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Asynchronous CDMA Systems with Random

Spreading—Part |I: Design Criteria

Laura Cottatellucci, Ralf R. Mller, and Merouane Debbah

Abstract

Totally asynchronous code-division multiple-access (GH)Mystems are addressed. In Part I, the fundamental
limits of asynchronous CDMA systems are analyzed in termspeftctral efficiency and SINR at the output of the
optimum linear detector. The focus of Part Il is the desighoaf-complexity implementations of linear multiuser
detectors in systems with many users. We consider detdbimradmit a multistage representation, e.g. reduced rank
multistage Wiener filters, polynomial expansion detectaeighted linear parallel interference cancellers.

The effects of excess bandwidth, chip-pulse shaping, ameldielay distribution on CDMA with suboptimum lin-
ear receiver structures are investigated. Recursive ssiores for universal weight design are given. The perfogean
in terms of SINR is derived in the large-system limit and tleefprmance improvement over synchronous systems
is quantified. The considerations distinguish between twgsaof forming discrete-time statistics: chip-matched

filtering and oversampling.

Index Terms Asynchronous code division multiple access (CDMA), ctelmapacity, multiuser detection, ran-
dom matrix theory, effective interference, linear minimumean square error (MMSE) detector, multistage detector,

random spreading sequences.
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|. INTRODUCTION

In Part | of this paper [1], we analyzed asynchronous CDMAeays with random spreading sequences
in terms of spectral efficiency constrained to a given chifs@uvaveform and in terms of SINR at the
output of an optimum linear multiuser detector. The analgsiowed that under realistic conditions, chip-
asynchronous CDMA systems significantly outperform chyipesironous CDMA systems. In order to uti-
lize the benefits from chip-asynchrond@DMA, we need efficient algorithms to cope with multiuser de-
tection for chip-asynchronous users. Therefore, in paof this work, we focus on the generalization of
known design rules for low-complexity multiuser detectimrghip-asynchronous CDMA.

A unified framework for the design and analysis of multiusetedtors that admit a multistage repre-
sentation for synchronous users was given in [2]. The classultiuser detectors that admit a multistage
representation is large and includes popular linear madtidetectors like linear MMSE detectors (e.g. [3]),
reduced rank multistage Wiener filters [4], [5], polynomeéabansion detectors [6] or conjugate gradient
methods (e.g. [7]), linear parallel interference cancslifIC, e.g. [8], [9]), eventually weighted (e.g. [10]),
and the single-user matched filters. Multistage detect@rsanstructed around the matched filter concept.
They consist of a projection of the signal into a subspacé®fthole signal space by successive matched
filtering and re-spreading followed by a linear filter in théospace.

Multistage detectors based on universal weights have begroped in [11], [12] for CDMA systems in
AWGN channels and extended to more realistic scenarios8in[14], [2]. These references make use of the
self-averaging properties of large random matrices todmudersalweighting coefficients for the linear filter
in the subspace. More specifically, the universal weigheoatained by approximating the precise weights
designed according to some optimality criterion with asyatipally optimum weights, i.e. the optimum
weights for a CDMA system whose number of users and spredalngy tend to infinity with constant ratio.
Thanks to the properties of random matrices, asymptoyicaktse weights become independent of the users’
spreading sequences and depend only on few macroscopgcrsgatameters, as the system load or number
of transmitted symbols per chip, the variance of the noisé the distribution of the fading. In this way, the
weight design for long-code CDMA simplifies considerabtg, gomplexity becomes independent of both
the number of users in the system and the spreading factoedver, the weights need updating only when

the macroscopic system parameters change.
! As already shown in Part | of this paper [1], asynchronismeisdicial when the relative delays between users;iaténteger multiples of a

chip interval. To emphasize this requirement we use the tdiprasynchronism instead of asynchronism.
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The fact that users are not received in a time-synchronizather at the receiver causes two main prob-
lems from a signal processing perspective: (i) the needrianfinite observation window to implement a
linear MMSE detector and (ii) the potential need for overghng to form sufficient discrete-time statistics.
The need for an infinite observation window is primarily tethto asynchronism on the symbol-level, not
the chip-level. It was addressed in [15], [16] where it wasid that multistage detectors need not have infi-
nite observation windows and can be efficiently implememtgdout windowing at all. A detailed overview
of the state of art about statistics, sufficient or not, fordtraser CDMA systems and how to form them
was addressed in Part | of this paper [1]. In part | we presegémeral results with the only constraint that
the sampled noise at the output of the front-end was white.tH@sake of clarity and to get insights into
systems of practical interests, in this part Il we focus oa groups of statistics implementable in practical
systems:

(A) Sufficient statistics obtained by filtering the receivadgnal by a lowpass filter with bandwidiB;,ow
larger than the chip-pulse bandwidth and subsequent sagrgirate2 By ow .

(B) Statistics obtained by sampling the output of a filterchat to the chip waveform at the chip rathip
rate sampling. In this case, the sampling instants need to be synchromié the time delay of each
user of interest. Thus, different statistics for each userequired. Additionally, the chip pulses at the
output of matched filter need to satisfy the Nyquist criteritn the following we refer to them as root
Nyquist chip-pulse waveforms.

General results for the design of linear multistage detsatath both kind of statistics are provided in this

work. The chip pulse waveforms are assumed to be identicalfasers.

For asynchronous CDMA, low-complexity detectors with w@msal weights are conveniently obtained
formed from statistics (A). In fact, these observables &nabjoint processing of all users without loss
of information. Multistage detectors with universal wegland statistics (A) have a complexity order per
bit equal toO(r K) if the sampling rate |$ On the contrary, discretization scheme (B) provides dffier
observables for each user and does not allow for simultajemit detection of all users. An implementation
of multistage detectors with universal weights using suahistics implies a complexity ordgeer bitequal
to O(K?). This approach is still interesting from a complexity poifitveew if detection of a single user is
required. However, it suffers from a performance degradatiue to the sub-optimality of the statistics.

This work is organized in six additional sections. Sectioand Il introduce the notation and the system

model for asynchronous CDMA, respectively. In Section I\Ultistage detectors for asynchronous CDMA
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are reviewed and a implementation which does not suffer firmmcation effects is given. The design of
universal weighting is addressed in Section V. Finally, @émalytical results are applied to gain further
insight into the system in Section VI where methods for pslsaping, forming sufficient statistics and

synchronization are compared. Conclusions are summedSgation VII.

[1. NOTATION AND SOME USEFUL DEFINITIONS

Throughout Part Il we adopt the same notation and definitaresady introduced in Part | of this work
[1]. In order to make Part Il self-contained we repeat heffendmns useful in this part. Upper and lower
boldface symbols are used respectively for matrices anrgecorresponding to signals spanning a specific
symbol intervain. Matrices and vectors describing signals spanning moreglisgmbol interval are denoted
by upper boldface calligraphic letters.

In the following, we utilizeunitary Fourier transforms both in the continuous time and in therdig
time domain. The unitary Fourier transform of a functifft) in the continuous time domain is given
by F(w) = V%? [ f(t)e~*!dt. The unitary Fourier transform of a sequerice.,c_1, ¢, c1,...} in the
discrete time domain is given by(Q)) = \/% :f_oo c,e 79 We will refer to them shortly as Fourier
transform. We denote the argument of a Fourier transformamirinuous function by and the argument
of a Fourier transform of a sequence Qy They are the angular frequency and the normalized angular

frequency, respectively. A function in is periodic with respect to integer multiplesf.

For further studies it is convenient to define the conceptlotbck-wise circulant matrices of ordéy.

Definition 1 Letr and NV be positive integers. Anblock-wise circulant matrix of ordeN is anrN x N

matrix of the form

B, B, --- By
By, By -+ By
C = (1)
B1 B2 e BO

. T
With B; = (c1,, €24, Cr) "

In the matrixC anr x N block row is obtained by circularly right shift of the preu® block. Since the

matrix C' is univocally defined by the unitary Fourier transforms @& s$equencefc; o, ¢s 1, - .. ¢s n—1}, fOr
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s=1..r,

N-1
cs(Q) = Lz:cskefmk s=1,...,r
Vo 5

there exists a bijectio from the frequency dependent vectdf2) = [c1(Q2), c2(2), ..., ¢.(Q)] to C. Thus,
C =3{c()}. @)

Furthermore, the superscripts -7, and-*, denote the transpose, the conjugate transpose, and the con-
jugate of the matrix argument, respectively, is the identity matrix of sizew x n andC, Z, Z*, N, and
R are the fields of complex, integer, nonnegative integersirag and real numbers, respectivety(-) is
the trace of the matrix argument agighn(v,, vo, . . ., v) denotes the vector space spanned bythectors
v, Ve, ...V, diag(...) : C* — C™*" transforms am-dimensional vectoo into a diagonal matrix of size
having as diagonal elements the componentsiofthe same ordetZ{-} andPr{-} are the expectation and
probability operators, respectively,; is the Kronecker symbol anti\) is the Dirac’s delta functionmod

denotes the modulus and is the operator that yields the maximum integer not gre&tan tts argument.

[1l. SYSTEM MODEL

In this section we recall briefly the system model for asyonbus CDMA introduced in Section IV and
VII of Part | of this work [1]. The reader interested in the @ét of the derivation can refer to [1].

Let us consider an asynchronous CDMA system uitlctive users in the uplink channel with spreading
factor N. Each user and the base station are equipped with a singtarent The channel is flat fading
and impaired by additive white Gaussian noise with powecspkdensity/N,. The symbol interval is
denoted withl; and7,. = Tﬁ is the chip interval. The modulation of all users is basedhensame chip
pulse waveformy(¢) bandlimited with bandwidthB, unitary Fourier transform¥(w), and energyF,, =
S22, ()Pt

The time delays of thé{ users are denoted with, £ = 1,..., K. Without loss of generality we can
assume (i) user 1 as reference user sothat 0, (ii) the users ordered according to increasing time delay
with respect to the reference user, ie.< 7 < ... < 7g; (iii) the time delay to be, at most, one symbol
interval so thaty, € [0, 7).

As for the results presented in Part |, the mathematicaltseeptesented in this second part hold for any

front-end that keeps the sampled noise white at its outpwweter, in order to get better insights into

2For a thorough discussion on this assumption the readeretanto [3].
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the physical system we focus on two front-ends of practiodl theoretical interest. Both of them satisfy
the more general assumption underlying the results in P& elrefer to them as Front-end Type A and
Front-end Type B
Front-end Type A consists of
« An ideal lowpass filter with cut-off frequency = 7= wherer € Z* satisfies the constrairt < T
such that the sampling theorem applies. The filter is nomedlto obtain a unit overall amplification

factor, i.e. the transfer function is

S ll<E

Glw) =4 VP "

0 |w| > 7.

