the system model, we B&iie = £,/ N,.

with

The spectral efficiency of a synchronous CDMA system is etué@l®" (3, SNR) for any Nyquist sinc
waveform. For other chip waveforms, we need to take into aetthe excess bandwidth and calculate

spectral efficiency as
C

I =
T.B

(39)

whereC denotes the total capacity per chip aBdlenotes the bandwidth of the chip pulse. Note that for
Nyquist sinc pulse$.B = 1, while in generall. B can be either larger, e.g. for root-raised cosine pulses, or
smaller, i.e. for anti-resource pooling, than 1.

The expression of the total capacity per chip for asynchme@DMA systems constrained to a given chip
pulse waveform)(t) of bandwidthB and a given receive filtej(¢) can be obtained by making use of the
results in Section V and the fundamental relation betweetuahinformation and MMSE in Gaussian chan-
nels provided in [39]. Since such constrained total capat@pends on(t) andg(t) only via the waveform
¢(t), output of the filterg(¢) for the inputy (), we shortly refer to it as the total capacity constrained & th

chip waveformp(t).

Corollary 4 Let us adopt the same definitions as in Theorem 2 and let thergd®ons of Corollary 2
or Theorem 2 be satisfied. Additionally, let the receiverfétied sampling process be such that sufficient
discrete-time statistics are provided. Then,/ldsN — oo with % — [ the total capacity per chip con-

strained to the chip pulse wavefom(t) converges to the deterministic value

E A dF o2
(asyn o B ‘A| 40
<ﬁ, cb) ") / / o /\W% dry (40)

wheren, is the multiuser efficiency at signal-to-noise ratigiven in (25) and (35), respectively.

The proof of this corollary is discussed in Appendix VI.
Let us consider again the case of sinc chip waveforms as defing@1) and uniform distribution of the
time delays. Letv denote the bandwidth of the since pulse relative to the Nstdpaindwidth. As noticed in

Section V, the multiuser efficieney;,,. of an asynchronous system with such sinc waveforms giveB83) (

OcCTOBER21, 2009



SUBMITTED MANUSCRIPT TOIEEE TRANSACTIONS ONINFORMATION THEORY 20

root-raised cosine chip pulse, roII—of‘f:O.Z%IIEO:lOdB

system load3=1, EbIN0:10 dB

T T T
asynchronous system
uniform time delays

asynchronous system
+ \uniform:delay, sinc pulse

spectral efficiency (bits/s/Hz)
spectral efficiency (bits/s/Hz)

synchronous system ~ =~ ==~ -
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Fig. 1. Spectral efficiency of random CDMA with unit load vess Fig. 2. Spectral efficiency of random CDMA versus the Igafor the
the normalized bandwidth and 5 = 10 dB. root-raised cosine chip pulse used in the UMTS standardgne: 10

dB.

and load3 equals the multiuser efficieney,,, of a synchronous system with Nyquist sinc pulses given by
(34) and loady’ = g. Since the load enters capacity per chip (40) only via theimsét efficiency except for
the linear pre-factor to the integral, we immediately find tbllowing equation relating the two capacities

per chip
g

C(sinc)(B’ SNR a) = o C (_’ SNR) ] (41)
o

It is apparent from (41) that synchronous and asynchrongaiess have the same capacity o+ 1.
In order to compare different systems (with possibly défeérspreading gains and data rates), spectral

efficiency has to be given as a function%f, the level of energy per bit per noise level equal to [4] [7]

E,  ASNR
No ~ CO(B,SNR ) 42)

In Figure 1, we compare the spectral efficiency of asynchusr@DMA with the spectral efficiency of
synchronous CDMA. The spectral efficiencies are plottedrasgjghe bandwidth normalized to the Nyquist
bandwidth with% = 10dB and unit load3d = 1. Recall from earlier discussions that for synchronous
systems all Nyquist chip waveforms perform identically.tBere is no need to specify a particular Nyquist
pulse except for the Nyquist pulse having the same banduhéim the sinc pulse in the asynchronous case.
We see further that the smaller the normalized bandwid&higher the spectral efficiency is. This is, as
anti-resource pooling improves spectral efficiency by extind a higher load.

In Figure 2 the spectral efficiency is plotted against thel Idavith f,—g = 10dB for the chip waveform
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used in the UMTS standard. When the Igadhcreases the gap in spectral efficiency between synchsonou

and asynchronous systems increases.

VII. EXTENSION TO GENERAL ASYNCHRONOUSCDMA SYSTEMS

In this section we extend the previous results to any digiion of the time delays for CDMA systems.
Without loss of generality we can assume that the time detays [0, 7) [28]. In this case, intersymbol
interference is not negligible and an infinite observationdew is necessary to obtain sufficient statistics.
Equation (14) for the chip asynchronous but symbol asynuus system model is extended to a general

asynchronous system by

K +oo
ool = ap S bl (gTC i) + wip] (43)
k=1 m=—00
with p € Z and
Egﬁm) = Z Skmlu]ot — @w+mN)T,). (44)
u=0

By assuming the same approximation as in (14), the virtuaapng sequence of useiin the symbol
intervalm has nonzero elements only in the time intervadndm + 1. Let 7, denote the delay of the signal
k in terms of the chip intervals ang the delay within a chip, i.er, = {;—kJ andr, = 7,modT, respectively.
The virtual spreading sequence of uses obtained by computin@,. as in (11) forr = 7, to account for
the delay within a chip and then by shifting the virtual splieg vector down by, r-dimensional blocks to
account for the delay multiple of the chip interval. Moreqsely, the virtual spreading in the-th symbol

interval is given by ther N-dimensional vector
0,
~ (m) _ &, g(m 45
%(C(Tk) Sk — ksk ( )
ON—?k

c(7) = [@(Q,ﬁ),@ (Q,?k _ %) D <Q,?k _ M)} |

r

with

0-, and0y_», column vectors with zero entries and dimensian andr(N — 7), respectively. The

