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Asynchronous CDMA Systems with Random

Spreading–Part II: Design Criteria

Laura Cottatellucci, Ralf R. M̈uller, and Merouane Debbah

Abstract

Totally asynchronous code-division multiple-access (CDMA) systems are addressed. In Part I, the fundamental

limits of asynchronous CDMA systems are analyzed in terms ofspectral efficiency and SINR at the output of the

optimum linear detector. The focus of Part II is the design oflow-complexity implementations of linear multiuser

detectors in systems with many users. We consider detectorsthat admit a multistage representation, e.g. reduced rank

multistage Wiener filters, polynomial expansion detectors, weighted linear parallel interference cancellers.

The effects of excess bandwidth, chip-pulse shaping, and time delay distribution on CDMA with suboptimum lin-

ear receiver structures are investigated. Recursive expressions for universal weight design are given. The performance

in terms of SINR is derived in the large-system limit and the performance improvement over synchronous systems

is quantified. The considerations distinguish between two ways of forming discrete-time statistics: chip-matched

filtering and oversampling.

Index Terms- Asynchronous code division multiple access (CDMA), channel capacity, multiuser detection, ran-

dom matrix theory, effective interference, linear minimummean square error (MMSE) detector, multistage detector,

random spreading sequences.
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I. INTRODUCTION

In Part I of this paper [1], we analyzed asynchronous CDMA systems with random spreading sequences

in terms of spectral efficiency constrained to a given chip pulse waveform and in terms of SINR at the

output of an optimum linear multiuser detector. The analysis showed that under realistic conditions, chip-

asynchronous CDMA systems significantly outperform chip-synchronous CDMA systems. In order to uti-

lize the benefits from chip-asynchronous1 CDMA, we need efficient algorithms to cope with multiuser de-

tection for chip-asynchronous users. Therefore, in part IIof this work, we focus on the generalization of

known design rules for low-complexity multiuser detectorsto chip-asynchronous CDMA.

A unified framework for the design and analysis of multiuser detectors that admit a multistage repre-

sentation for synchronous users was given in [2]. The class of multiuser detectors that admit a multistage

representation is large and includes popular linear multiuser detectors like linear MMSE detectors (e.g. [3]),

reduced rank multistage Wiener filters [4], [5], polynomialexpansion detectors [6] or conjugate gradient

methods (e.g. [7]), linear parallel interference cancellers (PIC, e.g. [8], [9]), eventually weighted (e.g. [10]),

and the single-user matched filters. Multistage detectors are constructed around the matched filter concept.

They consist of a projection of the signal into a subspace of the whole signal space by successive matched

filtering and re-spreading followed by a linear filter in the subspace.

Multistage detectors based on universal weights have been proposed in [11], [12] for CDMA systems in

AWGN channels and extended to more realistic scenarios in [13], [14], [2]. These references make use of the

self-averaging properties of large random matrices to finduniversalweighting coefficients for the linear filter

in the subspace. More specifically, the universal weights are obtained by approximating the precise weights

designed according to some optimality criterion with asymptotically optimum weights, i.e. the optimum

weights for a CDMA system whose number of users and spreadingfactor tend to infinity with constant ratio.

Thanks to the properties of random matrices, asymptotically, these weights become independent of the users’

spreading sequences and depend only on few macroscopic system parameters, as the system load or number

of transmitted symbols per chip, the variance of the noise, and the distribution of the fading. In this way, the

weight design for long-code CDMA simplifies considerably, its complexity becomes independent of both

the number of users in the system and the spreading factor. Moreover, the weights need updating only when

the macroscopic system parameters change.
1As already shown in Part I of this paper [1], asynchronism is beneficial when the relative delays between users arenot integer multiples of a

chip interval. To emphasize this requirement we use the termchip-asynchronism instead of asynchronism.
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The fact that users are not received in a time-synchronized manner at the receiver causes two main prob-

lems from a signal processing perspective: (i) the need for an infinite observation window to implement a

linear MMSE detector and (ii) the potential need for oversampling to form sufficient discrete-time statistics.

The need for an infinite observation window is primarily related to asynchronism on the symbol-level, not

the chip-level. It was addressed in [15], [16] where it was found that multistage detectors need not have infi-

nite observation windows and can be efficiently implementedwithout windowing at all. A detailed overview

of the state of art about statistics, sufficient or not, for multiuser CDMA systems and how to form them

was addressed in Part I of this paper [1]. In part I we presented general results with the only constraint that

the sampled noise at the output of the front-end was white. For the sake of clarity and to get insights into

systems of practical interests, in this part II we focus on two groups of statistics implementable in practical

systems:

(A) Sufficient statistics obtained by filtering the receivedsignal by a lowpass filter with bandwidthBLOW

larger than the chip-pulse bandwidth and subsequent sampling at rate2BLOW.

(B) Statistics obtained by sampling the output of a filter matched to the chip waveform at the chip rate (chip

rate sampling). In this case, the sampling instants need to be synchronized with the time delay of each

user of interest. Thus, different statistics for each user are required. Additionally, the chip pulses at the

output of matched filter need to satisfy the Nyquist criterion. In the following we refer to them as root

Nyquist chip-pulse waveforms.

General results for the design of linear multistage detectors with both kind of statistics are provided in this

work. The chip pulse waveforms are assumed to be identical for all users.

For asynchronous CDMA, low-complexity detectors with universal weights are conveniently obtained

formed from statistics (A). In fact, these observables enable a joint processing of all users without loss

of information. Multistage detectors with universal weights and statistics (A) have a complexity order per

bit equal toO(rK) if the sampling rate isr
Tc
. On the contrary, discretization scheme (B) provides different

observables for each user and does not allow for simultaneous joint detection of all users. An implementation

of multistage detectors with universal weights using such statistics implies a complexity orderper bit equal

to O(K2). This approach is still interesting from a complexity point of view if detection of a single user is

required. However, it suffers from a performance degradation due to the sub-optimality of the statistics.

This work is organized in six additional sections. Section II and III introduce the notation and the system

model for asynchronous CDMA, respectively. In Section IV, multistage detectors for asynchronous CDMA
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are reviewed and a implementation which does not suffer fromtruncation effects is given. The design of

universal weighting is addressed in Section V. Finally, theanalytical results are applied to gain further

insight into the system in Section VI where methods for pulse-shaping, forming sufficient statistics and

synchronization are compared. Conclusions are summed up inSection VII.

II. NOTATION AND SOME USEFUL DEFINITIONS

Throughout Part II we adopt the same notation and definitionsalready introduced in Part I of this work

[1]. In order to make Part II self-contained we repeat here definitions useful in this part. Upper and lower

boldface symbols are used respectively for matrices and vectors corresponding to signals spanning a specific

symbol intervalm.Matrices and vectors describing signals spanning more thana symbol interval are denoted

by upper boldface calligraphic letters.

In the following, we utilizeunitary Fourier transforms both in the continuous time and in the discrete

time domain. The unitary Fourier transform of a functionf(t) in the continuous time domain is given

by F (ω) = 1√
2π

∫
f(t)e−jωtdt. The unitary Fourier transform of a sequence{. . . , c−1, c0, c1, . . .} in the

discrete time domain is given byc(Ω) = 1√
2π

∑+∞
n=−∞ cne

−jΩn. We will refer to them shortly as Fourier

transform. We denote the argument of a Fourier transform of acontinuous function byω and the argument

of a Fourier transform of a sequence byΩ. They are the angular frequency and the normalized angular

frequency, respectively. A function inΩ is periodic with respect to integer multiples of2π.

For further studies it is convenient to define the concept ofr-block-wise circulant matrices of orderN .

Definition 1 Let r andN be positive integers. Anr-block-wise circulant matrix of orderN is anrN × N

matrix of the form

C =




B0 B1 · · · BN−1

BN−1 B0 · · · BN−2

...
...

...

B1 B2 · · · B0




(1)

with Bi = (c1,i, c2,i, . . . , cr,i)
T .