3)

« A subsequent continuous-discrete time conversion by sagat rate-.
This front-end satisfies the conditions of the sampling téepand, thus, provides sufficient discrete-time

statistics. For convenience, the sampling rate is an integdtiple of the chip rate. Additionally, the

discrete-time noise process is white with zero mean andnegr> = gf} :

Front-end Type B consists of

« Afilter G(w) matched to the chip pulse and normalized to the chip pulsggriee.G(w) = \If*(w)E;%;

« Subsequent sampling at the chip rate.

When used with root Nyquist chip pulses, the discrete timigaprocessw|[p|} is white with variance];Z—OTc.
For a synchronous systems with square root Nyquist chigeputkis front end provides sufficient statistics
whereas the observables are not sufficient if the systenymchsonous.

The chip waveform at the filter output is denoteddiy) and its unitary Fourier transform by(w). The
well-known relationss(t) = ¢ (t) x g(t) and®(w) = ¥(w)G(w) hold. The unitary Fourier transform of the
chip pulse waveforng(t) sampled at rat% and delayr is given by

+00

! j ms) mk [ J s
o 7) 2~ Y SO (JL;f >>. (4)

Sufficient statistics for asynchronous CDMA require an itdiobservation window. In the following, we

introduce a matrix system model corresponding to an infotigervation window.
3For the sake of compactness of some of the results, we adofitexmormalization than in Part |. Here, the signal enetdfi@output of the
front-end is equal to one. In Part |, the energy of the analtgy’ impulse response is normalized to unity. The vamaoitthe sampled noise

at the front-end output changes accordingly.
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Let us denote witth™ andy(™ the vectors of transmitted and received signals at timastr € Z.

The baseband discrete-time asynchronous system is given by
Y=HB+W (5)

where) = [... ym DT T omi)T T gnd B = [... b= VT p(mT pmHtDT T gre infinite-
dimensional vectors of received and transmitted symbaigaetively;VV is an infinite-dimensional noise

vector; andH is a bi-diagonal block matrix of infinite size given by

.0 H™Y H™ o .. ..
H = . (6)
o H HM™Y o

Here,HSj”) andHElm) are matrices of sizeN x K obtained by the decomposition of theN x K matrix

H' into two parts such thall ™ = [H™T H™7|T_ For H™ the relation
H™ = 8m A (7)

holds whereA is the K x K diagonal matrix of the received amplitudesandS™ is the2r N x K matrix
whosek-th column accounts for the spreading of the symbol trartechkty usel in the symbol intervain
and due to the actual spreading sequence, the channel aetbfjitering and sampling at the front-end. We

refer to it as the matrix of virtual spreading. More speclficahe matrix of virtual spreading is given by

S(m) = (legm), i’zsgm), ce @ngn)> (8)

(m

where s, ) is the N-dimensional column vector of the spreading sequence af uger the transmitted
symbolm and®,, is the2r N x N matrix taking into account the effects of the chip pulse gwpd the time
delayr; userk. Let us decompose, in 7, = F—’“J and7, = 7. — 1.7, = 7 mod T, the integer number
of chips the signal is delayed and its delay within a chippeesively. The matrix®,, is of the form
O?k
o= | P, 9)
ON;?k

where0-, and0Oy_», are zero matrices of dimensiofig x N and(N —7;) x N, respectively;ff',C is an

r-block-wise circulant matrix of ordeN as in (2)

@), = F(c(Tr)), (10)
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with
=) = [6(0. 7)0(Q. 7 — Lt O 5 _ 0T
C(Tk)_ ¢( 7Tk)¢( 5> T 7»)7"-7¢( y Tk r ) .

Thus, the virtual spreading sequences are the samples déliged continuous-time spreading waveforms
at sampling rate /T..

Throughout this work we assume that the transmitted syn#yelsincorrelated and identically distributed
random variables with unitary variance and zero mean, @) = © andE(BB") = T being® and
T the unlimited zero vector and the unlimited identity matrixspectively. The elements of the spreading
sequences,(gm) are assumed to be zero mean i.i.d. Gaussian random varageall the users, chips, and
symbols withE{s\™s\"™"} = LI . Finally,24\™ denotes that column of the matrk containing the:"
column of the matrixi ™ . We define the correlation matricds = HH" andR = HH. The system

load s = % is the number of transmitted symbols per chip.

IV. MULTISTAGE STRUCTURES FORASYNCHRONOUSCDMA

We consider the large class of linear multistage detectoragynchronous CDMA. Le;t(L”Q (H) be the

Krylov subspace [17] of rank € Z* given by
XS (H) = span(TU™) 1) (11)

A multistage detector of rank € Z* for userk is given by

~
[y

b= (WU Y (12)
V4

Il
o

m

wherew,ﬁ ' is the L-dimensional vector of weight coefficients.

It has been shown in [16] that, given the weight veaﬁdf) the detection of the symbcbg”) by the
multistage detector of rank in (12) can be performed with finite deldyusing the implementation scheme
in Figure 1. Although infinite length vectors and infinite dinsion matrices appear in (12), the multistage
detector in Figure 1 implements exactly (12) and does ndestrom truncation effects. Equivalently, the
multistage detector in Figure 1 can be considered as a itagjésletector processing data over an observation
window of size2L. The projection of the received vectdr onto the subspaceé’f,g(ﬁ), fork=1.. K,
is performed jointly for all users and requires only muitgtions between vectors and matrices. The size
of those vectors and matrices does not depend on the oliservahdow. For further details the interested

reader is referred to [16], [18].
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Matched
Filtering

y(ntl) Matched
Filtering
H(n)

Matched
Filtering

Spreading

Hn—1)" H (n—L+1) H(n-D)"

R(LK,n)7y

{ = {CPJ
L-1 : L2 H

Wo i \ %8 l
—
1%t Stage
bn—l

ALK, n—L)7y

f———————— A(1:K,n—L)TY

R(LK,n—L)TtY

Fig. 1. Multistage detector for asynchronous CDMA systertere fi(1 : K, n) = [®1s(™, @257, . .. @Ks%”]

The class of multistage detectors includes many populatiusel detectors:
« the single-user matched filter for= 1,
« the linear parallel interference canceller (PIC) [19],][80 weight coefficients chosen irrespective of
the properties of the transfer matfk,
« the polynomial expansion detector [6] and the conjugatdigra method [7], if the weight coefficients
are identical for all users and chosen to minimize the meaarscerror,
« the (reduced rank) multistage Wiener filter [5] if the weigloefficients are chosen to minimize the
mean square error, but are allowed to differ from user to.user
Throughout this work we refer to detectors that minimizeMf&E in the projection subspace of the user of
interest a®ptimum detectors in the MSE senbtore specifically this class of multistage detectors idels
the linear MMSE detector and the multistage Wiener filterrmitthe polynomial expansion detector.
In the following we focus on the design of multistage Wien#eifs implemented as in Figure 1. This
reduces the problem to the design of the filter coefficiavﬁ@. The multistage Wiener filter for the detection

of the symboln transmitted by usek reads

L—1
M =S ol T @
=0
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The weight vector™ that minimizes the MSE{[| M"Y — 5|2} is given by

2

L—
w™ = argmirE Z-“ﬂ U Ty — ™ (14)
—(m)
w), =0
2
_ argmirE{Hw,gm)Hm,gm) - } (15)
—(m)
Wy

wherez™ is an L-dimensional vector with™ element(z\™); = t\"™" 77~y This optimization prob-

lem is solved by the Wiener-Hopf theorem [21] amﬂ”) is given by
w” = (") ¢ (16)

Where”(m E{wk :ck " andg¢ = E{b wkm)}. It is straightforward to verify that in this case

(1a2)hn1 + 02(1z)kﬂn T (1QL+l)kﬂn + 02(1QL)kﬂn
=(m) (R)km + (R (R"m + (R i
:ak )
(RL+1)k,m + UQ(RL)k,m (RQL)k,m + O_Q(RQL—l)hm
m T
6" = (R (Rt - (R om) - (17)

where (R, = h\™7T°'h\"™ is the diagonal element of the matriR® corresponding to then!

symbol transmitted by usér.

V. UNIVERSAL WEIGHT DESIGN

Consider the SINR of any linear detector that admits a ntalfis representation. L&, ,, be the weight
vector for the detection of the'™ symbol transmitted by usér Then the SINR at the output of the multi-
stage detector is given by

B glm) gm) T
SINR, = &Sk &

(18)

—(m)H ;=(m m m)T \— :
w,""(E" - e Wyimn

The performance of multistage Wiener filters simplifies to

gn)TEI(Cm) -1 gn)
SINR, = —>h =k Sk (19)
T

From (16), (18), and (19) it is apparent that the diagonahelas of the matrifR® play a fundamental role

in the design and analysis of multistage detectors.
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It has been shown in [2] that, if the spreading sequencesadom and the CDMA system is synchronous,
the diagonal elements of the matrR®, s € Z", converge to deterministic values & N — oo with
constant ratio. This asymptotic convergence holds for soagses of random matrices and is a stronger
property than the convergence of the eigenvalue distohutiThe Stieltjes transform of the asymptotic
eigenvalue distribution oR is related to the SINR at the output of the linear MMSE dete@s pointed
out first in [22] for synchronous CDMA systems. The asymptetigenvalue moments R enable the
asymptotic performance analysis of reduced rank multestslgener filters [23] and the design of multistage
detectors with quadratic complexity order per bit [14], J13 he convergence of the diagonal elements
of R* has been utilized in [2] for the design of multistage detectoith linear complexity order per bit
in synchronous CDMA systems and for the asymptotic analyfses1y multistage detector not necessarily
optimum in a MSE sense. In the following we extend the resnlfg] to the case of asynchronous CDMA
systems making use of the asymptotic properties of the ramdatrix R for asynchronous CDMA systems.

The design of low complexity multistage detectors is basethe approximation of the weight vectors

'w( ) by their as IIIptO'[iC limit wherl(, N — oo with constant ratiq3
k y y 9

Thanks to the fact that the diagonal element$dfcan be computed by a polynomial in few macroscopic
system parameters, the computation of the weight vectasnes independent of the sizeBfand inde-
pendent ofm. Thus, the effort for the computation of the weights becomegligible and the complexity
of the detector is dominated by the joint projection of theereed signaly onto the subspaceécm) (H),
k=1... K andm € Z. This projection has linear complexity per bit if the muléige detector in Figure 1
IS utilized.

The convergence of the diagonal element§Rfto deterministic values is established in the following
theorem. The definitions and the assumptions in the stateohdimeorem 1 summarize and formalize the

characteristics of system model (5) fare [0, 7.