2r N x K virtual spreading matrix for the symbols transmitted attimtervalm is then

=(m

S = [élsgm), &’ngm), Ce &)ngn)} .
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~(m

For further study, we introduce the upper and lower part efrtiatrixg*(m), S ) andg*ém) of sizerN xrK

u

such that

~(m S
S():

(m)
o(m)

S

' S‘ém)A. Then, the baseband discrete-time asynchronous

and the matricesd im) = S‘ELm)A and ﬁém
system in matrix notation is given by
Y=HB+W (46)
whereY = [..., ym=D" 4y 40" T andB = [... bV p™" pm+DT 1T gre the infinite-
length vectors of received and transmitted symbols res@dgt VV is an infinite-length white Gaussian

noise vector; an@t is a bi-diagonal block matrix with infinite block rows and bkocolumns

== (m=1)  —(m)

o H, W H, o ...
H = —(m) —(m+1) ' (47)
o m,"” H" 0o .

Finally, we define the correlation matric8s= HH", R = H"H.

The following theorem shows that a linear MMSE detector faZ@MA system with transfer matrix
‘H and time delays, 7, ... 7 has the same limiting performance as a linear MMSE detectocliip
asynchronous but symbol quasi-synchronous CDMA systetnsdimced in Section IV with time delays

T1,Ta, ... TK. The same equivalence holds for capacity and spectral efbigie

Theorem 3 Given {7, 7,...7x} a set of delays in0, T;) let us consider the set of delays|in7.) de-
fined as{7,: 7w =7 mod T,, k=1,... K}. Given a positive integer, let ®,, k = 1,... K, be the
r-blockwise circulant matrix of ordeN defined in (11) withr = 7. Let A, ®(w), S, and H be defined
as in Theorem 1. Furthermor@,,, k = 1... K are2rN x N matrices such thab,, = [0 , &7, 0% _. ]”

with 7, = {;—kJ , 07, andOy_=, zero matrices of dimensions;; x N andr (N —7;) x N, respectively.

~(m ~ ~ ~ —~(m ~(m)T —(m)T ~ P
Lets"™ = (<I>13(1m),(1>23(2m) : ..@Ks%”)> ,H( - [H( : ,Hi ) |7 = SA and’H the infinite block row

and block column matrix of the same form as in (47). Let theesassumptions as in Theorem 1 hold.
Then, asymptotically, a&’, N — oo with £ — 3 the CDMA systems transfer matric and H are

equivalent in terms of multiuser efficiency for linear MMS#eatttors and in terms of spectral efficiency.
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This theorem is shown in Appendix VII.

Interestingly, the system performance depends on the tatag sk, only through the offsets, — F—kJ T..
Therefore, any shift of the signal multiple ©f does not affect the performance of the system.

The analysis presented in this contribution has been cestrito frequency flat fading for the sake of
clarity. The extension to multipath fading channels isightiorward when the impulse response of the
channel is much shorter than the symbol interval. In faa, ¢hip pulse waveform at the output of the
matched filterp(¢) can include the effects of the frequency selective chaimplise response(t) along
with the effects of the transmitted chip pulse wavefaf(n), and the filter at the front-englt), i.e. ¢(t) =
¥(t) * a(t) * g(t). Then, the analysis of a system with frequency selectiventpdeduces to the proposed

analysis.

VIIl. CONCLUSIONS

This work provides a general framework for the analysis ghakronous CDMA systems with random
spreading using sufficient or suboptimum statistics andcéiiy pulse waveform. Furthermore, it includes
several optimum or suboptimum receiver structures of malcand theoretical interest. Therefore, it pro-
vides insight into both the fundamental limits of asyncloesn CDMA systems and the performance loss of
implementations where suboptimum receiver structurdgstimum statistics, and/or non-ideal chip pulses
are utilized.

For the receiver structures investigated in Part I, thegoerédnce of a CDMA system is independent of

the time delay distribution if the bandwidth of the chip puisaveform is not greater than half of the chip

rate, i.e. B < 2;6. This also implies that synchronous and asynchronous CDMegys have the same
performance and generalizes the equivalence result infft8ylyquist sinc B = QLTC) pulses and linear

MMSE detectors to any chip pulse waveform. The behavior oM&Dsystem changes substantially as
the bandwidth gets larger. In this case, the system perfucens significantly affected by the distribution
of the time delays and the performance of linear detectong cepend on the specific time delay of the
signal of interest. If the receiver is fed by sufficient tatis and the time delay distribution is uniform the
performance of optimum or suboptimum receivers is indepehdf the time delays. In the following, we

summarize the most interesting aspects pointed out by the tystem analysis, for each class of receivers.
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A. Optimum Receiver

The spectral efficiency constrained to a given chip pulseefeawn characterizes the performance of a
CDMA channel with optimum receiver. The spectral efficiemcgxpressed in terms of the multiuser effi-
ciency spectral density(w). When the chip-modulation is based on sinc pulses whose hidtidis o times
the Nyquist bandwidth, the spectral efficiency of asyncbtmsnCDMA systems is identical to the spectral
efficiency of synchronous systems with lodd= g and Nyquist sinc pulses. Spectral efficiency is a strictly
decreasing function of the relative pulse bandwidtiind fora. — 0, the spectral efficiency of a single user
AWGN channel is reached.