In the matrixC an r × N block row is obtained by circularly right shift of the previous block. Since the

matrixC is univocally defined by the unitary Fourier transforms of the sequences{cs,0, cs,1, . . . cs,N−1}, for
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s = 1...r,

cs(Ω) =
1√
2π

N−1∑

k=0

cske
−jΩk s = 1, . . . , r,

there exists a bijectionF from the frequency dependent vectorc(Ω) = [c1(Ω), c2(Ω), . . . , cr(Ω)] to C. Thus,

C = F{c(Ω)}. (2)

Furthermore, the superscripts·T , ·H , and·∗, denote the transpose, the conjugate transpose, and the con-

jugate of the matrix argument, respectively.In is the identity matrix of sizen × n andC, Z, Z+, N, and

R are the fields of complex, integer, nonnegative integers, natural, and real numbers, respectively.tr(·) is

the trace of the matrix argument andspan(v1,v2, . . . ,vs) denotes the vector space spanned by thes vectors

v1,v2, . . .vs. diag(. . .) : Cn → Cn×n transforms ann-dimensional vectorv into a diagonal matrix of sizen

having as diagonal elements the components ofv in the same order.E{·} andPr{·} are the expectation and

probability operators, respectively.δij is the Kronecker symbol andδ(λ) is the Dirac’s delta function.mod

denotes the modulus and⌊·⌋ is the operator that yields the maximum integer not greater than its argument.

III. SYSTEM MODEL

In this section we recall briefly the system model for asynchronous CDMA introduced in Section IV and

VII of Part I of this work [1]. The reader interested in the details of the derivation can refer to [1].

Let us consider an asynchronous CDMA system withK active users in the uplink channel with spreading

factorN . Each user and the base station are equipped with a single antenna. The channel is flat fading

and impaired by additive white Gaussian noise with power spectral densityN0. The symbol interval is

denoted withTs andTc = Ts
N

is the chip interval. The modulation of all users is based on the same chip

pulse waveformψ(t) bandlimited with bandwidthB, unitary Fourier transformΨ(ω), and energyEψ =
∫∞
−∞ |ψ(t)|2dt.

The time delays of theK users are denoted withτk, k = 1, . . . , K. Without loss of generality we can

assume (i) user 1 as reference user so thatτ1 = 0, (ii) the users ordered according to increasing time delay

with respect to the reference user, i.e.τ1 ≤ τ2 ≤ . . . ≤ τK ; (iii) the time delay to be, at most, one symbol

interval so thatτk ∈ [0, Ts).2

As for the results presented in Part I, the mathematical results presented in this second part hold for any

front-end that keeps the sampled noise white at its output. However, in order to get better insights into
2For a thorough discussion on this assumption the reader can refer to [3].
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the physical system we focus on two front-ends of practical and theoretical interest. Both of them satisfy

the more general assumption underlying the results in Part I. We refer to them as Front-end Type A and

Front-end Type B3.

Front-end Type A consists of

• An ideal lowpass filter with cut-off frequencyω = πr
Tc

wherer ∈ Z+ satisfies the constraintB ≤ r
2Tc

such that the sampling theorem applies. The filter is normalized to obtain a unit overall amplification

factor, i.e. the transfer function is

G(ω) =





1√
Eψ

|ω| ≤ πr
Tc

0 |ω| > πr
Tc
.

(3)

• A subsequent continuous-discrete time conversion by sampling at rate r
Tc
.

This front-end satisfies the conditions of the sampling theorem and, thus, provides sufficient discrete-time

statistics. For convenience, the sampling rate is an integer multiple of the chip rate. Additionally, the

discrete-time noise process is white with zero mean and varianceσ2 = N0r
EψTc

.

Front-end Type B consists of

• A filter G(ω) matched to the chip pulse and normalized to the chip pulse energy, i.e.G(ω) = Ψ∗(ω)E
− 1

2
ψ ;

• Subsequent sampling at the chip rate.

When used with root Nyquist chip pulses, the discrete time noise process{w[p]} is white with varianceN0

EψTc
.

For a synchronous systems with square root Nyquist chip pulses, this front end provides sufficient statistics

whereas the observables are not sufficient if the system is asynchronous.

The chip waveform at the filter output is denoted byφ(t) and its unitary Fourier transform byΦ(ω). The

well-known relationsφ(t) = ψ(t) ∗ g(t) andΦ(ω) = Ψ(ω)G(ω) hold. The unitary Fourier transform of the

chip pulse waveformφ(t) sampled at rate1
Tc

and delayτ is given by

φ(Ω, τ)
△
=

1

Tc

+∞∑

s=−∞
ej

τ
Tc

(Ω+2πs)Φ∗
(
j(Ω+2πs)

Tc

)
. (4)

Sufficient statistics for asynchronous CDMA require an infinite observation window. In the following, we

introduce a matrix system model corresponding to an infiniteobservation window.
3For the sake of compactness of some of the results, we adopt another normalization than in Part I. Here, the signal energy at the output of the

front-end is equal to one. In Part I, the energy of the analog filter’s impulse response is normalized to unity. The variance of the sampled noise

at the front-end output changes accordingly.
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Let us denote withb(m) andy(m) the vectors of transmitted and received signals at time instantsm ∈ Z.

The baseband discrete-time asynchronous system is given by

Y = HB + W (5)

whereY = [. . . ,y(m−1)T ,y(m)T ,y(m+1)T . . .]T and B = [. . . , b(m−1)T , b(m)T , b(m+1)T . . .]T are infinite-

dimensional vectors of received and transmitted symbols respectively;W is an infinite-dimensional noise

vector; andH is a bi-diagonal block matrix of infinite size given by

H =




. . . . . . . . . . . . . . . . . . . . .

. . . 0 H
(m−1)
d H(m)

u 0 . . . . . .

. . . . . . 0 H
(m)
d H(m+1)

u 0 . . .

. . . . . . . . . . . . . . . . . . . . .




. (6)

Here,H(m)
u andH

(m)
d are matrices of sizerN ×K obtained by the decomposition of the2rN ×K matrix

H(m) into two parts such thatH(m) = [H(m)T
u ,H

(m)T
d ]T . ForH(m) the relation

H(m) = S(m)A (7)

holds whereA is theK×K diagonal matrix of the received amplitudesak andS(m) is the2rN ×K matrix

whosek-th column accounts for the spreading of the symbol transmitted by userk in the symbol intervalm

and due to the actual spreading sequence, the channel delay,and filtering and sampling at the front-end. We

refer to it as the matrix of virtual spreading. More specifically, the matrix of virtual spreading is given by

S(m) =
(
Φ1s

(m)
1 ,Φ2s

(m)
2 , . . .ΦKs

(m)
K

)
(8)

wheres
(m)
k is theN-dimensional column vector of the spreading sequence of user k for the transmitted

symbolm andΦk is the2rN ×N matrix taking into account the effects of the chip pulse shape and the time

delayτk userk. Let us decomposeτk in τk =
⌊
τk
Tc

⌋
andτ̃k = τk − Tcτk = τk mod Tc, the integer number

of chips the signal is delayed and its delay within a chip, respectively. The matrixΦk is of the form

Φk =




0τk

Φ̃k

0N−τk


 (9)

where0τk and0N−τk are zero matrices of dimensionsτ k × N and(N − τ k) × N , respectively;Φ̃k is an

r-block-wise circulant matrix of orderN as in (2)

Φ̃k = F(c(τ̃k)), (10)
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with

c(τ̃k) =
[
φ(Ω, τ̃k)φ(Ω, τ̃k − Tc

r
), . . . , φ(Ω, τ̃k − (r−1)Tc

r
)
]
.

Thus, the virtual spreading sequences are the samples of thedelayed continuous-time spreading waveforms

at sampling rater/Tc.

Throughout this work we assume that the transmitted symbolsare uncorrelated and identically distributed

random variables with unitary variance and zero mean, i.e.E(B) = O andE(BBH) = I beingO and

I the unlimited zero vector and the unlimited identity matrix, respectively. The elements of the spreading

sequencess(m)
k are assumed to be zero mean i.i.d. Gaussian random variablesover all the users, chips, and

symbols withE{s(m)
k s

(m)H
k } = 1

N
IN . Finally,U (m)

k denotes that column of the matrixH containing thekth

column of the matrixH(m). We define the correlation matricesT = HHH andR = HHH. The system

loadβ = K
N

is the number of transmitted symbols per chip.

IV. M ULTISTAGE STRUCTURES FORASYNCHRONOUSCDMA

We consider the large class of linear multistage detectors for asynchronous CDMA. Letχ(m)
L,k (H) be the

Krylov subspace [17] of rankL ∈ Z+ given by

χ
(m)
L,k (H) = span(T ℓU

(m)
k )|L−1

ℓ=0 . (11)

A multistage detector of rankL ∈ Z+ for userk is given by

b̂k =
L−1∑

ℓ=0

(w
(m)
k )ℓU

(m)H
k T ℓY (12)

wherew
(m)
k is theL-dimensional vector of weight coefficients.