Theorem1let K, N € Nand A € CK*X pe a diagonal matrix with:"" diagonal element;, € C.
T, and T, are positive reals wittl, = NT,. Given{r,n,...7x} a set of delays if0, T;), we intro-
duce the sets of delays i, 7.) defined as{7; : 7 = mmodT,, k = 1,... K} and the set of nor-

malized delays{?k T = L;—kJ } Given a function®(w) : R — C, let ¢(£2,7) be as in (4). Given
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a positive integer-, let ®,, k = 1,... K, be r-block-wise circulant matrices of orde¥ defined in (10)
and S = (@135’“), P, . ..(I)KS(I?),) with s N-dimensional random column vector. LEE =
(H™T HYT = 5 A with H™ H™ ¢ C™V*K and’H the infinite block row and block column ma-
trix of the same form as in (67 = HH”, R = H K, andu,im) the column ofH corresponding to
<I>ks,(€m).

We assume that the functidnw) is upper bounded and has finite support. The receive filteuch s
that the sampled discrete time noise process is white. Thnges, are independent with i.i.d. zero-
mean circularly symmetric Gaussian elements with varidife;;|*} = N~'. Furthermore, the elements
aj of the matrixA are uniformly bounded for any. The sequence of the empirical joint distributions
Fl(jgj(/\,?) = % Z,ﬁil 1(\ — |ax]?)1(7 — 7) converges almost surely, & — oo, to a non-random
distribution functionf , . 7(A, 7).

Then, conditioned ofia,|?, 7 ), the corresponding diagonal elements of the matriRésonverge almost

surely to the deterministic value

im  (Rem = lim  UTTU™ 2 Ry(|ag)?, 7) (21)

K=8N—c0 ’ K=8N—0c0

with R,(|ax|?, 7) determined by the following recursion

~

-1

Ry(\,T) = 9(To_s1,\,T)Rs(\, 7) (22)
s=0
and

/-1
Ty(Q) =Y f(Resy, Q)T(Q) —1<Q<7m  (23)

s=0
f(R, Q) = ﬁ/ /\AW(Q,T)AgT(Q,T)Rg()\,T)d Flapr(A ) —T<Q<7 (24)

)\ i

g(Tp N\, 1) = %/ AL ()T Q) Ay, (Q2,7)dQ (25)

OCTOBER22, 2009
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with
P(2,7)

Qb(Qv T %)
Ay (Q,7) = | . (26)

o(Q, 7 — =)

T

The recursion is initialized by settirif,(2) = I, and Ry(\, 7) = 1.

Theorem 1 is proven in Appendix |.

Note that the asymptotic diagonal elementgRdfdepend on the delay, only via the delay of a chip pulse
waveform within a chip, i.e. via;, while any delay multiple of,. leaves the diagonal elements unchanged.

From Theorem 1 we can obtam%), the asymptotic eigenvalue moment of the mafxof order/? by
using the relation

mi = E{Ri(\, 7))
where the expectation is taken over the limit distributiin. (A, 7). Forr = 1 and F 4. 7(\, 7) =
Flap(X)o(7), i.e. for synchronous systems sampled at the chip ratepanyisatisfying the Nyquist criterion
the recursive equations (23), (24), and (25) reduce to ttwsen in [2] Theorem 1.

This theorem is very general and holds for all chip pulsegaéfical interest. Furthermore, no constraint
is imposed on the time delay distribution. The choice of tioatf end in this work is restricted only by the
applicability of (18) or (19), which imply white noise at tifi®nt end. Then, since both Front-end A and
Front -end B keep the sampled noise white, Theorem 1 appliesth of them.

Now, we specialize Theorem 1 to a case of theoretical andipahmnterest, where sufficient statistics are
utilized in the detection, the chip pulse wavefoutt) is band-limited, and the sequence of the empirical
distribution functions of the time delays converges to darm distribution function ag<’ — +o00. The
constraint to use sufficient statistics restricts the adgont-ends. The following results apply to Front-end

A but, in general, not to Front-end B.

Corollary 1 Let us adopt the same definitions as in Theorem 1 and let the sasumptions of Theorem
1 be satisfied. Additionally, assume that the random vaehland 7 in F| 4. 7(A, 7) are statistically

independent and the random variablés uniformly distributed. Furthermor&(2) is bounded in absolute
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value, and bandlimited with bandwidii < 7. Then, given(|a,|*,7,) andm € Z, the corresponding

2

diagonal element of the matriR* converges almost surely to a deterministic value, conutitily on |a;,

im  (R)pm = lim UM TU™ E Ry(jay)?)

K=3N—c0 ’ K=0BN—o0

With Ry (\)[r=jq, > determined by the following recursion:

-1
Ry(A) =) AR(A\wi—sa
s=0
and
r ok 1
Ty(w) = ) f(Reesr) 7 |® ()| Ty(w) —27B < w < 21B

I
=)

S

F(Re) = / AR/(A)d a2 (N)

b= " /w 1@ () Ty(w)d w.

" 2T, ) g
The recursion is initialized by settiri(w) = 1 and Ry(\) = 1.

Corollary 1 is derived in Appendix II.
The eigenvalue moments ® can be expressed in terms of the auxiliary quantifie8,) andv; in the
recursion of Corollary 1 by the following expression:

n = B} = 3 (R s,

Applying Corollary 1 we obtain the following algorithm to mpute the asymptotic limits of the diagonal

elements ofR’ and its eigenvalue moments.

Algorithm 1

Initialization: Letpo(z) = 1andug(y) = 1.

I step: « Defineu,_1(y) = rype—1(y) and write it as a polynomial iry.

« Definev,_(z) = zpe—1(z) and write it as a polynomial in.
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« Define

1 27 B
= T.|®(w)[*d 27
&= g [ TR @7)

and replace all monomialg 42, . . ., y* inthe polynomial,,_,(y) by &, /T., & /T, . . .,
&/ T, respectively. Denote the result by_;.
« Definem?,, = E{|a;|*} and replace all monomials, 2%, .., 2 in the polynomial

ve—1(z) by the momentm&)lm m‘(i)‘g,. o mfﬂ‘g, respectively. Denote the result by

Vi-1.
« Calculate
/—1
pe(z) = Z 2Up—s-1ps(2)
s=0

/—1
T
e(y) = T ZO ByVi_ s 1ps(y).

o Assignps(\) to RE(N).

(1)

Replace all monomials, 22, . . ., 2¢ in the polynomialp,(z) by the momentsy 4.,

mﬁl)‘g,. . ,m‘(QP, respectively, and assign the resultrté?.

Algorithm 1 is derived in Appendix IlI.

Interestingly, the recursive equations in Corollary 1 do aepend on the time delay, of the signal of
userk, i.e. the performance of a CDMA system with multistage dibeds independent of the sampling
instants and time delays if the assumptions of Corollary therchip waveforms and on the time delays are
satisfied.

Additionally, the dependence dt‘()\) on the chip pulse waveforms becomes clear from Algorithm 1:

R*()\) depends o (w) through the quantities,, s = 1,2, .. ., defined in (27).
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By applying Algorithm 1 we compute the first five asymptotigexivalue moments

1 T
) = = ml).&

2
r
me = (7) [B(m] e)*€2 + i 41
me = (T) (32 Es(m{ ) + 3 EaBm {1 + mi €1

me = <%) 26°€3m s (i) + ABEREm Gy + 4B EEsm G (miG)* + B Ea(miy.)’
+2BEE(m \AIZ) +Efm ‘A‘Q]
5
me = <%) [miaeEs8" + EX(miZp)" + 55351&”"|A|2( mige)” + 58 EsEam g (miys)’
+5B°E5E7 MY g1 ([ 42)” + SF7ETES (M) o + 5E°E1ES (M) mi
+5B2E3Em s (] g2)? + BAEL M am o + 55253 %)

In general, the eigenvalue moments®fdepend only on the system load the sampling rate-, the
eigenvalue distribution of the matrid” A, and&,, s € Z*. The latter coefficients take into account the
effects of the shape of the chip pulse or, equivalently, efftequency spectrum of the functigiit). The
asymptotic limits of the diagonal elements of the mafx corresponding to usér depends also ofa,|?
but not on the time delay,.

In the special case of chip pulse waveforthg) having bandwidth not greater than the half of the chip

rate, i.e.B < ;- the result of Corollary 1 holds for any sets of time delayduded synchronous systems.
In Theorem 2, chip pulse waveforms with bandwidth< ;- are considered and the diagonal elements

of R* are shown to be independent of the time delays of the actmesus

Theorem 2 Let the definitions of Theorem 1 hold.

We assume that the functidrw) is bounded in absolute value and has supE®rt [ T T} The
vectorss;, are independent with i.i.d. Gaussian elemenfs € C such thatt{s,;} = 0 andE{|s.+|*} =
%. Furthermore, the elements, of the matrixA are uniformly bounded for an¥. The sequence of the
empirical distributionsﬂ%ﬁ(k) =1 SF L 1(X — |ag/?) converges in law almost surely, & — oo, to a
non-random distribution functiof] 42 ().

Then, givena,|?, the n-th diagonal element of the matriR’, with n mod K = k, converges almost
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surely to a deterministic value, conditionally on,|?,

im  (R)pm = lim UM TU™ 2 Ry(|ay]?)

K=BN—oco ’ K=BN—oc

with R,(|ax|?) determined by the following recursion

Ry(\) = 2_% AR ((A)Ve-s 1 (28)
and
T) = 7 Zz_;ﬁf<msl>%c|®<w>\2n<w> ves 29)
F(R) = [ ARV Flap(Y) (30)
v= o [ 10P T @31)

The recursion is initialized by settiri(w) = = and Ry(A) = 1.

Theorem 2 is shown in Appendix IV. It applies to Front-end A,bn general, not to Front-end B since
Front-end B implies the use of root Nyquist pulses. It isigtitHorward to verify that Algorithm 1 can be
applied to determinéz,(\), the asymptotic limit of the diagonal elements and the eige®/moments of
matricesR satisfying the conditions of Theorem 2.

The mathematical results presented in this section havertat implications on the design and analysis
of asynchronous CDMA systems and linear detectors for dsgnous CDMA systems. We elaborate on

them in the following section.

VI. EFFECTS OFASYNCHRONISM, CHIP PULSE WAVEFORMS, AND SETS OFOBSERVABLES

The theoretical framework developed in Section V enablesatialysis and design of linear multistage
detectors for CDMA systems using optimum and suboptimunimssitzs and possibly non ideal chip pulse
waveforms. In this section we focus on the following aspects

1) Analysis of the effects of chip pulse waveforms and timlayldistributions when the multistage detec-

tors are fed by sufficient statistics.