Fora > 1 an asynchronous CDMA system with modulation based on a smatibn can compensate to
some extent for the loss in spectral efficiency of synchrem@DMA systems with equal bandwidth. For
G — oo it attains the maximum spectral efficiency for any finite bamth B = %

2T "

B. Linear MMSE Detector

The output SINR of a linear MMSE detector can be obtained frlmasolution to a system of fixed point
equations in the general case. In the two cases (i) chip pulgh bandwidthB < % and (ii) chip pulses
with bandwidthB > % sufficient statistics and uniform time delay distributithre fixed point system
of equation reduces to a single equation. In those casegetfi@mance of a linear MMSE detector in
asynchronous CDMA systems is characterized by a unique dlmultiuser efficiency. Furthermore, the
measure of multiuser efficiency can be refined by the condeggiextrum of the multiuser efficiency that is
also unique for all the users. Furthermore, for those CDMgtays the limiting interference effects, as the
system grows large, can be decoupled into user domain aqdeiney domain such that we can define an
effective interference spectral density similarly to tiffe&ive interference in [5] for synchronous systems.

In the special case that the modulation is based on sincifursctvith bandwidthB = 32 a linear
MMSE detector in asynchronous CDMA channels performs idatlly to a synchronous CDMA system
with square root Nyquist chip pulses [5] and lgzd= g. This effect is similar to the resource pooling effect
for synchronous CDMA systems with spatial diversity in [288jd shows the possibility to trade degrees of
freedom in the frequency domain against degrees of freeddheitime domain.

Though this work focused on performance measures for CDNfAija results hold for asynchronous
MIMO systems due to the mathematical analogy between CDMRAMIMO systems when described as a

discrete-time vector channel. This means, that MIMO systefith excess bandwidth and desynchronized
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modulators for different antenna elements benefit in a amnilanner than CDMA systems with desynchro-

nized users.
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APPENDIX |
USEFUL MATHEMATICAL TOOLS

Let ®(w) be the unitary Fourier transform of a pulse wavefas(n) with bandwidthB < 7. Then, in
the normalized frequency inten@l € [—, 7| the unitary Fourier transform (12) of the sequence obtained

by samplingy(t) at time instant- and ratez- is given by

. sign(2) | | Q4 s
%Q 270 7= 8 % @
QS(Q,T) = ie c Z e] c CI) ( Tc ) for |Q| S . (48)
s=—sign(Q) LTEIJ
The matrix
Q(Q,7) = Ay (1) A, (Q, 7)1, (49)

with A, (€2, 7) defined in (22), can be decomposed in the sum of two matrices

Q(2T) =Q(Q) +Q(Q7) (50)

where the(k, ¢)-elements of the matrica@(2) andQ(<2, 7) are given by

. sign(€) | £ | Q25 |2
T D S T | P I TR
¢ szfsign(Q)L%lJ N
and
1 sign(Q)L%J Q.9 049
(Q(Q, T))k,e = ﬁ Z ) (%) P* (%) e_jQﬂ—TLc(s_u)eij(k;1(9727rs)7%(972ﬂ_u))

¢ s,uzfsign(Q)L%lJ ¢ ¢

s#u

for Q] <m, (52)

respectively.

Useful properties of the matric€3(2) andQ(<2, 7) are stated in the following lemmas.

OcCTOBER21, 2009



SUBMITTED MANUSCRIPT TOIEEE TRANSACTIONS ONINFORMATION THEORY 26

Lemma 1 Let B be anr x r matrix of the form

bo blej% . e brflej(ri:l)ﬂ
br—le_j% bo bel” e Z)T_er(T:Q)Q
B=B(Q) = , (53)
et e

i.e. givenby = by(2), by = by (S2),...b.—1 = b,—1(R2), eventually functions di, (B),, the element/, k)

of the matrixB satisfies B),, = ej<kfe)9b(r+k_g)m0dr. Let Q(92, 7) be ther x r matrix with elementk, ()

defined in (52). Then,

tr(BQ(Q, 7)) = 0.

T

Proof: Letg,,(Q) = 4@ (m?”“) P (Q+T2”> . Then,

tr(BQ( + j27u, 7)) = Z Z(Q(Qa T)he(B)ek

k=1 (=1
sign(Q2) L%J ,
= Y AR YN (B)e I te T )
s,u=—sign() L%IJ k=1 (=1
SFU
sign(Q2) L%J .
= Z Qusejzﬂ(%cii)(é;iu) b(rJrkfg)modre*jQTﬂ(“*S)kej QTW“(k*Z)
s,u=—sign(Q) LrglJ k=1 (=1
SFU
sign(Q2) L%J
. T 1
= > 7,2 ()0 () 4oy
s,u=—sign(Q) %IJ
s#u

<

with

T

27 e V2T (e
= Z b(rJrku)modre 5 )kej rulh=b) (54)

k=1
k>¢

and

- 25 (y—s 27 (k—
2 = Z b(rJrk:fZ)modrei] al )ke] rulk Z)- (55)

k=1
k<t

Substitutingy = k£ — £ in (54) andv = r + k — ¢ in (55) we obtain

r k—1

k=1 v=0
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and

r r—1

_ 27 u—3s)k - 2T U
772:§ § bvejr( )e]T7

k=1 v=k
respectively. Fos, ¢ € [—sign(Q) [52]...0...sign(Q) |5]] ands # ¢, |s —¢| € [1,...,r — 1]. Therefore,
S e Ik — gandn, + 1, = 0 for all Q. Then, alsar(BQ(Q, 7)) = 0 and this concludes the proof
of Lemma 1. [}
It follows immediately from Lemma 1 thatQ(f2, 7) = 0 since the identity matrid is of the form (53)

withby =1andb; =0fori=1,...r — 1.

Lemma 2 Let B = B(2) be a matrix defined as in Lemma 1 and@®{?) be ther x r matrix with element
(k,¢) defined in (51). Then, the matifX(2) = Q(2)B(£?) is of the form (53).