It has been shown in [16] that, given the weight vectorw
(m)
k the detection of the symbolb(m)

k by the

multistage detector of rankL in (12) can be performed with finite delayL using the implementation scheme

in Figure 1. Although infinite length vectors and infinite dimension matrices appear in (12), the multistage

detector in Figure 1 implements exactly (12) and does not suffer from truncation effects. Equivalently, the

multistage detector in Figure 1 can be considered as a multistage detector processing data over an observation

window of size2L. The projection of the received vectorY onto the subspacesχ(m)
L,k (H), for k = 1 . . .K,

is performed jointly for all users and requires only multiplications between vectors and matrices. The size

of those vectors and matrices does not depend on the observation window. For further details the interested

reader is referred to [16], [18].
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ℏℏℏ(1:K, n−L)HY
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ℏℏℏ(1:K, n−L)T Y
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ℏℏℏ(1:K, n−L)H
T

L
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HH(n) H(n)

Matched Matched MatchedRe-
SpreadingSpreading
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Fig. 1. Multistage detector for asynchronous CDMA systems.Here,ℏℏℏ(1 : K, n) = [Φ1s
(n)
1 ,Φ2s

(n)
2 , . . . ΦKs

(n)
K ]

The class of multistage detectors includes many popular multiuser detectors:

• the single-user matched filter forL = 1,

• the linear parallel interference canceller (PIC) [19], [20] for weight coefficients chosen irrespective of

the properties of the transfer matrixH,

• the polynomial expansion detector [6] and the conjugate gradient method [7], if the weight coefficients

are identical for all users and chosen to minimize the mean square error,

• the (reduced rank) multistage Wiener filter [5] if the weightcoefficients are chosen to minimize the

mean square error, but are allowed to differ from user to user.

Throughout this work we refer to detectors that minimize theMSE in the projection subspace of the user of

interest asoptimum detectors in the MSE sense. More specifically this class of multistage detectors includes

the linear MMSE detector and the multistage Wiener filter butnot the polynomial expansion detector.

In the following we focus on the design of multistage Wiener filters implemented as in Figure 1. This

reduces the problem to the design of the filter coefficientsw
(m)
k . The multistage Wiener filter for the detection

of the symbolm transmitted by userk reads

M
(m)
k =

L−1∑

ℓ=0

(w
(m)
k )ℓ−1U

(m)H
k T ℓ. (13)
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The weight vectorw(m)
k that minimizes the MSEE{‖M(m)

k Y − b
(m)
k ‖2} is given by

w
(m)
k = argmin

w
(m)
k

E





∥∥∥∥∥

L−1∑

ℓ=0

(w
(m)
k )ℓU

(m)H
k T ℓY − b

(m)
k

∥∥∥∥∥

2


 (14)

= argmin
w

(m)
k

E

{∥∥∥w(m)H
k x

(m)
k − b

(m)
k

∥∥∥
2
}

(15)

wherex
(m)
k is anL-dimensional vector withj th element(x(m)

k )j = U
(m)H
k T j−1Y . This optimization prob-

lem is solved by the Wiener-Hopf theorem [21] andw
(m)
k is given by

w
(m)
k = (Ξ

(m)
k )−1ξ

(m)
k (16)

whereΞ(m)
k = E{x(m)

k x
(m)H
k } andξ = E{b(m)∗

k x
(m)
k }. It is straightforward to verify that in this case

Ξ
(m)
k =




(R2)k,m + σ2(R)k,m · · · (RL+1)k,m + σ2(RL)k,m

(R3)k,m + σ2(R2)k,m · · · (RL+2)k,m + σ2(RL+1)k,m
...

. . .
...

(RL+1)k,m + σ2(RL)k,m · · · (R2L)k,m + σ2(R2L−1)k,m




ξ
(m)
k =

(
(R)k,m, (R

2)k,m, . . . , (R
L)k,m

)T
. (17)

where(Rs)k,m = h
(m)H
k T s−1h

(m)
k is the diagonal element of the matrixRs corresponding to themth

symbol transmitted by userk.

V. UNIVERSAL WEIGHT DESIGN

Consider the SINR of any linear detector that admits a multistage representation. Letwk,m be the weight

vector for the detection of themth symbol transmitted by userk. Then the SINR at the output of the multi-

stage detector is given by

SINRk =
w

(m)H
k ξ

(m)
k ξ

(m)T
k w

(m)
k

w
(m)H
k (Ξ

(m)
k − ξ

(m)
k ξ

(m)T
k )wk(m)H

. (18)

The performance of multistage Wiener filters simplifies to

SINRk =
ξ

(m)T
k Ξ

(m) −1
k ξ

(m)
k

1 − ξ
(m)T
k Ξ

(m) −1
k ξ

(m)
k

. (19)

From (16), (18), and (19) it is apparent that the diagonal elements of the matrixRs play a fundamental role

in the design and analysis of multistage detectors.
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It has been shown in [2] that, if the spreading sequences are random and the CDMA system is synchronous,

the diagonal elements of the matrixRs, s ∈ Z
+, converge to deterministic values asK,N → ∞ with

constant ratio. This asymptotic convergence holds for someclasses of random matrices and is a stronger

property than the convergence of the eigenvalue distribution. The Stieltjes transform of the asymptotic

eigenvalue distribution ofR is related to the SINR at the output of the linear MMSE detector, as pointed

out first in [22] for synchronous CDMA systems. The asymptotic eigenvalue moments ofR enable the

asymptotic performance analysis of reduced rank multistage Wiener filters [23] and the design of multistage

detectors with quadratic complexity order per bit [14], [13]. The convergence of the diagonal elements

of Rs has been utilized in [2] for the design of multistage detectors with linear complexity order per bit

in synchronous CDMA systems and for the asymptotic analysisof any multistage detector not necessarily

optimum in a MSE sense. In the following we extend the resultsin [2] to the case of asynchronous CDMA

systems making use of the asymptotic properties of the random matrixR for asynchronous CDMA systems.

The design of low complexity multistage detectors is based on the approximation of the weight vectors

w
(m)
k by their asymptotic limit whenK,N → ∞ with constant ratioβ

w∞
k = lim

K=βN→∞
Ξ

(m) −1
k ξ

(m)
k . (20)

Thanks to the fact that the diagonal elements ofRs can be computed by a polynomial in few macroscopic

system parameters, the computation of the weight vectors becomes independent of the size ofR and inde-

pendent ofm. Thus, the effort for the computation of the weights becomesnegligible and the complexity

of the detector is dominated by the joint projection of the received signalY onto the subspacesχ(m)
k (H),

k = 1 . . .K andm ∈ Z. This projection has linear complexity per bit if the multistage detector in Figure 1

is utilized.

The convergence of the diagonal elements ofRℓ to deterministic values is established in the following

theorem. The definitions and the assumptions in the statement of Theorem 1 summarize and formalize the

characteristics of system model (5) forτk ∈ [0, Ts].

Theorem 1 Let K,N ∈ N and A ∈ CK×K be a diagonal matrix withkth diagonal elementak ∈ C.

Ts and Tc are positive reals withTs = NTc. Given{τ1, τ2, . . . τK} a set of delays in[0, Ts), we intro-

duce the sets of delays in[0, Tc) defined as{τ̃k : τ̃k = τkmodTc, k = 1, . . .K} and the set of nor-

malized delays
{
τ k : τ k =

⌊
τk
Tc

⌋}
. Given a functionΦ(ω) : R → C, let φ(Ω, τ) be as in (4). Given
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a positive integerr, let Φk, k = 1, . . .K, be r-block-wise circulant matrices of orderN defined in (10)

and S(m) =
(
Φ1s

(m)
1 ,Φ2s

(m)
2 , . . .ΦKs

(m)
K ,

)
with s

(m)
k N-dimensional random column vector. LetH =

(H(m)T
u ,H

(m)T
d )T = SA with H(m)

u ,H
(m)
d ∈ C

rN×K andH the infinite block row and block column ma-

trix of the same form as in (6),T = HHH , R = HHH, and U
(m)
k the column ofH corresponding to

Φks
(m)
k .