2) Impact of the use of sufficient and suboptimum statistitghee complexity and the performance of

multistage detectors.
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A. Sufficient Statistics

Sufficient statistics impaired by discrete additive Gaarssioise are obtained as output of detector Type

A. For chip pulse waveforms with bandwidiB < % and any set of time delays, Theorem 2 applies.

For B > % and uniform time delay distribution, Corollary 1 holds. latb cases, a&’, N — oo with

constant ratio the diagonal elements of the maRix and the eigenvalue momerm;v(? can be obtained
from Algorithm 1. As a consequence of (18), the performarfab®large class of multiuser detectors that
admit a representation as multistage detectors depeng®prhe diagonal elemen®’ and the variance
of the noise. In large CDMA systems, the SINR depends on teeesyloads, the sampling rate-, the

limit distribution of the received powerE 42()), the variance of the noise?, the coefficients,, ¢ € Z*

and the received powefs;|?, but it is independent of the time delay, in general. FoB < 2%, the SINR

is also independent of the time delay distribution. Therefee can state the following corollary.

Corollary 2 If the bandwidth of the chip pulse waveform satisfies thetcains B < ﬁ, large synchronous

and asynchronous CDMA systems have the same performarezens of SINR when a linear detector that

admits a representation as multistage detector is usedeatateiver.

If the time delays and the received amplitudes of the sigar@&nown at the receiver and the sampling rate
satisfies the conditions of the sampling theorem, synchusamd asynchronous CDMA systems have the
same performance. In [24] is established the equivalentece® synchronous and asynchronous CDMA
systems using an ideal Nyquist sinc waveforn-€ ZLTC) and linear MMSE detector. Corollary 2 generalizes
that equivalence to any kind of chip pulse waveforms withdveidth B < ﬁ and any linear multiuser
detector with a multistage representation.

By inspection of Algorithm 1 we can verify that the dependen€ R, (|as|?) andmf,Q on the sampling

rate - can be expressed by the following relations

l
T
Rl = (7.) Rilla) @2)
and
l
md) = <Tl) mi? (33)
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whereR; (Jax|?) andmf,ég) are independent of the sampling rgte Thanks to this particular dependence and
the fact thav? = 7. No, the quadratic forms appearing in (18) when specialized tihistage Wiener filters

and in to polynomial expansion detecta§, = 1 & . &1 B '€, ande"ET'E,, ,E "¢, are independent

of the sampling rate for large systems. Thus, the large syptgformance of (1) linear multistage detectors
optimum in a mean square sense (see (19)), (2) of the polai@xpansion detectors and (3) the matched
filters is independent of the sampling rate. This propertgasgeneral. Detectors that are not designed
to benefit at the best from the available sufficient stagstnay improve their performance using different
sets of sufficient statistics. Therefore, the large systerfopmance of other multistage detectors like PIC

detectors depends on the sampling rate and can eventugltgwenby increasing the oversampling factor

Given a positive real, let us consider the chip pulse

\/i for |w| < 22,
w)=¢ V"7 ‘ (34)

0 otherwise

corresponding to a sinc waveform with bandwidth= 57— and unit energy. For waveform (34) with= 1,
T. = 1, andr = 1 Algorithm 1 reduces to Algorithm 1 in [18] for synchronousms. Let us denote by

R™ (g2, 3) andm'? . (8) the values ofr,(|a,|?) andm'y for such a synchronous case and system load

R (syn)
(. Then, in general, for chip pulse waveform (34) Algorithm &lgs
. r\*! 3
R ) = (1) ®REV (Jal ) (35)
and
© r\° s
mR(sinc) = (i) mR(syn) (;) . (36)

Therefore, the same property pointed out in part | of thisepdp] for linear MMSE detectors holds for
several multistage detectors (namely, multistage Wiellterdj polynomial expansion detectors, matched
filters): In a large asynchronous CDMA system using a sinction with bandwidth;- as chip pulse
waveform and system load any multistage detector whose performance is independdahesampling
rate performs as well as in a large synchronous CDMA systeimmodulation based on root Nyquist chip
pulses and system loat] = g.

The comparison of synchronous and asynchronous systemgu@l chip pulse waveforms enables us
to analyze the effects on the system performance of the aligepvaveforms jointly with the effects of

the distribution of time delays. We elaborate on these dsgecusing on root raised cosine chip-pulse
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waveforms with roll-off¢ € [0, 1] and on chip pulse waveforms (34) with € [1,2]. To simplify the

notation, we assunig. = 1. Let

p

—_

0<|w|<7(l—-9)

(1 _ sin ('g’;”)) 71— 0) < |w| < (1 +9)

lw| > m(1+ ).

S(w) =

N[

o

0
The energy frequency spectrum of a root raised cosine wawefgth unit energy is given bjl,..(w)|* =
S(w). The large system analysis of an asynchronous CDMA systengusit raised cosine chip pulse
waveform is obtained applying Algorithm 1. The correspogdioefficients,,. s, s = Z*, are given by
1 4 1

Esqrt,s=2°(1 — ) + ;/ﬂ(lﬂ) sin® <5 (W—w))dw.
It is well known that in a synchronous CDMA system the perfante is maximized using root Nyquist
waveforms. In this case the performance is independenteo§plecific waveform and the bandwidth. It
equals the performance of a large synchronous system usengjric function with bandwidt@%—c as chip
pulse. Since the root raised cosine pulses are root Nyqageforms, they attain the maximum SINR in
synchronous systems. The large system performance ofstagié Wiener filters for synchronous CDMA
systems with a root raised cosine waveform is obtained ngakse of (19) and Algorithm 1 with = 1 and
E,=1seZr.

In general, chip pulse wavefor34) is not a root Nyquist waveform. For this reason the perfortean
analysis of linear multistage Wiener filters for synchrom@DMA sytems [14], [18] is not applicable.
In this case characterized by interchip interference westdirapply Theorem 1, sampling at ra% and
assuming a Dirac functioyir(7) = 4(7) as probability density function of the time delays. For thégc

pulse waveform (34), the matri@(2) = A¢ (2, 0)AF,(€2, 0) used in the recursion of Theorem 1 is given

by

1 %

! o< (1-)
elz2 1

Q) =

. 4 0

> 27T(1—%)§|Q|§7T.
0 0

\

The large system analysis in the asynchronous case withpcige (34) can be readily performed making

use of (19) and (35).
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In Figure 2 the large system SINR at the output of a multisiafgner filter with L = 4 is plotted as a
function of the bandwidth for synchronous and asynchroi@iDMA systems based on modulation by root
raised cosine or by pulse (34). We assume perfect poweratpna. A = I, system load? = 0.5, and
inputSNR = 10 dB.

It is well known from theory of synchronous CDMA that interghnterference colors the discrete-time
spectrum of the signal and degrades performance. Cortdystetin that Figure 2 shows that for synchronous
CDMA root raised cosine pulses, since they avoid interchiprference, outperform sinc pulses with non-
integer ratios of bandwidth to chip rate. Asynchronous CDBiAtems with both chip pulse waveforms
widely outperform the corresponding synchronous systémsontrast to the synchronous case, sinc pulses
exploit the additional degrees of freedom introduced bydasing the bandwidth better than root raised
cosine pulses, since they do not color the spectrum in coodis time domain. Thus, an asynchronous
CDMA system with sinc pulses considerably outperforms &esgsising root raised cosine pulses. Note that
for asynchronous systems, the spectral shape in contirtimess relevant, while for synchronous systems
the spectral shape in discrete time matters. In both cagespictrum should be as white as possible to
achieve high performance. For asynchronous systems, dutrsm is the less colored, the closer the delay
distribution resembles an (eventually discrete) uniforstribution.

In Figure 3 the SINR at the output of a multistage Wiener fitteéh L = 8 is plotted as a function of the
system load, parametric in the bandwidth, $0VR = 10 dB. The improvement achievable by asynchronous

systems over synchronous systems increases as the thm $yateincreases.

B. Chip Rate Sampling

Chip rate sampling is a widely used approach to generatistgtatfor asynchronous CDMA systems. It
implies the use of root Nyquist chip pulses and makes useoaf #nd Type B. Hereafter, we refer to these
CDMA systems as systems B, while we refer to the systems g®sufficient statistics from a front end
Type A as systems A.

A bound on the performance of systems B with linear MMSE detscis in [25]. The performance
analysis of linear multistage detectorsiasN — oo with % — (3 can be performed applying Theorem 1 to

the chip pulse waveform at the output of the chip matched fite)) = ——|¥(w)|?> and assuming = 1.

Ve

In order to elaborate further on systems B we focus on thereqoat raised cosine chip pulse with roll-off
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AWGN channel3=0.5,SNR=10dB,L=4 AWGN channel, SNR = 10 dB, M = 8, chip rate = 1 Hz

9 20 T T T T T
8.8-
X
x
8.6 . 1 15- *%
asynchronous —- sinc pul *
8.4r 1 "x
% X
o m' 10- *x 2
g 8.2t g x s
. ~
x x S
z 8 Z \& o
D . ) % S
o 28 asynchronol =Troot raised cosine pulse | @ 5l *x ~<
. ””xx
* %
7.6
—e— synch. root Nyquist pulses, bandwidth [e)+
7.4r synchronous —— root raised cosine pulse | 0 =*—asynch. sinc pulses, bandwidth 1.5 Hz= 0.5
Y p asynch. sinc pulses, bandwidth 2 Hz= 1
7.2- : - % -asynch. root raised cosine, bandwidth 1.5 8z 0.5
synchronous —- sinc pulse - - -asynch. root raised cosine, bandwidth 2 Biz 1
7 i T ; T i i i -5 i
1 11 1.2 1.3 1.7 18 1.9 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 18 2

14 15 16
bandwidth [Hz] system load 3

Fig. 2. Output SINR of a multistage Wiener filter with= 4 versus
bandwidth. CDMA systems with equal received powers, rocteh

cosine chip waveforms or sinc pulses, system |Gag % and input

Fig. 3. Output SINR of a multistage Wiener filter with= 8 versus
the system load. Asynchronous CDMA systems with equal vedei

powers, root raised cosine chip waveforms or sinc pulses band-

SNR = 10 dB are considered. width B = 1.5,2 Hz, inputSNR = 10 dB are compared to syn-

chronous CDMA systems with root Nyquist chip pulses.

0 [26]
40(7) cos(m(1 4 0) ) +sin(m(1 — 0) )

(1 —T(49TLC)2)

In this case, the matrix functioQ (X2, 7) = A¢71(Q,T)A£1(Q,T) occurring in Theorem 1 reduces to the

P(t) = 0 €[0,1]. (37)

scalar function

;

T+ dsin® (4 (Q+m)) + <27 (1 —sin® (5 (Q + 7))

Q(QvT) =431

-1 < Q< —7(l-0)

—m(1—-0)<Q<7(1-10)

+ Ccos 2T

5+ osin® (5(2 = m) + 5

(1—sin®(5(Q—m))) w(1-0)<Q<T.
due to the fact that = 1. Equal received powers, system load- % multistage Wiener filters witlh, = 3
define the scenario we consider for the asymptotic analysis.