Proof: The elementk, ¢) of the matrixC' = C(92), (C), is given by

r

(Cex = Z(B)Z,t(Q(Q))t,k

t=1
= ej¥ﬂfﬁ(€, k) (56)
with )
sign(Q2) % 9
1 QO+ 2ms
(k) == ) ]cb ( T ) n(l.k,s)
¢ s=—sign(Q2) \f 21J
and
77(& ku 5) = Z b(?“—i—t—f)modre_j%r(t:k)s- (57)
t=1
In order to prove Lemma 2 it is sufficient to prove that
k(L k) = k(£ + 1)modr, (k + 1)modr). (58)

k—t

In fact, in this cas&”,;, = ¢/~ QK(TM_@modr With £, 1 k—pmodr = (€, k). The property (58) is implied by

a similar property om(¢, k, s)
n(l, k,s) = n((¢ + 1)modr, (k + 1)modr, s). (59)

t—k

Itis straightforward to verify that (59) is satisfied sinagtvfactors, .+ ¢ymodr ande72(+*) are periodical

in their argumentg andk, respectively, with period and% and/ are simultaneously increased by a unit.

This concludes the proof of Lemma 2. [ |
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The following lemma provides the eigenvalue decomposibicine matrixQ(<2).

Lemma 3 Let Q(f2) be anr x r matrix with elementk, /) defined in (51). Then, the matr@®({2) can be
decomposed as follows

Q) = UQDQU" () (60)

where

U(Q) = (e (Q — sign(Q)2r V 5 1D e(Q).. e (Q + sign(Q)2r EJ)) , (61)
e (2) is an r-dimensional column vector defined by

1 - sr—1 T
e(Q):WO,eﬂ%,...e_] TQ) s

and D(9) is the diagonal matrix whos€" diagonal element is given by

2

(D(Q)),s = % o (Ti (Q ~ sign(Q)2r Q%J — s+ 1))) (62)
Proof: Decomposition (60) can be immediately derived by noting tha
sign(9) | 5 | . 9
Q) = 73 P (TQ + 27?5) e(Q + 2ms)e (Q + 27s).
s=—sign(@)[ 52| ~ © ‘
This expression can be rewritten as (60) and Lemma 3 is proven |

The following lemma shows that the matix2) and any other matrix with the same basis of eigenvectors

is of the form (53).

Lemma 4 LetC(Q) = U(Q)M QU (Q) with U (Q) unitary matrix defined in (61) and/ (Q2) diagonal
matrix with elementsn,, (Q2). Then,C(9) is of the form (53).

Proof: The/™ row of the matrixU (Q2) is given by

() — 1 (e_je:1(Q—sign(Q)QnLrglj) “.e_j[:—‘l(ﬂ—l—sign(ﬂ)%r\_gj))

7 ,

andc(£2), the element?, k) of the matrixC satisfies

1 - | =— i r— .
Cék(Q) = ; Z m“‘eijg(ﬂfslgn(g)%"t 21J+27r(271))
i=1

(t=k)

= fggkefj T Q (63)
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with by, = S/ my; 125 (sien(@)L 55 1=i+1) 1t s straightforward to verify thaby, — Do 1)modr, (k4+1)mods-

i=1 r

This concludes the proof of Lemma 4. [ |

The following lemmas state results from random matrix thelmveloped along the lines of the REFORM

method proposed by Girko in [41] and [42].

Lemma5 [41], [43] Let E = (gij){;l:_'_'_'ﬁjf be anN¢, x Kg, matrix of complex random elemerds

structured inN K blocks of size; x ¢, E;;, i.e.

andK = ﬁN W|thﬁ > 0 Letﬁ = (Pij)ijZI,...pl = [EEH—FO[I]il andé - (Gij)ijZL...pz = [EHE—FO[I]il,
whereP,;; andG;; are complex blocks of sizge x ¢; andg, x ¢, respectively.

Additionally, assume

H-1 Ei,k=1,...,N,s=1,..., K, the random blocks of the matr& are independent.

H-2  All the elements of the matri are zero mean, i.&2{=} = 0.
H-3  supg ymax;—; . n ZjK:l E||Z]1* + supg y max;—y,. x SV E|E|? < +oo,

..........

H-4 Lindeberg condition¥r > 0

K N
: — 2 — — 2 —
o (ZI{laXNz;E (=5 1Px{I1Ex1l > 73) +J.H11’?%?’<KZ;E (=Y =51 e T})> =0.
j= i=
(64)
Then, fora € C\R™

Kzlﬁi}\}LOOE|Pp£(O‘> — Tpe(a)| =0 pl=1...,p

and

KZEJ?HME‘GPZ(@) - OflRpZ(O‘H =0 pl=1,...,p

I.e. the blocks of the matricefé andG converge in the first mean to the corresponding blocks of titeices

T = diag((C{)(@)) " n=t,.n

-----
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and

respectively. The matrix blocks'!) (o) of sizeg; x ¢, andCﬁfk)(a) of sizeg, x ¢, are equal to

CcY(a _aI+ZEE» )iiB) s n=1,...,N (65)

Cc?(a) I+ZE Y),ER)y 5 k=1,...,K, (66)

respectively.

Lemma 6 [41], [43] Let us assume that the definitions of Lemma 5 hold @@ conditions of Lemma 5 are
satisfied.
Then, they, x ¢, matricesC') (o), n = 1,..., N and theg, x ¢, matricesC\> (a), k = 1, ..., K, defined

in (65) and (66), respectively, convergelds= 3N — oo to the limit matrices

lim CUM=wl) n=1,...,N
K=BN—+o0

lim  CU=w®  p—1. . K

K=pN—+oc0
wherelIlﬁ}TZ, k=1,....N and\Ifﬁf, k=1,..., K satisfy the canonical system of equations
—1
_ aI+ZE{._.n] [\W } EW} , n=1,....N, (67)
—1
kk_IJrZE{”H [\p“] :jk}, k=1,...,K. (68)

The following Lemma states the existence and uniquenesgeddlution of the system of canonical equa-

tions in the class of definite positive Hermitian matrices.