We assume that the functionΦ(ω) is upper bounded and has finite support. The receive filter is such

that the sampled discrete time noise process is white. The vectors sk are independent with i.i.d. zero-

mean circularly symmetric Gaussian elements with varianceE{|sij |2} = N−1. Furthermore, the elements

ak of the matrixA are uniformly bounded for anyK. The sequence of the empirical joint distributions

F
(K)

|A|2,eT (λ, τ̃) = 1
K

∑K
k=1 1(λ − |ak|2)1(τ̃ − τ̃k) converges almost surely, asK → ∞, to a non-random

distribution functionF|A|2,eT (λ, τ̃).

Then, conditioned on(|ak|2, τ̃k), the corresponding diagonal elements of the matricesRℓ converge almost

surely to the deterministic value

lim
K=βN→∞

(Rℓ)k,m = lim
K=βN→∞

U
(m)H
k T U

(m)
k

a.s.
= Rℓ(|ak|2, τ̃k) (21)

withRℓ(|ak|2, τ̃k) determined by the following recursion

Rℓ(λ, τ) =
ℓ−1∑

s=0

g(T ℓ−s−1, λ, τ)Rs(λ, τ) (22)

and

T ℓ(Ω) =

ℓ−1∑

s=0

f(Rℓ−s−1,Ω)T s(Ω) −π ≤ Ω ≤ π (23)

f(Rℓ,Ω) = β

∫
λ∆φ,r(Ω, τ)∆

H
φ,r(Ω, τ)Rℓ(λ, τ)dF|A|2,T (λ, τ) −π ≤ Ω ≤ π (24)

g(T ℓ, λ, τ) =
λ

2π

∫ π

−π
∆

H
φ,r(Ω, τ)T ℓ(Ω)∆φ,r(Ω, τ)d Ω (25)
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with

∆φ,r(Ω, τ) =




φ(Ω, τ)

φ(Ω, τ − Tc
r
)

...

φ(Ω, τ − Tc(r−1)
r

)




. (26)

The recursion is initialized by settingT 0(Ω) = Ir andR0(λ, τ) = 1.

Theorem 1 is proven in Appendix I.

Note that the asymptotic diagonal elements ofRℓ depend on the delayτk only via the delay of a chip pulse

waveform within a chip, i.e. viãτk, while any delay multiple ofTc leaves the diagonal elements unchanged.

From Theorem 1 we can obtainm(ℓ)
R , the asymptotic eigenvalue moment of the matrixR of orderℓ by

using the relation

m
(ℓ)
R = E{Rℓ(λ, τ)}

where the expectation is taken over the limit distributionF|A|2, eT (λ, τ̃). For r = 1 andF|A|2,eT (λ, τ̃) =

F|A|2(λ)δ(τ̃), i.e. for synchronous systems sampled at the chip rate, andΦ(ω) satisfying the Nyquist criterion

the recursive equations (23), (24), and (25) reduce to the recursion in [2] Theorem 1.

This theorem is very general and holds for all chip pulses of practical interest. Furthermore, no constraint

is imposed on the time delay distribution. The choice of the front end in this work is restricted only by the

applicability of (18) or (19), which imply white noise at thefront end. Then, since both Front-end A and

Front -end B keep the sampled noise white, Theorem 1 applies to both of them.

Now, we specialize Theorem 1 to a case of theoretical and practical interest, where sufficient statistics are

utilized in the detection, the chip pulse waveformφ(t) is band-limited, and the sequence of the empirical

distribution functions of the time delays converges to a uniform distribution function asK → +∞. The

constraint to use sufficient statistics restricts the classof front-ends. The following results apply to Front-end

A but, in general, not to Front-end B.

Corollary 1 Let us adopt the same definitions as in Theorem 1 and let the same assumptions of Theorem

1 be satisfied. Additionally, assume that the random variablesλ and τ̃ in F|A|2, eT (λ, τ̃) are statistically

independent and the random variableτ̃ is uniformly distributed. Furthermore,Φ(Ω) is bounded in absolute
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value, and bandlimited with bandwidthB ≤ r
2Tc
. Then, given(|ak|2, τ̃k) andm ∈ Z, the corresponding

diagonal element of the matrixRℓ converges almost surely to a deterministic value, conditionally on |ak|2,

lim
K=βN→∞

(Rℓ)k,m = lim
K=βN→∞

U
(m)H
k T ℓ−1U

(m)
k

a.s.
= Rℓ(|ak|2)

withRℓ(λ)|λ=|ak|2 determined by the following recursion:

Rℓ(λ) =
ℓ−1∑

s=0

λRs(λ)νℓ−s−1

and

Tℓ(ω) =
r

Tc

ℓ−1∑

s=0

f(Rℓ−s−1)
1

Tc
|Φ (ω)|2 Ts(ω) −2πB ≤ ω ≤ 2πB

f(Rℓ) = β

∫
λRℓ(λ)dF|A|2(λ)

νℓ =
r

2πTc

∫ 2πB

−2πB

|Φ (ω)|2 Tℓ(ω)dω.

The recursion is initialized by settingT0(ω) = 1 andR0(λ) = 1.

Corollary 1 is derived in Appendix II.

The eigenvalue moments ofR can be expressed in terms of the auxiliary quantitiesf(Rs) andνs in the

recursion of Corollary 1 by the following expression:

m
(ℓ)
R = E{Rℓ(λ)} =

ℓ−1∑

s=0

f(Rs)νℓ−s−1.

Applying Corollary 1 we obtain the following algorithm to compute the asymptotic limits of the diagonal

elements ofRℓ and its eigenvalue moments.

Algorithm 1

Initialization: Letρ0(z) = 1 andµ0(y) = 1.

lth step: • Defineuℓ−1(y) = ryµℓ−1(y) and write it as a polynomial iny.

• Definevℓ−1(z) = zρℓ−1(z) and write it as a polynomial inz.
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• Define

Es =
1

2πT sc

∫ 2πB

−2πB

Tc|Φ(ω)|2sdω (27)

and replace all monomialsy, y2, . . . , yℓ in the polynomialuℓ−1(y) byE1/Tc, E2/Tc, . . . ,

Eℓ/Tc, respectively. Denote the result byUℓ−1.

• Definems
|A|2 = E{|ak|2s} and replace all monomialsz, z2, . . . , zℓ in the polynomial

vℓ−1(z) by the momentsm(1)

|A|2 , m
(2)

|A|2,. . . ,m(ℓ)

|A|2 , respectively. Denote the result by

Vℓ−1.

• Calculate

ρℓ(z) =
ℓ−1∑

s=0

zUℓ−s−1ρs(z)

µℓ(y) =
r

Tc

ℓ−1∑

s=0

βyVℓ−s−1µs(y).

• Assignρℓ(λ) toRℓ(λ).

Replace all monomialsz, z2, . . . , zℓ in the polynomialρℓ(z) by the momentsm(1)

|A|2,

m
(2)
|A|2 ,. . . ,m(ℓ)

|A|2, respectively, and assign the result tom(ℓ)
R .

Algorithm 1 is derived in Appendix III.

Interestingly, the recursive equations in Corollary 1 do not depend on the time delayτk of the signal of

userk, i.e. the performance of a CDMA system with multistage detection is independent of the sampling

instants and time delays if the assumptions of Corollary 1 onthe chip waveforms and on the time delays are

satisfied.

Additionally, the dependence ofRℓ(λ) on the chip pulse waveforms becomes clear from Algorithm 1:

Rℓ(λ) depends onΦ(ω) through the quantitiesEs, s = 1, 2, . . ., defined in (27).