The analysis shows a strong dependence of the performaribe tme delays. As expected, itis possible
to verify that the best SINR is obtained when the samplintams coincide with the time delays of the user
of interest.

In Figure 4 we compare the performance of system B with raeedacosine chip pulse to the SINR of a

system A with the same modulating pulse. In the comparisooomsider the best SINR for system B ob-

tained when the sampling times coincide with the time detdylse user of interest. The curves represent the
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root raised cosine pulse, system I8ad0.5, L =3
141

12-

_________

. S T

SNR =5dB

SNR=0dB

2 i i i i i i | | i
0 01 02 03 04 05 06 07 08 09 1
roll-off

Fig. 4. Asymptotic output SINR of a multistage Wiener filter with= 3 versus the roll-off as front-end A (dashed lines) and
front-end B (dots) are in use in an asynchronous CDMA sysfEm.solid lines show the reference performance in synchusno

CDMA systems. The curves are parametric in the input SNR &MIR varying betweefi dB and20 dB in steps ob dB.

output SINR as a function of the roll-offparameterized with respect to SNR. The parameter (SNRysari
from O dB to 20 dB in steps of 5 dB. As reference we also plot grégpmance of synchronous CDMA sys-
tems. As expected, multistage detectors with front-end therdiorm the corresponding multistage detectors
with front-end B.

Interestingly, while linear multistage detectors and abyanism in system A can compensate to some
extent for the loss in spectral efficiency caused by the asing roll-off and typical of synchronous CDMA
systems such a compensation is not possible in systems Bensy®8 behave similarly to synchronous
CDMA systems. In fact, the SINR for system B is very close @ plerformance of synchronous systems
for any SNR level.

A thorough explanation of these properties based on gearedytical results is in Part | Section V [1].
We recapitulate the main idea briefly here. The performarice large asynchronous CDMA system is
governed by am x r matrix function in the frequency domain (eq. (24) in f1])To give an intuition,
the system is then equivalent to a MIMO system wittransmit and- receive antennas. The structure of
this matrix is such that the matrix is necessarily rank omresfmchronous CDMA systems. Thus, only
one dimension of the signal space is spanned. On the contoargrbitrary delay distributions, i.e. in

general for asynchronous systems, the rank of the MIMO Byst&n be higher, eventually, up to This

“Note that the matrice®,(£2) in Theorem 1 can be interpreted as expansion coefficientssifrtatrix.
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implies that asynchronous systems span more of the awaithivlensions of the signal space resulting in
better exploitation of it. When the received signal is sadpt the chip rate, as in the case of Front-end
B, andr = 1 the processed signal for an asynchronous system only spsingla dimension, just like in
synchronous systems, and the performances of synchrondwssgnchronous systems are very similar.
Since the SINR in system B heavily depends on the samplitgntswith respect ta,, different statistics
are needed for the detection of different users in order tainlgood performance. As consequence, joint
detection is not feasible and each user has to be detectegandently. This is a significant drawback when
several or all users have to be detected (e.g. uplink) andilrakevant impact on the complexity of the
system. For example, the complexity order per bit of a miaije Wiener filter or polynomial expansion
detector is linear im K in system A while the complexity order per bit of the same dietes is quadratic in
K in system B. A similar increase in complexity can be notickso #or other detectors (e.g. linear MMSE

detectors, or any multistage detector).

VII. CONCLUSIONS

In Part Il of this work we provided guidelines for the desidrasynchronous CDMA systems via the anal-
ysis of the effects of chip pulse waveforms, time delay thstions, sufficient and suboptimum observables
on the complexity and performance of the broad class of oaéti detectors with multistage representation.

Similarly to the results obtained in part | of this articlg,[Le. the chip-pulse constrained spectral effi-
ciency and the performance of linear MMSE detectors, ntaljis detectors show performance independent

of the time delays of the active users if the bandwidth of thip pulse waveform is not greater than half of

the chip rate, i.eB < Above that threshold the performances of linear multistigfectors depend on

2Tc

the time delay distributions and asynchronous CDMA systeatgerform synchronous CDMA systems.
The framework presented here enabled the analysis of optiand suboptimum multistage detectors
based on front ends whose sampled noise outputs are whitefodsed on multistage detectors using

statistics (A), which are sufficient, or observables (B)jalhare suboptimum. In the two cases of (i) chip

1

pulses with bandwidtlB < o7

and (ii) chip pulses with bandwidtks > sufficient statistics, and

2T

uniform distribution, the effects of the chip pulse wavefsron the detector performance are described

27 B
o TS 1 J-27B |\P

by the coefficient€, = )|**dw. The output SINR of linear MMSE detectors, multistage
Wiener filters, polynomial expansion detectors, and matdhiers is independent of the sampling rate. In

contrast, the output SINR of other multistage detectoes RKC detectors depends on the sampling rate and
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increases with it.

Comparing the performance of synchronous and asynchro@bhdA systems with modulation based
on root Nyquist pulses, namely root raised cosine wavefpamgd modulation based on sinc functions with
increasing bandwidth, it becomes apparent that the chgepgsign for synchronous CDMA systems fol-
lows the same guidelines as the chip pulse design for sirsglesystems. In contrast, chip pulse design for
asynchronous CDMA systems is governed by entirely differales. In fact, for example, we found that
CDMA systems with uniform delay distributions perform wilthe spectrum of the received signal is as
white as possible.

The asymptotic analysis of asynchronous CDMA systems wsatgstics (B) shows that the performance
of multistage Wiener filters is close to the SINR of the cqomegling synchronous CDMA systems for any
bandwidth and level of SNR. Therefore, this kind of frontd@a not capable of exploiting the benefits of
asynchronous CDMA.

The universal weights proposed for the design of low compleetectors account for the effects of asyn-
chronism, sub-optimality of the statistics, and non-idgalf pulse-shapers. They depend on the sampling
rate although the large system performance do not.

From the asymptotic analysis and design performed in thikkwee can draw the following conclu-
sions:

« Multistage detectors with front end Type B and universalghies are asymptotically suboptimal and

have the same complexity order per Git/?) in uplink as the linear MMSE detector.

« Multistage Wiener filters and polynomial expansion detexciath statistics A and universal weights are
asymptotically optimum and have the same complexity oréeibjt as the matched filter, i.€2(r K)
with r < K.

« Ifonly a user has to be detected, multistage detectors gsatigtics (B) have slightly lower complexity
than multistage detectors with statistics (A), namely thaye a complexity per bi®(K?) while in the
later case the complexity per bit@(r K?). However, they perform almost as the multistage detectors
for synchronous systems at any SNR and do not provide themaierformance due to asynchronism

in contrast to statistics (A).
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APPENDIX |
PROOF OFTHEOREM 1

Before going into the details of the proof we introduce sommprties of the convergence in probability
and in probability one.

Property A: Let us consider a finite numberof random sequence{szﬁll)}, o {aﬁ{”} that converge in
probability to deterministic limits,, . . ., a,, respectively. Then, any linear combination of such segegnc
converges in probability to the linear combination of thaits. Furthermore, iﬂa,(f) — asl = o(N~),
with i, € R*, ands = 1,...¢q, then any linear combination of the random sequences coeseag
o( N~ mins=1...4(%s)) gt worst,

Property B: Let {a, } and{b, } be two random sequences that converge in probabilityaondb, respec-
tively. Then, the sequende.,,b,, } converges in probability tab.

Property C: If for large n, Pr{|a,, — a| > ¢} < o(n™%) andPr{|b, — b| > e} < o(n™"), with s,t € RT,
then alsoPr{|(a, — a)(b, — b)| > e} < o(n~ ™) at worst.

The convergence in probability one or almost sure conveganplies the convergence in probability. In
general, the converse is not true. However, if a random segue converge in probability to a constamt
with a convergence ratgn*) ands > 1, i.e. Pr{|a, — a| > ¢} < o(n™*), then, also the convergence in
probability one holds. This is a straightforward conseqasof the Borel Cantelli lemma (see e.g. [27]).

In part | Theorem 3 of this work [1] we have shown that, whi€nN — +oo with constant ratio3,
the eigenvalue distribution of the infinite matrR is the same as the eigenvalue distribution of the matrix
R = AH§H§A = ﬁHﬁ where S = (5131,5232,...51(3[() and i)k is the r-block-wise circulant
matrix of orderN defined in (10) withr, = 7, mod T...

Let us consider the block diagonal mate; ,.(75;) with r x 1 blocks

¢ (2m57h)

6 (or'5t 7~ )

(Ag,r (?k‘»u = (38)

o (2n5 T - T

and introduce the matrices
;/S\' = (A(b?,n(ﬂ)sl, A(b?r(?Q)SQ, e Aqb,r(?K)SK) (39)
andR — A7S"SA.
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By applying the same approach as in part | Theorem 1 of thi& g1t can be shown that the eigenvalue
distribution of the matrices? and R coincide. Then, also the eigenvalue moments of the two owsri
coincide. The same property holds for the diagonal elenudrite matricesﬁg andfié with ¢ € Z*.

In the following we focus on the asymptotic analysis of thegdinal elements of the matric&f.

Throughout this proof we adopt the following notation. koe 1,..., K andn=1,..., N

« hy is thek™ column of the matrixd

« h,, isthen™ r x 1 block of the vectoh, andh,,, — ar(A s () )nnSnk;

. 3n is then™ block row of H of dimensions: x K;

« H., is the matrix obtained fronkl by suppressin@n;

. f{\Nk is the matrix obtained fronfl by suppressin@k;

e T = /Iu\[f{\H and’ka = ﬁwkﬁfk;

e Re, = H_ He,;

o 00 = (Sn1,Sn2y- -y SnK);

e« Vs, fort =1,...,randn = 1,...,N,isaK x K diagonal matrix with the:'® element equal to

o (2%"7*1, Tk — %) . Note thatz,, V. ; A coincides with thét + (n — 1)r)®" row of the matrixH .

. ’ffm] is then'™ diagonal block off"” of dimensions- x r.

Furthermore, since the channel gainsare bounded, we denote hy;,x their upper bound, i.elax| <
amax, Vk. Finally, thanks to the assumption thitw) is bounded in absolute value with finite support also
(€2, 7) is upper bounded for arnfy andr. We denote byby4x its bound.