Lemma 7 [41] Let us adopt the definitions of Lemma 5 and let us assumiettte conditions of Lemma
5 are satisfied. Let us consider the system of canonical emsa{67) and (68). Then, the solution of
the canonical system of equations (67) and (68) exists aisduihique in the class of nonnegative definite
analytic matrices foRe(«) > 0.
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The following lemma due to Girko provides convergence ofdtyenvalue distribution of the matr2="

with = defined in Lemma 5 to a deterministic distribution functiowl &he corresponding Stieltjes transform.

Lemma 8 [41] Let us adopt the definitions in Lemma 5 and let the assionpiof Lemma 5 hold. Further-
more, letu,, y(x, 22" denote the normalized spectral function of the squaré x ¢; N matrix argument,

i.e. the empirical eigenvalue distribution of the maBE” . Then, for almost alk: with probability one,
]\}I_I};O ‘:umN(x? EEH) - FQ1N(:C>| =0
whereF, y(z) is the distribution function whose Stieltjes transformdsial to
+00 .
/ (z +a) " dFy (@) = (@ N) ' te[ 2] (69)
0

with & = diag(¥,,)n=1..y NONNegative definite analytic matrix fée(«) > 0 and ¥,,,, satisfying the

canonical system of equations (67) and (68).

Lemma9 [44] Let x = (21,9, ...,xy) be anN-dimensional column vector of complex i.i.d. elements

with zero mean and unit variance aiddbe anN x N complex matrix. Then, for any> 2

P
2

Elz”Cz — trC|’ < K, ((E|x1|4trC’C’H) + (E|g;1|2ptr(CCH)%>> (70)

with K, positive constant independent./sf

APPENDIX ||

PROOF OFTHEOREM 1
Let us consider the-block-wise circulant matrices of ordé¥, ®,. £ = 1, ... K defined in Theorem 1,
and let us denote witli"%} the unitary Fourier transform matrix of dimensiaNsx N with (¢, m) element
given by
(Fx)om = %ﬁe"?(“xm”. (71)
We can extend the well known results on the diagonalizatfaziroulant matrice$[31] to decompose the
r-block-wise circulant matrice®,, k =1,... K as

P, = (FNn@I,)A,(1e)Fy (72)

*A circulant matrixC = §(f(z)) of order N can be decomposed 6= Fy DF R, with D = diag(f(0), f(%),... ,f(27r<N—1\’,1))).
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whereA (1) isanrN x N block diagonal matrix with™ block given by

(A (T))ee = D (27T 6—717 Tk) (73)

and(F'y ® I,) is a unitary matrix.

The matrixS can then be rewritten as
S=(FnyI,)( Ay, (11)81,A4,(72)82, ..., 04, (TK)SK),

with 3, = F'¥s,. Assuming the elements of the spreading sequepeéd. Gaussian distributed; is also
a vector with i.i.d. Gaussian distributed elements havirggame distribution as the elementspf Since
the eigenvalues of any matriX are invariant with respect to left multiplication by a umytamatrix U and
right multiplication byU” , i.e. the eigenvalues of the mattk coincides with the eigenvalues of the matrix
UXU" | then the singular values of the matricgsand S = (Ayr(T1)81, Ap(12)82, ..., Ay (TK)SK)
coincide. The same properties holds for the matriEeand H = SA. Itis straightforward to verify that
alsoSINR,, is invariant with respect to such a transform. In fact,
SINRy, = hil (H HY +o°1) " by
~ o5 (HH, +01) 5,

with H, and/ﬁ,C obtained from the matriceH andﬁ, respectively, by suppressing thé column. There-
fore, in the following we focus on the analysis of the systeitnwansfer matrixH .

The matrixH is a matrix structured in blocks of dimensions 1. The block(n, k) f"mka n=1,...N
andk = 1,... K, is given by

P = |ai* (B (7) JunSn

wheres,, ; is a Gaussian random variable with zero mean and variBA®, .|*} = +. Additionally, the
variabless,, ;, are i.i.d.. Therefore, conditions H-1 and H-2 for the apgidity of Lemma 5 and Lemma 6

are satisfied. Condition H-3 of Lemma 5 is satisfied. In fact,

K N
¢ =sup ngllfi_?FNZE{thkHz} + kgﬁbﬁ(z E{thkﬂz}’]

Since the functior®(w) is bounded in absolute value with finite support a2, 7)| is upper bounded for

any (2 andr. Then, there exists a constafifiax > 0 that satisfied|(As.(7%))un > < Cumax for anyk and
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n. Additionally, the elementsu; | are uniformly bounded for any, i.e. Jayax > 0 such thata,|* < a¥; x

for all k. Then,

K
¢ < KSEEN araxCOMax (N + 1) < 400. (74)

In order to verify the Lindeberg condition H-4 we focus on lineit

n= lim max 3 E(thk” X(thkH > 5))

K=pN—oco N
k=1

foranyd > 0. Let us observe thatn, &

E (Il nil > 6)) =l (A g () a1 /{ S AP ()

B> it s
"R a2 1Ay () 112

a 4 A r\Tk ) )nn : iny Py
< lax|*]|( qgQ( k) )Jon | / |Snk|4dF(Snk)

whereF'(s,;) is the cumulative distribution function &f,;.. By using the fact thag,,;, is a complex Gaussian

variable with variancei{|s,|?} = + and forth momen£({|s,;|*} = % and the bounds ofu,|* and