OCTOBER22, 2009



SUBMITTED MANUSCRIPT TO IEEE TRANSACTIONS ONINFORMATION THEORY 16

By applying Algorithm 1 we compute the first five asymptotic eigenvalue moments

m
(1)
R =

r

Tc
m

(1)
|A|2E1

m
(2)
R =

(
r

Tc

)2

[β(m
(1)

|A|2)
2E2 +m

(2)

|A|2E2
1 ]

m
(3)
R =

(
r

Tc

)3

[β2E3(m
(1)

|A|2)
3 + 3m

(2)

|A|2E2βm
(1)

|A|2E1 +m
(3)

|A|2E3
1 ]

m
(4)
R =

(
r

Tc

)4

[2β2E2
2m

(2)
|A|2(m

(1)
|A|2)

2 + 4βE2
1E2m

(3)
|A|2m

(1)
|A|2 + 4β2E1E3m

(2)
|A|2(m

(2)
|A|2)

2 + β3E4(m
(1)
|A|2)

4

+2βE2
1E2(m

(2)

|A|2)
2 + E4

1m
(4)

|A|2]

m
(5)
R =

(
r

Tc

)5

[m
(5)
|A|2E5β

4 + E5
1 (m

(1)
|A|2)

5 + 5β3E1E4m
(2)
|A|2(m

(1)
|A|2)

3 + 5β3E3E2m
(2)
|A|2(m

(1)
|A|2)

3

+5β2E3E2
1m

3
|A|(2)(m

(1)

|A|2)
2 + 5β2E2

1E3(m
(2)

|A|2)
2m

(1)

|A|2 + 5β2E1E2
2 (m

(2)

|A|2)
2m

(1)

|A|2

+5β2E2
2E1m

(3)

|A|2(m
(1)

|A|2)
2 + 5βE2E3

1m
(4)

|A|2m
(1)

|A|2 + 5E2E3
1m

(3)

|A|2m
(2)

|A|2 ].

In general, the eigenvalue moments ofR depend only on the system loadβ, the sampling rater
Tc

, the

eigenvalue distribution of the matrixAHA, andEs, s ∈ Z+. The latter coefficients take into account the

effects of the shape of the chip pulse or, equivalently, of the frequency spectrum of the functionφ(t). The

asymptotic limits of the diagonal elements of the matrixRℓ corresponding to userk depends also on|ak|2

but not on the time delayτk.

In the special case of chip pulse waveformsψ(t) having bandwidth not greater than the half of the chip

rate, i.e.B ≤ 1
2Tc

the result of Corollary 1 holds for any sets of time delays included synchronous systems.

In Theorem 2, chip pulse waveforms with bandwidthB ≤ 1
2Tc

are considered and the diagonal elements

of Rs are shown to be independent of the time delays of the active users.

Theorem 2 Let the definitions of Theorem 1 hold.

We assume that the functionΦ(ω) is bounded in absolute value and has supportS ⊆
[
− π
Tc
, π
Tc

]
. The

vectorssk are independent with i.i.d. Gaussian elementssnk ∈ C such thatE{snk} = 0 andE{|snk|2} =

1
N
. Furthermore, the elementsak of the matrixA are uniformly bounded for anyK. The sequence of the

empirical distributionsF (K)
|A|2(λ) = 1

K

∑K
k=1 1(λ − |ak|2) converges in law almost surely, asK → ∞, to a

non-random distribution functionF|A|2(λ).

Then, given|ak|2, then-th diagonal element of the matrixRℓ, with n modK = k, converges almost
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surely to a deterministic value, conditionally on|ak|2,

lim
K=βN→∞

(Rℓ)k,m = lim
K=βN→∞

U
(m)H
k T ℓ−1U

(m)
k

a.s.
= Rℓ(|ak|2)

withRℓ(|ak|2) determined by the following recursion

Rℓ(λ) =
ℓ−1∑

s=0

λRs(λ)νℓ−s−1 (28)

and

Tℓ(ω) =
r

Tc

ℓ−1∑

s=0

βf(Rℓ−s−1)
1

Tc
|Φ(ω)|2Ts(ω) ω ∈ S (29)

f(Rℓ) =

∫
λRℓ(λ)dF|A|2(λ) (30)

νℓ =
r2

2πTc

∫

S
|Φ(ω)|2Tℓ(ω)dω. (31)

The recursion is initialized by settingT0(ω) = Tc
r

andR0(λ) = 1.

Theorem 2 is shown in Appendix IV. It applies to Front-end A but, in general, not to Front-end B since

Front-end B implies the use of root Nyquist pulses. It is straightforward to verify that Algorithm 1 can be

applied to determineRℓ(λ), the asymptotic limit of the diagonal elements and the eigenvalue moments of

matricesR satisfying the conditions of Theorem 2.

The mathematical results presented in this section have important implications on the design and analysis

of asynchronous CDMA systems and linear detectors for asynchronous CDMA systems. We elaborate on

them in the following section.

VI. EFFECTS OFASYNCHRONISM, CHIP PULSE WAVEFORMS, AND SETS OFOBSERVABLES

The theoretical framework developed in Section V enables the analysis and design of linear multistage

detectors for CDMA systems using optimum and suboptimum statistics and possibly non ideal chip pulse

waveforms. In this section we focus on the following aspects:

1) Analysis of the effects of chip pulse waveforms and time delay distributions when the multistage detec-

tors are fed by sufficient statistics.

2) Impact of the use of sufficient and suboptimum statistics on the complexity and the performance of

multistage detectors.
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A. Sufficient Statistics

Sufficient statistics impaired by discrete additive Gaussian noise are obtained as output of detector Type

A. For chip pulse waveforms with bandwidthB ≤ 1
2Tc

and any set of time delays, Theorem 2 applies.

ForB > 1
2Tc

and uniform time delay distribution, Corollary 1 holds. In both cases, asK,N → ∞ with

constant ratio the diagonal elements of the matrixRℓ and the eigenvalue momentsm(ℓ)
R can be obtained

from Algorithm 1. As a consequence of (18), the performance of the large class of multiuser detectors that

admit a representation as multistage detectors depends only on the diagonal elementsRℓ and the variance

of the noise. In large CDMA systems, the SINR depends on the system loadβ, the sampling rater
Tc

, the

limit distribution of the received powersF|A|2(λ), the variance of the noiseσ2, the coefficientsEℓ, ℓ ∈ Z+

and the received powers|ak|2, but it is independent of the time delayτk, in general. ForB ≤ 1
2Tc
, the SINR

is also independent of the time delay distribution. Therefore we can state the following corollary.

Corollary 2 If the bandwidth of the chip pulse waveform satisfies the constraintB ≤ 1
2Tc
, large synchronous

and asynchronous CDMA systems have the same performance in terms of SINR when a linear detector that

admits a representation as multistage detector is used at the receiver.

If the time delays and the received amplitudes of the signalsare known at the receiver and the sampling rate

satisfies the conditions of the sampling theorem, synchronous and asynchronous CDMA systems have the

same performance. In [24] is established the equivalence between synchronous and asynchronous CDMA

systems using an ideal Nyquist sinc waveform (B = 1
2Tc

) and linear MMSE detector. Corollary 2 generalizes

that equivalence to any kind of chip pulse waveforms with bandwidthB ≤ 1
2Tc

and any linear multiuser

detector with a multistage representation.

By inspection of Algorithm 1 we can verify that the dependence ofRℓ(|ak|2) andm(ℓ)
R on the sampling

rate r
Tc

can be expressed by the following relations

Rℓ(|ak|2) =

(
r

Tc

)ℓ
R∗
ℓ(|ak|2) (32)

and

m
(ℓ)
R =

(
r

Tc

)ℓ
m

∗ (ℓ)
R (33)
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whereR∗
ℓ (|ak|2) andm∗ (ℓ)

R are independent of the sampling rater
Tc
. Thanks to this particular dependence and

the fact thatσ2 = r
Tc
N0, the quadratic forms appearing in (18) when specialized to multistage Wiener filters

and in to polynomial expansion detectors,ξHk,mΞ
−1
k,mξk,m, ξ

H
k,mΞ

−1ξ, andξHΞ
−1

Ξk,mΞ
−1ξ, are independent

of the sampling rate for large systems. Thus, the large system performance of (1) linear multistage detectors

optimum in a mean square sense (see (19)), (2) of the polynomial expansion detectors and (3) the matched

filters is independent of the sampling rate. This property isnot general. Detectors that are not designed

to benefit at the best from the available sufficient statistics may improve their performance using different

sets of sufficient statistics. Therefore, the large system performance of other multistage detectors like PIC

detectors depends on the sampling rate and can eventually improve by increasing the oversampling factorr.