Let us observe first that the eigenvalue moments of the mBRtar equivalently ofT’) are almost surely

upper bounded by a finite positive valug$’, i.e.
1 = K
30 < 400 Pr {NtrR < C(S)} =1 ask,N — 400, — . (40)
In fact,

N
~H ~ ~H ~ ~H ~
E : hnl,kl hnlkahng,kghn%kS Tt hns,kshn57kl
seemg=1

N
? Z Adm“(;l)rlinlAQT(%)mm T A¢,r(ﬁ)inSA¢,r(ﬂ)nsns X

s=1 nl,...nszl

* * *
X Snl,kl Sn17k2 Sng,kg Sn23k3 ttt Sns,ks Sn57k1

Applying the approach of non-crossing partitions [28],][29is possible to recognize that the factors

Sy kSt ko Sy kySnasks - - - Sn. ke Sna ks WhHiCh do not vanish asymptotically, correspond to the oresniy
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nonzero non-crossing partitions. Correspondingly, disaémaining factors

A(lﬁ,r(ﬂ)nHmlAqﬁ,r(%)mm . A¢ T(TS) A¢ T(Tl)nsns

are positive and bounded by

2s A 2s
r=SA
< MAX

‘A¢7r<ﬂ)nHln1 A(bvr(%)nlnl te A¢>,7‘<T3)n nSA¢> T(T1>nsns — TQS

Therefore,

1 ~s TQSAMAXazs
MAX § § *
NTrR S TQS n1 k1 8”1 kQ ng ko SnQ k3 - .- Sns,k58n57kl . (41)
C

Lks=1n1,..ns=1

The last factor in (41) is theth eigenvalue moment of a central Wishart matrix with zezami.i.d Gaussian
entries having varianc%. Well established results of random matrix theory [30], [2P] show that the
eigenvalue moments of such a matrix converge almost swéigite values. More specifically,

N s—1 :
1 as. s S 3
— S Sy keSe. 1S s = — (42)
N ni,k1 ni,ke na,ka na,ks - - ns ksOns k1 ) ) s .
n1,..ns=1 1=0 1 1+ 1

Then, appealing to (41) and (42), the eigenvalue momenteohatrices? andT are upper bounded almost
surely by

s—1

C(S) _ 28A§/?AX0LMAX o § g (43)
o =m i) ie1 ) s
The proof of Theorem 1 is based on strong induction. In thedtep we prove the following facts:

1) The diagonal elements of the mat#k converge almost surely, @ — oo, to deterministic values

Ry (Jag|?, 7%), conditionally on(|ax|?, 7%). Furthermoreye > 0 and largek = SN
Pr{| R — Ri(|ax|%, )| > e} <o(N72).

~ . ~  ~—~H .
2) T,,,, ther x r block diagonal elements of the matfix=H H , converge almost surely to determin-

istic blocksT', (€2), with 2 = limy_. 27 5. Additionally, Ve > 0, large K = 8N andu,v =1,...r,

Pr{(Tpun)uw = (T1(2))u] > 2} <0 (N7?).

Then, in the recursion step, we use the following inductissuanptions:
1) Fors =1,...,¢ — 1, the diagonal elements of the matd¥ , converge almost surely, &6 = N —
oo, to deterministic value®,(|ax|?, 7%), conditionally on(|ax|?, 7). Additionally, Ve > 0 and large

K = BN, Pr{|(R )i — Rs(|ax|®, 7)| > e} < 0(N72).
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2) Fors=1,...,0—1, Tfm], ther x r block diagonal elements of the matfx converge almost surely
to deterministic blockg,(€2), with® Q = limy . 2+ . Additionally, Ve > 0, large K’ = 3N, and
wv =1, .., Pr{{(T])uw — (Ts())us| > €} <0 (N72).

We prove:
1) The diagonal elements of the matrﬁf, converge almost surely, @ = SN — oo, to deterministic

valuesR*(|a.|?, 71), conditionally on(|a, |?, 7). Furthermoreys > 0 and largeK = SN
¢ 2 ~ —2
PI‘{|(R )kk—Rg(|ak‘ ,Tk)‘ ><€} SO(N ) (44)

~( L . .
2) The blocksT'(,,,,, converge almost surely to deterministic blo@RS Q) with limy . 27 . Addition-

ally, Ve > 0, large N andu,v =1,...r,
~
Pr{|(T[nn])uv — (Te(2)uw| >} <o (N_Q) : (45)

First step: ConsiderR;,;, = ﬁkHﬁk = |ax|*sf AL (7u) Ay, () sk Thanks to the bound(€2, 7)| <
d\ax Which holds for any2 andr, also the eigenvalues of the matlzh(lfr(%“)AW(%“) are upper bounded.

2
In fact, they are givenby",_, ¢ (27r”T*1, Th — %) ’ forn =1,..., N. Therefore, the limit eigenvalue

distribution of the matriAﬁr(%“)AW(%“) has upper bounded suppdst;,x. Then, by appealing to Lemma
9in part | [1] with p = 4 and by making use of the bound for any Hermitian ma€ixc CV*V | (trC)? <

Ntr(C?) we obtain

2 4
~ ~ a ~ ~
G = Blaufsf AL () Ao (s — %L (AL, (F) A, ()
K4|Clk|4 ~ ~
< B (A () A ()"
K4|ak|4
S N2 AiTAX'

Since|ax| < ayax < 400, the Bienaymé inequality yieldgs > 0

o

®Note thatn = n(N) is also a function of the matrix siz¥.

E ’Rkk — Lt (AL (F) Apr (7))

& el ~ ~
Rkk — Ttr(Agr<Tk)A¢,T<Tk)) >ep < -

Kylay, |4A§1AX

- N2et (46)
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Thanks to the bound (46 > 0
Pr{’f{kk - Rl(\ak|2,ﬁ)’ > g} < o(N72).

Furthermore, appealing to the Borel Cantelli lemma (see §£4d]), this bound implies the following

almost sure convergence.

Ra(A )l ovm)=(axl2m) = K:,lai]r\}lﬂoo R

|ag|?

AL (AlL (7o) A7)

= lim
K=BN—oo

N
N ~ =
= lim N Z(Agr(Tk))z,e(Aqs,r(Tk))M

K=8N—o0
s /=1

A 2m
= —/ Al (Q,7)A (2, 7)dz 47)
2 Jo ’ ’

(Am)=(lal?7k)

Let us now consider the block matﬂASt[nn} whose(u, v) element(’f[nn})w is given by

Thanks to the assumption of Theorem 1 that the suppaditof (), 7) is bounded ana (2, 7) is bounded
in absolute value, the diagonal elements of the diagonalmtVWVnH,UAH are upper bounded in absolute

value by a positive constafit;,x. Then, by appealing to Lemma 9 in part | [1] we obtain

~ 1
E <'(T[nn})u,v — NtrAVMVf’vAH

4 K,
) < mtr(AVn,anHwAH)“

< 27 (48)
By appealing again to the Bienaymé inequality and by makiseyof the bound (48) we obtaifs > 0

P >} < de )

~ 1
(T — Ntr(AVmanHw Al

~ 1
(T — Ntr(AVn,anHw Al

= % (49)
Thus, the following convergence in probability holds
m (Tpe = lim %trAVWVﬁUAH
— quaijrvn%o % kf; |26 (27Tn];1,ﬁ—u;1Tc> " <27Tn7_17?k—U;1Tc>
— ﬁ/w (Q,T—uT_l c) o) (Q,T—%TC) d Flapr(\,7), (50)

OCTOBER22, 2009



SUBMITTED MANUSCRIPT TOIEEE TRANSACTIONS ONINFORMATION THEORY 31

with 2 = limy_. 275 and0 < 2 < 2. Therefore, the block matrif(\‘[m] converges in probability and in

mean square sense to the r matrix
Tl(Q) = Kz,g]r\fnﬂooT[nn}
= ﬁ/)\AW(Q,T)AgT(Q,T)d Fapr(\7)

with 0 < Q < 27. Thanks to the bound (48) for largé = 6N andVe > 0 the bound

Pr {’(C/Z\-’[nn])u,v —(T(2))uw

< 5} <o(N7?%

holds. Making use of this bound and applying the Borel Céinégshma the almost sure convergence is also
proven. This concludes the proof of the first step.

Step/:

By appealing to the induction assumptions, i.e. the almas sonvergence of the diagonal elements of
R’ and of the diagonat x r blocks offfs, fors = 1,...,¢ — 1, we prove that the following almost sure

convergence holds:

. trAV,.R, VZ A" , 5 Jag)? n—1 _ wu—1 (on—1 _ v—1 s
K:lé]r\]f:l—m)o N - Klﬁljglﬁoo; N ¢ <27T N TR Tc)¢ <27T N O TFT, Tc) (B )ik
—1 —1
= 5/)«;5 (Q,T — U—TC) o (Q,T Y Tc) Ry(X\, 7)dF a2 0(A, T)
r r
(51)
with Q = limy_ 2724, s =1,...¢ — 1 and
R Dlon=(avzay = | lim (B )w + o(N~?) (52)
as from the recursion assumptions. Furthermore, we pr@/tlowing almost sure convergence
NN A A .
K:%]I\}LOO Ay (Th)T Dy (Th) = K:lﬁl}&oo N Zl(A(b,r(Tk))nn(T Jrin(Bgr (k) )nn
)\ 2
= — A (Q,7)T(Q)A,(Q,7)dQ (53)
27T 0 ’ — 2 =
(A7)=(lak]?7x)
withs=1,.../—1and
T,Q) = K:lﬁljl\?_)oo(T Ynn- (54)
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In fact, for (51) we can write

—Pr{
1 & n—1 _ u—1 n—1 v—1
_N2|ak| b (zw Tk—TTC) o <2ﬁ ¥ T — . TC> Ry(|ax|?. 7)

< Coq + Cop

1 ~s
NtrAvmuRi:nvnH,vAH

:

where

1 ~5 =~
C2a =Pr {’NtrAVn,u(R — R,:n)VnHmAH > =

and

G = PH Z o (2 A0 ) o (2 A ) (R e = Rullnl )

Note that

>

DO | ™
—

1 ~5 ~s
C2a S Pr {’?tr(R - Rlin) >

e
2Ba3axPriax } .
The expansion of the matrik~ = (ﬁhn + gann)s yields

s—1

trR = trR,, + Z o(i0, 11, - - -is-1) H (SHI/%:;@3 ) u

(zo 11yeis—1) u=0
(ORI Z1(j+1)iz=s0

where ¢(ig, i1, ...1s-1) < 2° is the number of the terms of the expansion]%? whose trace equals

| (35 fizngn)zu . Then,

s—1 .
1 ~H ~u ~ zn
Ga S 2 Z Priy v H <5n Rlzn(sn) °
(0,31,--i5—1) N u=0 5“MAX¢MAX
i+ 0521 (+1)ij=s0

Thanks to Property B on the convergence in probabiityconverges in probability with rath**%)

at worst, i.eVe > 0,

H ~

5 F} 1
lim Pr .- 6” "6 <o (—4) . (55)
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In fact, fore’ = £

T
B2 ay s x Parax

~H ~u ~ _. s—1
H{H <5Rm5>>g}g e {5 R 5, - V)

N

(2 K,C®
~ N2((Ne')s — Cwy)d
where inequality (a) holds faW sufficiently large, inequality (b) follows from the Bienagnmequality, and

(56)

inequality (c) is a consequence of Lemma 9 in part | [1] andbivend on the eigenvalues moments of the
matrix R.
Let us consider now the probability,,

€
C2b§Pr{ Z\ Ve — Rs(|ax]? Tk)|>ﬁ}

Ay ax Phax

. _ 5
< Pr {ml?XKR Jiw — Rs(arl®, )| > ﬁ} (57)

BaziaxPrax

for s = 1,...¢ — 1. Thanks to the assumption of the recursive step that> 0 and largek = (N,
Pr{|(1§s)kk — Ry(Jag|,7)| > €'} < o(N—?), (o — o(N~2), i.e. it vanishes asymptotically &6, K — oo
with constant ratio with the same converge rate(@2) at worst. Therefore, (51) converges in probability
with a rate a(N?) for N — +oo, at worst. This convergence rate enables the applicationeoBorel-
Cantelli lemma to prove that (51) converges almost surely.