1(Ag,(7k))nn| it hOIdsS

POTENIN 2araxChiax
max B (2] > 6)) < “MAMAX, (75)

Then,n = 0 since

QGMAXCMAX
<np< —/—="= =
0 ,r] 52 K= lﬁl]r\lfjl_)oo Z N2

Similarly, it can be shown that

N
i max B (o2l > 8)) =0

K=BN—co k=1,....K
n=1

and the Lindeberg condition H-4 is satisfied.
From Lemma5lU,.(a),p, ¢ = 1,..., N, the blocks of the matri¥/ («) = (ﬁkﬁ5+a1)—1 converge in
the first mean te x r matricesV',, = (ij))*ldpg, p,t=1,...N, andC’ﬁ) defined similarly as in Lemma
5. Additionally, from Lemma 6 the matrice@g? can be obtained as solution of the canonical system of

equations (67) and (68) asymptoticallyds= SN — oo. Equations (67) can be rewritten as

2)

+ZE{ R,
-1 2 n—1 H n—1

=al, + — Z ‘ak| Ay | 27 TaTk Adm‘ QWT,Tk n=1...N (76)
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with Ay, (z,7) defined in (22) and taking into account thak,, (7)), = Ay, (2722, 75,) in (76).

Equations (68) specialize to
Yy =1+ Z E{ ?Lnk}

_1 —1
_y ZAHT( ) A (B ta)  kek @

By substituting (77) in (76) and considering the canonigatam of equations a& = N — oo we obtain

A, (9 T) Afr (,7) flapo(\, 7)dAd T
1+ 2 [LAT (Q,7) [xV(Q) 1A, (Q,7)dQ

TO(Q) =al, + B/

with Q € [0, 27], or sinceA (€2, 7) is periodical in{2 with period 27, {2 can equivalently varies in the
interval ¥ = [—, w|. Here,S denotes the support of the distribution functiby: (A, 7). By defining
Y(Q) = [YV(Q)]! we obtain (21). It follows from Lemma 6

i c) —y-1 (2 ﬁ).
1m 7TN

The convergence in the first mean and thus in probabilityldiR, = ﬁkHU(az)ka to the quantityp =

Bl [ AL (Q, 7)Y (Q) Ay, (9, 7)dQ is proven ify; = E ‘EkHU(UQ)ﬁk - g‘ vanishes asymptotically, i.e.

lim 7 =0. (78)

K,N—oo
fg,lg

The rest of the proof is focused on showing (78). Let us oleserv
~H ~ ~H _~ ~H ~
m <E|h, U(c*)h — h, Vhi| +E|h, Vh;, — 0| (79)

where the triangular inequalityof the spectral norm is applied aid = d1ag([C’(1)(a N De=1..n IS
defined in Lemma 6.
By applying the submultiplicative inequality for spectradrms and the triangular inequality to the first

term of (79) we obtain

5Given two matricesA and B with consistent dimensions the following inequalitieschol

|AB| < |A||B]| Submultiplicative inequality of spectral norms;

|A+ B| < |A|+|B]| Triangular inequality of spectral norms.
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Elhy, (U(02) — V)hy| =

1—1 (-1 -
( T,Tk) (U(O’Q) —V)21A¢7 (27T N ,Tk) Svk
<N E(|(U(c? VDB su Al (2ri=t A, (2=t
_Z ([(U(07))ic = Ve )E[s35ex] o7 WT’Tk o | 2T N » Tk

i
Ay, (27t ?
= ZE|(U(O’2>>M - Vi H or (215 ’Tk)H

N

|8, 2r5m) |2
<> ( e ) max E|(U(0%))i — Vil.

Thanks to Lemma 5 and the fact theh; , (275+, 7%) [|> < Kuax foralli =1,... N andr,

lim Elh, (U(0?) — V)hy| = 0.

K,N—o0
fﬁﬁ

~H ~ i
In order to prove the convergence to zero)pt= E|h, V h; — o| we consider

~H ~
5 < Elhy Vhy, — of?

~H ~ ~H ~
= E((h), Vhi)* — 20h;, Vhy, + 0%)

— 1 — 1 i —1 j—1 - 9~
=F (|ak|4z A}{T (QFlT,Tk) Vil r (QFlT,Tk) Agr (QWJT,Tk) ViiAg, (QWJT,Tk) |sik|2|sjk|2
ij
_9 2 A (9 2;;1 VA 92 2;;1 3,12 2 80
Q|a’k| Z 7 ™ N y Tk AP, ™ N » Tk |Slk| + 0 ( )
2|ak| 1 I i—l |ak| H I 1—1
Z ( (QWT,T]C) ViiAd),r 2 N ZA r 271‘ Tk ViiAd),r QFT,Tk

17'5]
—1 ) —1 2 — 1 — 1
X Agﬂ. (277']777'1@) ijAH,T. (QFJT,T;C) — NQ ZAHJ (QWZT,Tk) ViiAqu (QWZT,Tk) + QQ_ (81)

From (80) to (81) we make use of the assumptionfhas a complex Gaussian variable circularly invariant

with variance N~!. Let us observe that the spectral norm%{Q2) and V';, for any i, are bounded by
|T(Q)| < ¢ and|V ;| < o2 Then, the first term in (81) vanishes &s— oo. By appealing Lemma 6, for
any:i, V;;, - Y (27%') asK, N — oo with % — (. Then, the second and third terms in (81) converge to

0® and—2p?, respectively. We can conclude that

Kl]{/IEoonz =0

fﬁﬁ
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andrn, — 0asK, N — oo as% — (3. Therefore, (78) and thus the convergence in the first me&hNaR .