Given a positive realγ, let us consider the chip pulse

Φ(ω) =





√
Tc
γ

for |ω| ≤ πγ
Tc
,

0 otherwise.
(34)

corresponding to a sinc waveform with bandwidthB = γ
2Tc

and unit energy. For waveform (34) withγ = 1,

Tc = 1, andr = 1 Algorithm 1 reduces to Algorithm 1 in [18] for synchronous systems. Let us denote by

R
(syn)
ℓ (|ak|2, β) andm(ℓ)

R(syn)(β) the values ofRℓ(|ak|2) andm(ℓ)
R for such a synchronous case and system load

β. Then, in general, for chip pulse waveform (34) Algorithm 1 yields

R
(sinc)
ℓ (|ak|2) =

(
r

Tc

)ℓ
R(syn)
ℓ

(
|ak|2,

β

γ

)
(35)

and

m
(ℓ)

R(sinc) =

(
r

Tc

)ℓ
m

(ℓ)

R(syn)

(
β

γ

)
. (36)

Therefore, the same property pointed out in part I of this paper [1] for linear MMSE detectors holds for

several multistage detectors (namely, multistage Wiener filters, polynomial expansion detectors, matched

filters): In a large asynchronous CDMA system using a sinc function with bandwidth γ
2Tc

as chip pulse

waveform and system loadβ any multistage detector whose performance is independent of the sampling

rate performs as well as in a large synchronous CDMA system with modulation based on root Nyquist chip

pulses and system loadβ ′ = β
γ
.

The comparison of synchronous and asynchronous systems with equal chip pulse waveforms enables us

to analyze the effects on the system performance of the chip pulse waveforms jointly with the effects of

the distribution of time delays. We elaborate on these aspects focusing on root raised cosine chip-pulse
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waveforms with roll-offϑ ∈ [0, 1] and on chip pulse waveforms (34) withγ ∈ [1, 2]. To simplify the

notation, we assumeTc = 1. Let

S(ω) =





1 0 ≤ |ω| ≤ π(1 − ϑ)

1
2

(
1 − sin

(
|x|−π

2ϑ

))
π(1 − θ) ≤ |ω| ≤ π(1 + ϑ)

0 |ω| ≥ π(1 + ϑ).

The energy frequency spectrum of a root raised cosine waveform with unit energy is given by|Ψsqrc(ω)|2 =

S(ω). The large system analysis of an asynchronous CDMA system using root raised cosine chip pulse

waveform is obtained applying Algorithm 1. The corresponding coefficientsEsqrc,s, s = Z+, are given by

Esqrt,s=2s(1 − γ) +
1

π

∫ π(1+γ)

π(1−γ)
sins

(
1

2γ
(π−ω)

)
dω.

It is well known that in a synchronous CDMA system the performance is maximized using root Nyquist

waveforms. In this case the performance is independent of the specific waveform and the bandwidth. It

equals the performance of a large synchronous system using the sinc function with bandwidth1
2Tc

as chip

pulse. Since the root raised cosine pulses are root Nyquist waveforms, they attain the maximum SINR in

synchronous systems. The large system performance of multistage Wiener filters for synchronous CDMA

systems with a root raised cosine waveform is obtained making use of (19) and Algorithm 1 withr = 1 and

Es = 1, s ∈ Z+.

In general, chip pulse waveform(34) is not a root Nyquist waveform. For this reason the performance

analysis of linear multistage Wiener filters for synchronous CDMA sytems [14], [18] is not applicable.

In this case characterized by interchip interference we canstill apply Theorem 1, sampling at rate2
Tc

and

assuming a Dirac functionfT (τ) = δ(τ) as probability density function of the time delays. For the chip

pulse waveform (34), the matrixQ(Ω) = ∆Φ,2(Ω, 0)∆H
Φ,2(Ω, 0) used in the recursion of Theorem 1 is given

by

Q(Ω) =





1
γ




1 e−j
Ω
2

ej
Ω
2 1


 |Ω| ≤ 2π

(
1 − γ

2

)

1
γ




4 0

0 0


 2π

(
1 − γ

2

)
≤ |Ω| ≤ π.

The large system analysis in the asynchronous case with chippulse (34) can be readily performed making

use of (19) and (35).
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In Figure 2 the large system SINR at the output of a multistageWiener filter withL = 4 is plotted as a

function of the bandwidth for synchronous and asynchronousCDMA systems based on modulation by root

raised cosine or by pulse (34). We assume perfect power control, i.e. A = I, system loadβ = 0.5, and

inputSNR = 10 dB.

It is well known from theory of synchronous CDMA that interchip interference colors the discrete-time

spectrum of the signal and degrades performance. Consistently with that Figure 2 shows that for synchronous

CDMA root raised cosine pulses, since they avoid interchip interference, outperform sinc pulses with non-

integer ratios of bandwidth to chip rate. Asynchronous CDMAsystems with both chip pulse waveforms

widely outperform the corresponding synchronous systems.In contrast to the synchronous case, sinc pulses

exploit the additional degrees of freedom introduced by increasing the bandwidth better than root raised

cosine pulses, since they do not color the spectrum in continuous time domain. Thus, an asynchronous

CDMA system with sinc pulses considerably outperforms a system using root raised cosine pulses. Note that

for asynchronous systems, the spectral shape in continuoustime is relevant, while for synchronous systems

the spectral shape in discrete time matters. In both cases the spectrum should be as white as possible to

achieve high performance. For asynchronous systems, the spectrum is the less colored, the closer the delay

distribution resembles an (eventually discrete) uniform distribution.

In Figure 3 the SINR at the output of a multistage Wiener filterwith L = 8 is plotted as a function of the

system load, parametric in the bandwidth, forSNR = 10 dB. The improvement achievable by asynchronous

systems over synchronous systems increases as the the system load increases.

B. Chip Rate Sampling

Chip rate sampling is a widely used approach to generate statistics for asynchronous CDMA systems. It

implies the use of root Nyquist chip pulses and makes use of front end Type B. Hereafter, we refer to these

CDMA systems as systems B, while we refer to the systems that use sufficient statistics from a front end

Type A as systems A.

A bound on the performance of systems B with linear MMSE detectors is in [25]. The performance

analysis of linear multistage detectors asK,N → ∞ with K
N

→ β can be performed applying Theorem 1 to

the chip pulse waveform at the output of the chip matched filter Φ(ω) = 1√
Eψ

|Ψ(ω)|2 and assumingr = 1.

In order to elaborate further on systems B we focus on the square root raised cosine chip pulse with roll-off
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Fig. 2. Output SINR of a multistage Wiener filter withL = 4 versus

bandwidth. CDMA systems with equal received powers, root raised

cosine chip waveforms or sinc pulses, system loadβ = 1
2

and input

SNR = 10 dB are considered.
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Fig. 3. Output SINR of a multistage Wiener filter withL = 8 versus

the system load. Asynchronous CDMA systems with equal received

powers, root raised cosine chip waveforms or sinc pulses with band-

width B = 1.5, 2 Hz, input SNR = 10 dB are compared to syn-

chronous CDMA systems with root Nyquist chip pulses.

θ [26]

ψ(t) =
4θ( t

Tc
) cos(π(1 + θ) t

Tc
) + sin(π(1 − θ) t

Tc
)

πt(1 − (4θ t
Tc

)2)
θ ∈ [0, 1]. (37)

In this case, the matrix functionQ(Ω, τ) = ∆φ,1(Ω, τ)∆
H
φ,1(Ω, τ) occurring in Theorem 1 reduces to the

scalar function

Q(Ω, τ) =





1
2

+ 1
2
sin2

(
1
2θ

(Ω + π)
)

+ cos 2πτ
2

(
1 − sin2

(
1
2θ

(Ω + π)
))

−π ≤ Ω ≤ −π(1 − θ)

1 −π(1 − θ) ≤ Ω ≤ π(1 − θ)

1
2

+ 1
2
sin2

(
1
2θ

(Ω − π)
)

+ cos 2πτ
2

(
1 − sin2

(
1
2θ

(Ω − π)
))

π(1 − θ) ≤ Ω ≤ π.

due to the fact thatr = 1. Equal received powers, system loadβ = 1
2
, multistage Wiener filters withL = 3

define the scenario we consider for the asymptotic analysis.

The analysis shows a strong dependence of the performance onthe time delays. As expected, it is possible

to verify that the best SINR is obtained when the sampling instants coincide with the time delays of the user

of interest.