The proof of the convergence (53) in probability one follaleng similar lines.

Following the same approach as in the proof of Theorem 1 inyj2] can expan(dlA%K)k;C and Tfnn] as

follows:
~/ = Ae— PPN
s=0
N S A

beingff“0 andR’ the identity matrices of dimensionsV x rN andK x K, respectively.
Thanks to Property A and Property B of the convergence inalriity of random sequences and the

. . . . . ~/ ~(
induction assumptions, the convergence in probability afrte sequencef(R )i} and{T',,, } reduces
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, . : - ~Hos =~ ~ s ~H
to the following two steps. First we show the convergencerabability of h, T h;, andd, R, 4, to a
deterministic limit, respectively. Then, we show that tbewergence holds with an appropriate convergence

rate which enables the application of the Borel Cantellirean Let us define

~H~s =~ |ak|2 ~ s

(3="h, T, hy — ~ trAgr(%’k)TNkAW(?k).

Lemma 9 in part | [1] applied to the quadratic foﬁri]{’fikﬁk with p = 4 yields

Kilax|*
N3

K4 ~4s

< ma%{Axﬁ/{Axtr(T%)- (60)

ElGl* < E (tr(ALL )T A (7))

Thanks to the bound on the eigenvalues moments of the nfiAathth:ﬁN_}OO %E(tr’fi) is almost sure

. ~H~s =~
upper boundetts asN = 3K — +oc. Therefore E|G5|* — 0 asK, N — co with £ — gandh, T _,hy
converges in mean square sense, and thus in probabilithdfarore, the Bienaymé inequality implies that

Pr{|(s] > ¢} <o(N7%)asN — +oc. Thanks to (53)

2 s 27
i aal TG - o [ ALONT@A@ 0 Fo(N?)
N=BK—oo ’ 21 Jo ’ (A =(lal2,7)
=g(Ts, A\, 7) + O(N_Q). (61)
then
Pr{|hy T by — g(To, A\, 7)| > €} — o(N72) (62)

for property A. Thanks to the convergence rate in (62) andBitvel Cantelli lemma, the almost sure con-
vergence (52) follows.
The convergence in probability one of the diagonal bldflﬁgl] can be proven in a similar way. More

- : ~ s ~H o :
specifically, it can be shown that thex r blocké, R_,J,, converges to the x r deterministic matrix

f(Rs,Q2) = ﬁ/)\AW(Q,T)AW(Q,T)HRS()\,T)d Flapr(A ). (63)

~H

such tha®r {‘(Sn)uﬁ;(én Yo — (E(Ry, Q))u| > g} — o(N72).
Finally, by making use of equations (58) and (59) and the defins (52), (54), (63), and (61) we obtain

~

-1
Ry(\, 1) = g(Ty_s 1, \, T)Rs(\, T) (=1,2,... (64)

S

I
=)
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and

T
L

ToQ) =S f(Rey 1, OT,(Q)  (=1,2,.... (65)

S

I
=)

with g(T's, A\, 7) andf (R, 2) given in (61) and (63), respectively. Consistently to thénigons of T and
fio, Ty(Q2) = I, beingI, ther x r identity matrix andRy(\) = 1.

Then,g(Ro, A\, 7) = 5= [T AL (Q,7) Ay, (Q,7)dQandf (T, Q) = 3 [ A&, (Q,7)AL(Q, 7)dF ap (N, 7)
and (64) and (65) reduce to the asymptotic linittg \, 7) andT', (2) already derived irstep 1 Therefore,
we can begin the recursion with= 0, Ry(\,7) = 1 andT,(Q2) = I,.

Properties A, B, and C, the induction assumptions, relati®8) and (64), the convergence rafgs—
o(N72), Pr{¢z > ¢} <— o(N?), and the Borel Cantelli lemma yield (44). The proof of (45)dals
immediately along similar lines.

This concludes the proof of Theorem 1.

APPENDIX ||
PROOF OFCOROLLARY 1

Corollary 1 is derived by specializing Theorem 1 to a unitBogrier transformd(w) with bandwidth
B < 5. Letus recall here that the unitary Fourier transform indiserete time domain is given by
sign(Q)L%J

1 .- o T Q+2
o(Q, 1) = TeJT_cQ Z TS P ( _; WS) for |Q| <. (66)
¢ s=—sign(Q) L%IJ ¢

The matrixQ(Q,7) = Ay, (Q,7) Ay, (Q,7)7, with A, ,(Q, 7) defined in (26), can be decomposed as
Q(2,7) = Q(Q) + Q(2, 7) with the elements o (©2) andQ(Q, 7) defined by

1 sign(Q2) L%J Q42 9
s ke
Qe = 73 > ‘@ ( - )’ eI @) for Q| < 7, (67)
¢ s:—sign(Q)L%IJ ¢
and
1 sign(Q)L%J Q9 049
(Q(Q, 7)) = 7 Z P < +T 7T“) o+ ( J; WS) o2 (s—u) =i (AL (0-2ms) - 51 (@-2mw)
¢ s,uzfsign(Q)L%lJ ¢ ¢
s#u

for |Q <7, (68)
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respectively.

Equations (24) and (25) can be rewritten as

F(R.0) = 5Q(Q) / AR\, 7)dF e (A, 7)

+ ﬁ/ AR\, 7)Q (2, 7)AE a2+ (N, 7), —1<Q<7 (69)
oTor) = o [ wr@Quan+ 2 [ e @@, (70)

respectively. If the conditions of Corollary 1 are satisfieel. if B < 57 andr is uniformly distributed in
[0, T.], it can be shown that
e Ry(\,7),0 €77, areindependent of and
o T,(%2) is a matrix of the form (71).

bo blej% e P br_le'L:l)Q
brfle_j% bo blej% .. br,erL:mQ
B=B(Q) = , (71)
o _;2
ble I bT,le I bo

beingby = by(2), by = b1(2),...b—1 = b,_1(£2), eventually functions of?.

These properties can be proven by strong induction. It @gittforward to verify that they are satisfied
for s = 0. In fact, Ry(\, 7) = 1 is independent of andT,(2) = I is of the form (71) with)y, = 1 and
bi(2) = 0withi = 1,...r — 1. By appealing to Lemma 1 in part | [1] Appendix(Q(€2, 7)) = 0 and
9(To, N\, 7) = 2= [7_tr(Q(Q))d2. Hence,g(Ty, A, 7) is independent of.

The induction step is proven using the following inductiesamptions:

e« Fors =0,1,...4—1, Ry(\, 7) isindependent of;

« Fors=0,1,...0—1,T(Q) is of the form (71).

Thanks to the form (71) oI’4(2), s = 1,...¢ — 1, given by the induction assumptions and by applying
Lemma I in part | Appendix | we have (T,(2)Q(S, 7)) =0, fors = 0,1,...,¢ — 1. Then, (70) reduces
to g(Ts, \,7) = & [T tr (T(Q)Q()) dQ and g(T, A, 7) is independent of for s = 0,1,...,¢ — 1.
Therefore, all quantities that appear in the right hand sidé€2) are independent af and R,(\, 7) is
also independent of. In the following we will shortly writeR,(\) andg(T', \) instead ofR,(\, 7) and
g(T's, \, 7). Thanks to the fact that (is(A, 7) is independent of and (ii) A andr are statistically indepen-

dent with7 uniformly distributed, (69) can be rewritten as
Tc

) =5 [ arana (Q@+ - [ @@nar). 72)
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It is straightforward to verify thafOTC Q(Q, 7)dr = 0 from the definition ofQ (2, 7) in (68). Then,

F(R.©) = 5Q() / AR,V dF a2 ())
- f(RS)Q(Q) (73)

with f(R,) = 3 [ ARs(N\)dF|a;2()). Substituting (73) in (23) yields

/—1
T =S F(Rs)QQT(), —r<Q<m. (74)

s=0
SinceT(2) is of form (71), the conditions of Lemma 2 in part | Appendixréaatisfied fotB = T'4(€2).
This implies thatQ(Q)T's(2) is also of the form (71). Sinc&,(£2) is a linear combination of matrices of
the form (71),T,(1?) is also a matrix of the form (71). Then, the statement of thenstinduction is proven.
Thanks to the properties shown by strong induction, thersdgeiequations in Theorem (1) reduce to the

following set of recursive equations:

/—1
Ry(A) = Z 9(To—s-1,\)Rs(N) (75)
/—1
Ty(Q) =Y f(Ri—1)Q(Q)T(Q) —r<Q<n7 (76)
F(R) =B [ ARV Fiap(N), (77)
o) =5 [ (T @)QUE)a0 (79

with TQ(Q) =1, andRQ()\) = 1.
Then, applying again Theorem 1 we obtain the following cogeace in probability one

' ~ ¢
lim (R )pe = Re(A)|r=jayf2-

K=BN—o
From (76) andl'y($2) = I, it is apparent thaf’,(£2) is a polynomial inQ*(2), for s = 0,1,...¢. Then,
T,(2) has the same eigenvectors@&?) and it can written ad,(2) = U(Q)A,(Q)U (Q) whereA,(Q)

is a diagonal matrix with diagonal elements, ¢, . . . ¢, and

U(Q) = <e (Q _ sign(Q)2r V - IJ) e e (2t sign(©)2n @)) (79)

with e (2) r-dimensional column vector defined by

e(Q):%(l,ejQ,...