Is proven. The Markov inequality implies thats > 0

- 1 -
lim Pr{\hk U(c®)hy — o > ¢} g - lim E|hk U(oc*)h, — 0| =0

K,N—oo K,N—oo
K- Kop

and the convergence in probability stated in Theorem 1 iggiro

This concludes the proof of Theorem 1.

APPENDIX |11

PROOF OFCOROLLARY 2

In order to prove Corollary 2 we rewrite the linHINR,, in (20) as

lim SINRj, = |‘;’“|2 /W tr (Y(Q)Q(Q, 7)) dQ (82)

K,N—oo s

—Tr

and the fixed point equation (21) as

_ 9 too T )\QQTf‘APT()\ 7)dAdT
T Q) =1, +ﬁ/ / 1"‘2); T (Y()Q( 7)) A0 —r<Q<nm (83)

with Q(€2, 7) defined in (49). The matrig (€2, 7) can be decomposed as in (50). Thanks to the assumptions
on ®(9) in Corollary 2, the conditions o ($2) and Q(£2, 7) in Lemma 1 and Lemma 2 are satisfied.
First we show thafl' (Q2), the unique solution of (83) in the class of nonnegative difianalytic functions

in Re(o?) > 0, is anr x r matrix with eigenbasi€/(Q2) defined in (61). Let us assume tHa(2) =
U(Q)Y(Q)U () with elements ofY (€2) nonnegative for all2 € |-, x]. By appealing to Lemma 4

Y (2) is of form (53). Then, by applying Lemma 1 it resutis(Y (2)Q(Q2, 7)) = 0 forall @ € [—7,7].

Therefore,

™

/ﬂ tr (Y(Q)Q(Q, 7)) dO :/ tr (Y(Q)Q(Q)) dQ

—Tr —Tr
s

:/ tr (T(Q)D(Q)) dQ >0

with D(£2) defined as in Lemma 3. Let us notice ttf@Tf Q(Q, 7)dFr(r) = 0 for all Q. Thanks to this
property, the assumption of independence of the randorablas)\ andr and to the uniform distribution of
7 (83) can be rewritten as

~ 1 , oo AdFjap (M)
T (Q)=0“l, — -7 < Q<. 84
®) o </0 L+ 2 7 tr (T(Q)D(Q)) dQ) &Y
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SinceT(Q) and D are diagonal matrices, the matrix equation (83) reducessiystem ofL. scalar equa-
tions. Furthermore, all the quantities that appears initfie hand side of the system of equations (84) are
nonnegative under the assumption fﬁ‘aﬂ) is a nonnegative definite matrix and (84) admits a nonnegativ
definite solution folRe(c?) > 0. The existence of a nonnegative definite solution of the systieequations
(84) implies also a solution of the fixed point matrix equat{83) given byY (Q2) = U(Q)T(Q)UH(Q).

Let 7,(2) be thes™ diagonal element of (Q2) and let us recall that the" diagonal element oD(2) is

given in (62). Then, (84) reduces to

0,1(Q) = o? +ﬁTL62 '(IJ (% — sign(Q)%T (V g 1J — s+ 1))
oo AdF 412(\)

X 2

/0 Lo 2 7 i () @ (% = Fsign(@) (|75t - £+ 1)) [ a0

—rm<Q<mands=1,...r. (85)

2

By changing the variablg =  — sign(Q)27 (| 51| — s + 1) and defining the function(y) in the interval

(—rm,rm) as follows

the system of equations (85) can be rewritten as

2 ptes AAE 42 (A
Q) = o+ 5% @(%) / () _ yl| < rm (87)
é c O 142 [T w(t) ’cb (%) dt

A similar approach applied to (82) yields

, aPr & [T , r—1 2
KIJ{TIEOO SINR, = T2 Z; B O | 2 — 27sign () 5|78 +1 v(2)dQ
lag|?r [T Q\
= 7 | P T v(2)d€Q. (88)

Let us recall that the variance of the discrete white noisé is % Additionally, let us define the function

Q T’NQ Q
nl==,)= e
T. T Ey 1.

By substituting (19) in (87) and (88), using definition (8andw = Tﬁ we obtain the fixed point equation

2

v(§2). (89)

(26) and the limit (25), respectively. This concludes thegbiof Corollary 2.
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APPENDIX IV
PROOF OFTHEOREM 2

The proof of Theorem 2 follows along the line of the proof ofebhem 1. In this casé, (2, 7) =
e
SRR <Q> e(9) and the matrixQ (2, 7) is independent of. Specifically,

Te Te
( )
! T.

Then, applying the same approach as in Theorem 1 Lemma 5 anoh& yield
*(7)
T.

v 2 2 r Q 2 o +o0 )\dF]A‘Q()\)
Y (0°Q) =0+ 03— |0(~ ]| eQe”(Q) 2 §

Tc <Tc) /0 1+%f:rTL§ ) (%)’ eH(Q)T(O'Q,Q)e(Q)dQ
—orr g [ UODIOY (O ae)

2 ~
L = |® (Qﬂ e()Y(02,Q)e(Q)d

2

e(Q)e ().

r

Q(Qv T) = ﬁ

2

e ()Y (0%, Q)e(Q)dQ

) - ‘CLk‘QT’ ™
i SINRe =0 |

with

-1

(90)

T

with U ((2) defined in (61) andD’((2) diagonal matrix with all zero elements except té5* | + 1)th

i <ﬂ> ’2. Then, it is apparent that the

element, corresponding to the eigenveat@®) and equal toz; ™

solution of the fixed point matrix equation (90) is a matrixiwihe basis of eigenvectots({2) and (90)

reduces to the equation corresponding to(thie* | + 1)th elementy(Q2) of Y(Q) = U ()Y (QU(Q)

_ T
Uy 1(9) = 02 + ﬁﬁ

*(z)
c TC
The other components of the diagonal mafiixQ?) are simply given by 1(Q) = ¢, s = 1,...,r and

s # (|5%] + 1) . The identitye” (Q) Y (Q)e(Q2) = (1) yields

2 s
lim SINR, = ] T/ O (%)

K=BN—00 27T?
The convergence (92) in probability or in the first mean caprogen as in Theorem 1. By substituting (19)

2/ AdFjai2(N) _ _ (91)
L o2 7 | (2)] v(@)an

c

2

v(Q)dQ. (92)

in (91) and (92), using definition (89), and = T%, we obtain the fixed point equation (36) and the limit
(35), respectively.