In Figure 4 we compare the performance of system B with root raised cosine chip pulse to the SINR of a

system A with the same modulating pulse. In the comparison weconsider the best SINR for system B ob-

tained when the sampling times coincide with the time delaysof the user of interest. The curves represent the
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Fig. 4. Asymptotic output SINR of a multistage Wiener filter withL = 3 versus the roll-offθ as front-end A (dashed lines) and

front-end B (dots) are in use in an asynchronous CDMA system.The solid lines show the reference performance in synchronous

CDMA systems. The curves are parametric in the input SNR withSNR varying between0 dB and20 dB in steps of5 dB.

output SINR as a function of the roll-offθ parameterized with respect to SNR. The parameter (SNR) varies

from 0 dB to 20 dB in steps of 5 dB. As reference we also plot the performance of synchronous CDMA sys-

tems. As expected, multistage detectors with front-end A outperform the corresponding multistage detectors

with front-end B.

Interestingly, while linear multistage detectors and asynchronism in system A can compensate to some

extent for the loss in spectral efficiency caused by the increasing roll-off and typical of synchronous CDMA

systems such a compensation is not possible in systems B. Systems B behave similarly to synchronous

CDMA systems. In fact, the SINR for system B is very close to the performance of synchronous systems

for any SNR level.

A thorough explanation of these properties based on generalanalytical results is in Part I Section V [1].

We recapitulate the main idea briefly here. The performance of a large asynchronous CDMA system is

governed by anr × r matrix function in the frequency domain (eq. (24) in [1])4. To give an intuition,

the system is then equivalent to a MIMO system withr transmit andr receive antennas. The structure of

this matrix is such that the matrix is necessarily rank one for synchronous CDMA systems. Thus, only

one dimension of the signal space is spanned. On the contrary, for arbitrary delay distributions, i.e. in

general for asynchronous systems, the rank of the MIMO system can be higher, eventually, up tor. This
4Note that the matricesT ℓ(Ω) in Theorem 1 can be interpreted as expansion coefficients of this matrix.
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implies that asynchronous systems span more of the available dimensions of the signal space resulting in

better exploitation of it. When the received signal is sampled at the chip rate, as in the case of Front-end

B, andr = 1 the processed signal for an asynchronous system only spans asingle dimension, just like in

synchronous systems, and the performances of synchronous and asynchronous systems are very similar.

Since the SINR in system B heavily depends on the sampling instants with respect toτk, different statistics

are needed for the detection of different users in order to obtain good performance. As consequence, joint

detection is not feasible and each user has to be detected independently. This is a significant drawback when

several or all users have to be detected (e.g. uplink) and hasa relevant impact on the complexity of the

system. For example, the complexity order per bit of a multistage Wiener filter or polynomial expansion

detector is linear inrK in system A while the complexity order per bit of the same detectors is quadratic in

K in system B. A similar increase in complexity can be noticed also for other detectors (e.g. linear MMSE

detectors, or any multistage detector).

VII. CONCLUSIONS

In Part II of this work we provided guidelines for the design of asynchronous CDMA systems via the anal-

ysis of the effects of chip pulse waveforms, time delay distributions, sufficient and suboptimum observables

on the complexity and performance of the broad class of multiuser detectors with multistage representation.

Similarly to the results obtained in part I of this article [1], i.e. the chip-pulse constrained spectral effi-

ciency and the performance of linear MMSE detectors, multistage detectors show performance independent

of the time delays of the active users if the bandwidth of the chip pulse waveform is not greater than half of

the chip rate, i.e.B ≤ 1
2Tc
. Above that threshold the performances of linear multistagedetectors depend on

the time delay distributions and asynchronous CDMA systemsoutperform synchronous CDMA systems.

The framework presented here enabled the analysis of optimum and suboptimum multistage detectors

based on front ends whose sampled noise outputs are white. Wefocused on multistage detectors using

statistics (A), which are sufficient, or observables (B), which are suboptimum. In the two cases of (i) chip

pulses with bandwidthB ≤ 1
2Tc

and (ii) chip pulses with bandwidthB > 1
2Tc

, sufficient statistics, and

uniform distribution, the effects of the chip pulse waveforms on the detector performance are described

by the coefficientsEs = 1
2πT s−1

c

∫ 2πB

−2πB
|Ψ(ω)|2sdω. The output SINR of linear MMSE detectors, multistage

Wiener filters, polynomial expansion detectors, and matched filters is independent of the sampling rate. In

contrast, the output SINR of other multistage detectors like PIC detectors depends on the sampling rate and
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increases with it.

Comparing the performance of synchronous and asynchronousCDMA systems with modulation based

on root Nyquist pulses, namely root raised cosine waveforms, and modulation based on sinc functions with

increasing bandwidth, it becomes apparent that the chip pulse design for synchronous CDMA systems fol-

lows the same guidelines as the chip pulse design for single user systems. In contrast, chip pulse design for

asynchronous CDMA systems is governed by entirely different rules. In fact, for example, we found that

CDMA systems with uniform delay distributions perform wellif the spectrum of the received signal is as

white as possible.

The asymptotic analysis of asynchronous CDMA systems usingstatistics (B) shows that the performance

of multistage Wiener filters is close to the SINR of the corresponding synchronous CDMA systems for any

bandwidth and level of SNR. Therefore, this kind of front-end is not capable of exploiting the benefits of

asynchronous CDMA.

The universal weights proposed for the design of low complexity detectors account for the effects of asyn-

chronism, sub-optimality of the statistics, and non-ideality of pulse-shapers. They depend on the sampling

rate although the large system performance do not.

From the asymptotic analysis and design performed in this work we can draw the following conclu-

sions:

• Multistage detectors with front end Type B and universal weights are asymptotically suboptimal and

have the same complexity order per bitO(K2) in uplink as the linear MMSE detector.

• Multistage Wiener filters and polynomial expansion detectors with statistics A and universal weights are

asymptotically optimum and have the same complexity order per bit as the matched filter, i.e.O(rK)

with r ≪ K.

• If only a user has to be detected, multistage detectors usingstatistics (B) have slightly lower complexity

than multistage detectors with statistics (A), namely theyhave a complexity per bitO(K2) while in the

later case the complexity per bit isO(rK2). However, they perform almost as the multistage detectors

for synchronous systems at any SNR and do not provide the gainin performance due to asynchronism

in contrast to statistics (A).
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APPENDIX I

PROOF OFTHEOREM 1

Before going into the details of the proof we introduce some properties of the convergence in probability

and in probability one.

Property A: Let us consider a finite numberq of random sequences{a(1)
n }, . . . , {a(q)

n } that converge in

probability to deterministic limitsa1, . . . , aq, respectively. Then, any linear combination of such sequences

converges in probability to the linear combination of the limits. Furthermore, if|a(s)
n − as| P→ o(N−is),

with is ∈ R+, and s = 1, . . . q, then any linear combination of the random sequences converges as

o(N−mins=1,...q(is)), at worst.

Property B: Let {an} and{bn} be two random sequences that converge in probability toa andb, respec-

tively. Then, the sequence{anbn} converges in probability toab.

Property C: If for largen, Pr{|an − a| > ε} ≤ o(n−s) andPr{|bn − b| > ε} ≤ o(n−t), with s, t ∈ R
+,

then alsoPr{|(an − a)(bn − b)| > ε} ≤ o(n−min(s,t)), at worst.

The convergence in probability one or almost sure convergence implies the convergence in probability. In

general, the converse is not true. However, if a random sequenceak converge in probability to a constanta

with a convergence rateo(n−s) ands > 1, i.e. Pr{|an − a| > ε} ≤ o(n−s), then, also the convergence in

probability one holds. This is a straightforward consequence of the Borel Cantelli lemma (see e.g. [27]).

In part I Theorem 3 of this work [1] we have shown that, whenK,N → +∞ with constant ratioβ,

the eigenvalue distribution of the infinite matrixR is the same as the eigenvalue distribution of the matrix

R̃ = AHS̃
H

S̃A = H̃
H

H̃ whereS̃ = (Φ̃1s1, Φ̃2s2, . . . Φ̃KsK) and Φ̃k is the r-block-wise circulant

matrix of orderN defined in (10) with̃τk = τk modTc.

Let us consider the block diagonal matrix∆φ,r(τ̃k) with r × 1 blocks

(∆φ,r(τ̃k))ℓ,ℓ =




φ
(
2π ℓ−1

N
, τ̃k
)

φ
(
2π ℓ−1

N
, τ̃k − Tc

r

)

...