ﬂ
@
d
4
31
=
2
~—
N
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By making use of the eigenvalue decomposition of the m&(i) in part | Appendix | Lemma 3 the matrix

equation (76) reduces toscalar equations

(3w (5] 1)

By substitutingy = Q — sign()27 (|5 | — u + 1) for || < 7 we obtain

o(B)f oo (-]

1
tou (y + 27 (L%J —u+ 1)) = Sz:% f(Re—s—l)TLCQ

2
ts..(82) u=1,...r and |Q <.

£—-1
() = Y F(Re—sm1) 7
s=0 ¢

(80)
f0r0§y+2ﬂ(L%J—u+l)§ﬂand
i (=2 (222 = 1)) =5 rres o (2 s (5 —2n (| 722
tu | Y 2 —s:O f—s—1 TCQ Tc sullY 9

(81)

for —m <y — 27 (|51 —u+1) < 0. Then, foru = 1,...r, ther functions (80) and (81) defined in
not overlapping intervals if-27r, 27| can be combined in a unique scalar functi@ii&)) in the interval

ly| < 27r satisfying the recursive equation

Y

-1

! T y /
Ti(y) = 2 T—gf(Re—s—l) P (ﬁ) T,(y).
Similar arguments applied to (78) yield
(T, )\)_i/MLT'()@ Y 2d
g\Ls, ~or o TCQ s\Y T. Y.

The substitutions) = £ and7j(w7:) = Ti(w) yield to the recursive equations in Corollary 1.

This concludes the derivation of Corollary 1 from Theorem 1.
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APPENDIX II

DERIVATION OF ALGORITHM 1

Algorithm 1 can be derived from the recursive equations afoary 1 by using the following substitu-

tion<:

A — z
Ry(N) - ps(2)
AR () — vs(2)
BOR.(N) = 3/(R.) = v,
1o @) E y
Ti(+) — 1s(y)
7 [P @F T () - us(y)
T / . B ()| Ty (w)dw — U,.

Then, the initial step is obtained by definipg(y) = 1 andpy(z) = 1. The recursive equations in stép
are obtained by using the previous substitutions. In ordeletivelU; let us observe tha}i D ()] Ty (w)
is a polynomial iny = Ti |® (w)|* of degrees + 1. Then,U, is a linear combination o% where

1 2B
/ 1 ()" dw

n
—1
2T —27B

The coefficients of the linear combination are obtained tpaexiingu,(y) as a polynomial iry.
We conclude the derivation of Algorithm 1 by summarizing firevious considerations and substitu-

tions:

/—1
pe(z) = Z 2Up—s-1ps(2)
s=0

-1
r

ney) = 7= > ByViesmpa(y).
€ s=0

. Us andV; are obtained fromu,(y) = yus(y) andus(z) = zps(z), respectively by

— expandingu,(y) anduv,(z) as polynomials iry andz, respectively,

5Note that the substitution of with z is redundant. It is used to obtain polynomials in the commyaskd variable.
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— replacing the monomialg® and:", n € Z* with ‘;—n andm‘(j‘)'m respectively.
Then,Ry(\) = p,(\) and the eigenvalue momemf,? = E{R,(\)} is obtained by replacing all monomials

z,2%,..., 2" inthe polynomialy,(z) by the momentmllAP, mleP, . ,mfA|2, respectively.

APPENDIX IV

PROOF OFTHEOREM 2

The proof of Theorem 2 follows along the line of the proof ofebhem 1. As in the proof of Theorem 1
we can focus on the spreading mat&xn (39) and the autocorrelatioR.

For a signal with bandwidtt < -1,

1 .- Q
Q(Q,T) = ie]%q)* (i) Q| <7

andg(Q, 1) = ¢(Q — 2r | 2], ) for any2. Correspondingly, we define

A, (7)== 0(5 ) Fe(@), e
Ay, ,T—TC Tce ce <7
with e(Q) = (1,77, ...e/ "+ 2) and
Q
Ay, (7)) =44, (227 {;J ,T) for any .

We adopt here the same notation as in the proof of Theoremdn,TheK x K diagonal matrixV,,;, for

t=1,...randn=1,... N is given by

]_ j27T M j2mnTy j2mnTy J2mnT R
Vu==0" nle diag (e e e Tc ,...e T
T, T, ’

with n = 21— 2222 | andA, (7, is ther N x IV block diagonal matrix with, diagonal blockA . (n, 7).
We develop the proof by strong induction as in Theorem 1 wittilar initial step and similar induction step.
Step 1:In this case

Rkk = |ak|28kHAgr(f7:k)A¢7r(f7:k)Sk = |ak\23kH<I>sk

27T, 2
@ (%52)

where® is a matrix independent 6§, and then'" element is given byp,,,, = TL

By following the same approach as in Theorem 1 it restdts- 0

it

Ry, —

T|ak| ]27m K4|ak|4AMAX
Z S
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o) an

Te

beingAyax = maxoe|—r

2

( - [5)

A=lag|?

9 N—
BNl = %ELOO N ;

(82)

FurthermorepPr {|§kk — Ry(Jax]?)| > 5} < o(N~2) with consequent convergence in probability one by
the Borel Cantelli lemma.

Similarly, (T[nn])uv, the (u, v)-element of the matriii“[nn] is given by

T = 6,AV,,, VI AT
1

2 - VU ~
-7 ¢< ;ﬂ) e 5,447, (83)
As in Theorem 1 it can been shown that
- 1 2mn 2 u " KT
Pr{ (T1on))uw — NT. (13( T )‘ e tr(AA")| > } < Nzed

2
2mn
® ()

with Tyax = (maxﬂe[_m] ) (supy maxy, |ax|?) and the following convergence in probability

holds

~ 271'71 2 . v—u K
: . 7_]27'('@7 2
B P ( )\ ¢ 2l

k=1
- ( )
: T.

with Q = 27 limy_.., n and|Q| < 7. Thus, the diagonal block converges in probability as fodow

2

AdF a2 (N)

1.

K=pN—oc0o
(%)
1.

Pr {’('T[nn])zw — (T1(2)) o

: [ B e@et ) (84)

Furthermore,

} <o(N7?%

with consequent convergence in probability one by the BGeeitelli lemma. This concludes the first step

of the induction.
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Step/: Let us observe that

1 ~s
9, = NtrAanuRannHvuAH

2mn S
® T (R ik

e_jQTFQU_U K |ak|2

T

- N T2
k=1 ¢

and

N

|ag|? 1 21n
— | (22

By following the same approach as in Theorem 1 it can be shbatt andv, converge almost surely

to the following limits

Ij 9y = B -irmnis ) Q\ [’ AR (NAF 42 (N
PR A(AdFap(Y
and
li PRI A Y 2 BT ,(9)e(Q)dD
K:ﬁlll\fnaoo 2T 27TT62 —r Tc € * € Ay |2
=|ag

S

with Ry(A)|5Z 0,2 = Imr—gn—oo(R e @NA T'5(Q)| = limg—gn—o0 Tfm] given by the recursion assump-

tions.
Additionally, it can be shown that the following almost semvergence holds
~H ~s5 ~

9(Ts, )\)|)\:\ak|2 - K:lﬁgJI;Ifl—mo hy, T .hi

XN
- / o (T) " ()T (2)e(Q)d - (85)
and
JR.O) = lim 8,RL3,
0 2
- % o (F) e()e(Q) / AR (A)dF ap(X) (86)

Additionally, the convergence satisfies the bounds

~H ~5 —~
Pr {\hk T b — (T, |ax]?)| > g} < o(N?)

OCTOBER22, 2009



SUBMITTED MANUSCRIPT TOIEEE TRANSACTIONS ONINFORMATION THEORY 43
and
-~ ~s
Pr{1(Bu)u R, (3, ) — (F (R, D)ol > 2} < o(N2)

for large N andVe.
The recursion assumptions and the limits (85) and (86) in 58 (59) yield

Nl = igm_s_l, MR

™ Q 2
_E:R 271_TZ/ @(i) tr (T5(Q)e(Ne m»dQAm“ (87)
and
TQ) =3 (R OT(Q)
T% ( ) /)\Rs()\)dFA|z()\) e(Q)e (Q)T,(Q) (88)

whereRy(A) = 1 andT'(2) = I,. With a similar approach as in Theorem 1 it can be proven thdafge
N andVe > 0
Bt 2 —2
Pr{|Ry, - Rellaef)| > £} < o(N %)

and

Pr{| (Bl — (T D)] > =} < o(N2).

In contrast to Theorem 1 the recursive equations (87), (&%), and (86) are independent of the time
delay7y.

The recursive equations can be further simplified by obegrthat(e(Q)e’ (Q2))™ = r™ te(Q)e (Q).
Then, it is straightforward to verify by recursion that thatmx 7',(Q2), s = 1,2,...,¢ — 1, is proportional
to the matrixe(Q2)e’ (2) and we can express it &,(Q) = T,(Q)e(Q)ef’ (), s = 1,2,.... Thus, the
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recursive equations can be rewritten as

/—1
Zg Tﬁ s— 17 (>‘)

T,(Q)e Zf (Re-se1, OT(e(Qe(Q) + f(Re-1, QTo(Q)  (=1,2,... (89
f(Rs, Q) = f(Rs,)e()e"(Q) (90)
F(R.Q) = T@ o (%) /ARS(A)d Flap() r<Q<nr
ST 7o (8) 2TS(Q)om s=1,2,...
S 7|2 ()] a0 s =0.
with TQ(Q) =1, andRQ()\) =
Substituting (90) in (89) we obtain
{—1
T/(Q)e =3 F(Reot, OT(Qe(Q)e” (Qe(@)e () + f(Ret, QTo(Qe(Q)e’ ()
/—1
= er (Ro—s—1, DT5(Q)e(Q)e (Q) + f(Re_1, )T, (Q)e(Q)e(Q) (91)

Recalling thafl’y(2) = I, and definingl})(Q2) = %, we obtain from (91) the scaldy,(2):

_7’<Zf (R—s—1, Q)T5() + f(Re-1,9) (;(Q)> (92)

The following equations summarize the recursion in termsnty scalar functions.

with 7,(€2) = Z= and Ry(A\) = 1. Let us observe that the different expressiong(@,, \) for s = 0,1, ...
could be absorbed in a unified expression by initialize theaingion with7,(2) = = instead of using

Ty() = %
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The recursion in the statement of Theorem 2 is obtained byidgfi

J(R,) = / ARy(\)AF iz (A)

and
2

)= ("6 )P Ty
o) =g [P T

and by expressing,(\) and7;(w) as recursive functions of( R,) andv(T5).
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