This concludes the proof of Theorem 2.
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APPENDIX V
PROOF OFPROPOSITIONZ2

Proposition 2 follows immediately from Corollary 3. In faéitom (33) it is apparent that the multiuser ef-
ficiency of a system with load and sinc pulses having roll-off equaldas equal to the multiuser efficiency
of a system with Ioatg and sinc pulses having zero roll-off. Thanks to the fundaaierlations between

multiuser efficiency and capacity [39] we obtain (41). Sitlve spectral efficiency is obtained as the ratio
CEM(3, SNR «a

«

)}SNR:NO_I

, itis apparent from (41) that it is constant@s— oo for any finite bandwidtfa.

APPENDIX VI
PROOF OFCOROLLARY 4

Let MMSE,, 1, (p) be the achievable MMSE by an estimator of the synthoh| transmitted by usek
in the m-th symbol interval when the transmitted sigibah (14) is Gaussian and the signal to noise ratio
is p = o~2. Furthermore, leBINR,, ) (p) be the SINR at the output of the same MMSE estimator for the

transmitted symbdl,[m]. Then,

1
= T4 SINRy 0 (0)

MMSEy, ) (p) (93)

Additionally, let /(b; y, p) be the mutual information in nats between the inpatnd the outpuy. From

Theorem 2 in [39] the following relation holds

d ~
d—pf(b;y,p) = E{||Hb - Hb|*} (94)

beingg the conditional mean estimate. We recall here that for Ganssgnals conditional mean estimate
and MMSE estimate coincide (see e.g. [35]) and
E{|Hb— Hb|*} = v’ H'(HH" + ¢°I)"'H

_ Z SINR, ) (p) (95)
o=

I+ SINRy, 1) ()

For K, N,m — oo with % — 3, SINRy, 1) (p) converges with probability one to deterministic values.

_ By

More specifically, SINR ,(p) = =321,

v beingn, the multiuser efficiency corresponding{o=

=7

ﬁ—j}’ as in Corollary 2 or Theorem 2.

Then, the total capacity per chip constrained to a given phlpe waveform is given by
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EyTe 0o NS
C(asyn) (ﬁ @ d)) = i o " ATcnﬁdﬂAlz(A) ds (96)
Boo
A dF g2 (A
_F / " at / AmdFiap(d) (97)
In2 J, 0 1+ Aty
This concludes the proof of Corollary 4.
APPENDIX VII

PROOF OFTHEOREM 3

In this sectiord}’ denotes aV x M matrix of zeros. Shortly)y ande, denoteN-dimensional vectors
of zeros and ones, respectively. Additionally, we intraeltize notatiorFﬁ\’}) = Fy ® I, with Fy already

defined in (71).

A basic property of the Fourier eigenbasis functions isestat the following.

Property 1 Let E';, denote anl. x L matrix of ones and by-‘(L” (u),withu < (L —1)Nr,the LNr x LN

matrix with structure

o ol o
Flw=| oy  FY ol
L
Then,
1 (1)) £0)
(B FOVFD () = £, N) (98)
where&(u, r, N) is a matrix with structure
R.n
— ur (L—1)Nr—ur
8(”7 T? N) OLNT‘ O(Lfl)NT‘fuT
Ry

andR"y isanrN x N block diagonal matrix with{-th block (R Y ) = ¢ % ¢ Due, .

Let us consider the virtual spreading sequence of ki$er symbolm in the time interval—M T, M T],
with M > m integer:

m)T 5 m
]({: ) = Qf [O?]\/jer)NT’ kal({“ )7 O,{]\mefl)NT]'
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Property 1 and decomposition (72) yield

1 r m T ~ \~
NoIES 1(E2M+1 ® FEV))hI(c ) — eni+1 @ (RN As - (Th)Sk)
- L Ema e P (99)
VoM +1

with E,(Cm) = ak[0{y {myn (F%)Rff\,AW(%“k)Ek)T,O(TMfm) ~.J7. Let us observe that the position of the
nonzero elements does not depends anymofe 8imce the random entries of the vecégrare rotationally
invariant, the rotation matriR7%, can be absorbed in the random vedpmwithout change of the statistics
and the vectoﬁk can be rewritten as

~

b, = ar[0Oarm)Nr, hém), O(as—myne]”

Whereh,(gm) = FE\’})AW@) is the virtual spreading for the:-th transmitted symbol of usérdelayed by

7 € [0,T.). From the previous considerations it follows that the randoairix 7 = HH" is unitarily
equivalent to an infinite block diagonal matrix with block§™ = H™ H™H of dimensionrN x rN
being H™ the matrix withk-th column equal t(hﬁc’”), I.e. the transfer matrix of a symbol synchronous but
chip asynchronous system with time del@y, . . ., 7x }. Then, asymptotically foi, N — +oc the eigen-
value distribution of the matri€"™ equals the eigenvalue distribution of the matffix The equivalence
of the systems in terms of SINR at the output of a linear MMSteder and in terms of capacity follows
also from the fact that the SINR is invariant to any unitagngsform of the system transfer matrix as already
observed in the proof of Theorem 1.

This concludes the proof of Theorem 3.
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