φ
(
2π ℓ−1

N
, τ̃k − r−1

r
Tc
)




. (38)

and introduce the matrices

Ŝ = (∆φ,r(τ̃1)s1,∆φ,r(τ̃2)s2, . . .∆φ,r(τ̃K)sK) (39)

andR̂ = AHŜ
H

ŜA.
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By applying the same approach as in part I Theorem 1 of this work [1] it can be shown that the eigenvalue

distribution of the matrices̃R and R̂ coincide. Then, also the eigenvalue moments of the two matrices

coincide. The same property holds for the diagonal elementsof the matrices̃R
ℓ

andR̂
ℓ

with ℓ ∈ Z
+.

In the following we focus on the asymptotic analysis of the diagonal elements of the matricesR̂
ℓ
.

Throughout this proof we adopt the following notation. Fork = 1, . . . , K andn = 1, . . . , N

• ĥk is thekth column of the matrix̂H;

• ĥnk is thenth r × 1 block of the vector̂hk andĥnk = ak(∆φ,r(τ̃k))nnsnk;

• δ̂n is thenth block row ofĤ of dimensionsr ×K;

• Ĥ�n is the matrix obtained from̂H by suppressinĝδn;

• Ĥ∼k is the matrix obtained from̂H by suppressinĝhk;

• T̂ = ĤĤ
H

andT̂∼k = Ĥ∼kĤ
H

∼k;

• R̂�n = Ĥ
H

�nĤ�n;

• σ̂n = (sn1, sn2, . . . , snK);

• ∇∇∇n,t, for t = 1, . . . , r andn = 1, . . . , N , is aK × K diagonal matrix with thekth element equal to

φ
(
2π n−1

N
, τ̃k − (t−1)Tc

r

)
. Note thatσ̂n∇∇∇n,tA coincides with the(t+ (n− 1)r)th row of the matrixĤ.

• T̂
s

[nn] is thenth diagonal block of̂T
s

of dimensionsr × r.

Furthermore, since the channel gainsak are bounded, we denote byaMAX their upper bound, i.e.|ak| <

aMAX, ∀k. Finally, thanks to the assumption thatΦ(ω) is bounded in absolute value with finite support also

φ(Ω, τ) is upper bounded for anyΩ andτ . We denote byΦMAX its bound.

Let us observe first that the eigenvalue moments of the matrixR̂ (or equivalently ofT̂ ) are almost surely

upper bounded by a finite positive valuesC(s), i.e.

∃C(s) < +∞ : Pr

{
1

N
trR̂

s
< C(s)

}
= 1 asK,N → +∞,

K

N
→ β. (40)

In fact,

1

N
trR̂

s
=

1

N

K∑

k1,...ks=1

N∑

n1,...ns=1

ĥ
H

n1,k1
ĥn1,k2ĥ

H

n2,k2
ĥn2,k3 . . . ĥ

H

ns,ksĥns,k1

=
1

N

K∑

k1,...ks=1

|ak1 |2 . . . |aks|2
N∑

n1,...ns=1

∆φ,r(τ̃1)
H
n1n1

∆φ,r(τ̃2)n1n1 . . .∆φ,r(τ̃s)
H
nsns∆φ,r(τ̃1)nsns×

× s∗n1,k1sn1,k2s
∗
n2,k2sn2,k3 . . . s

∗
ns,kssns,k1

Applying the approach of non-crossing partitions [28], [29], it is possible to recognize that the factors

s∗n1,k1
sn1,k2s

∗
n2,k2

sn2,k3 . . . s
∗
ns,ks

sns,k1 which do not vanish asymptotically, correspond to the ones having
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nonzero non-crossing partitions. Correspondingly, also the remaining factors

∆φ,r(τ̃1)
H
n1n1

∆φ,r(τ̃2)n1n1 . . .∆φ,r(τ̃s)
H
nsns∆φ,r(τ̃1)nsns

are positive and bounded by

|∆φ,r(τ̃1)
H
n1n1

∆φ,r(τ̃2)n1n1 . . .∆φ,r(τ̃s)
H
nsns∆φ,r(τ̃1)nsns | ≤

r2s∆2s
MAX

T 2s
c

.

Therefore,

1

N
TrR̂

s ≤ r2s∆MAXa
2s
MAX

T 2s
c

(
1

N

K∑

k1,...ks=1

N∑

n1,...ns=1

s∗n1,k1
sn1,k2s

∗
n2,k2

sn2,k3 . . . s
∗
ns,kssns,k1

)
. (41)

The last factor in (41) is thes-th eigenvalue moment of a central Wishart matrix with zeromean i.i.d Gaussian

entries having variance1
N
. Well established results of random matrix theory [30], [29], [12] show that the

eigenvalue moments of such a matrix converge almost surely to finite values. More specifically,

1

N

N∑

n1,...ns=1

s∗n1,k1
sn1,k2s

∗
n2,k2

sn2,k3 . . . s
∗
ns,kssns,k1

a.s.→
s−1∑

i=0


 s

i




 s

i+ 1


 βi

s
. (42)

Then, appealing to (41) and (42), the eigenvalue moments of the matriceŝR andT̂ are upper bounded almost

surely by

C(s) =
r2s∆2s

MAXaMAX

T 2s
c

s−1∑

i=0


 s

i




 s

i+ 1


 βi

s
. (43)

The proof of Theorem 1 is based on strong induction. In the first step we prove the following facts:

1) The diagonal elements of the matrix̂R converge almost surely, asN → ∞, to deterministic values

R1(|ak|2, τ̃k), conditionally on(|ak|2, τ̃k). Furthermore,∀ε > 0 and largeK = βN

Pr{|R̂kk − R1(|ak|2, τ̃k)| > ε} ≤ o
(
N−2

)
.

2) T̂ [nn], ther×r block diagonal elements of the matrix̂T = ĤĤ
H

, converge almost surely to determin-

istic blocksT 1(Ω), with Ω = limN→∞ 2π n
N
. Additionally,∀ε > 0, largeK = βN andu, v = 1, . . . r,

Pr{|(T̂ [nn])uv − (T 1(Ω))uv| > ε} ≤ o
(
N−2

)
.

Then, in the recursion step, we use the following induction assumptions:

1) Fors = 1, . . . , ℓ− 1, the diagonal elements of the matrix̂R
s
, converge almost surely, asK = βN →

∞, to deterministic valuesRs(|ak|2, τ̃k), conditionally on(|ak|2, τ̃k). Additionally, ∀ε > 0 and large

K = βN, Pr{|(R̂s
)kk − Rs(|ak|2, τ̃k)| > ε} ≤ o (N−2) .
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2) Fors = 1, . . . , ℓ− 1, T̂
s

[nn], ther× r block diagonal elements of the matrix̂T
s

converge almost surely

to deterministic blocksT s(Ω), with5 Ω = limN→∞ 2π n
N
. Additionally, ∀ε > 0, largeK = βN, and

u, v = 1, . . . r, Pr{|(T̂ s

[nn])uv − (T s(Ω))uv| > ε} ≤ o (N−2) .

We prove:

1) The diagonal elements of the matrix̂R
ℓ
, converge almost surely, asK = βN → ∞, to deterministic

valuesRℓ(|ak|2, τ̃k), conditionally on(|ak|2, τ̃k). Furthermore,∀ε > 0 and largeK = βN

Pr{|(R̂ℓ
)kk −Rℓ(|ak|2, τ̃k)| > ε} ≤ o

(
N−2

)
. (44)

2) The blocksT̂
ℓ

[nn], converge almost surely to deterministic blocksT ℓ(Ω) with limN→∞ 2π n
N
. Addition-

ally, ∀ε > 0, largeN andu, v = 1, . . . r,

Pr{|(T̂ ℓ

[nn])uv − (T ℓ(Ω))uv| > ε} ≤ o
(
N−2

)
. (45)

First step: ConsiderR̂kk = ĥ
H

k ĥk = |ak|2sHk ∆
H
φ,r(τ̃k)∆φ,r(τ̃k)sk. Thanks to the bound|φ(Ω, τ)| <

ΦMAX which holds for anyΩ andτ, also the eigenvalues of the matrix∆H
φ,r(τ̃)∆φ,r(τ̃) are upper bounded.

In fact, they are given by
∑r

t=1

∣∣∣φ
(
2π n−1

N
, τ̃k − (t−1)Tc

r

)∣∣∣
2

for n = 1, . . . , N . Therefore, the limit eigenvalue

distribution of the matrix∆H
φ,r(τ̃ )∆φ,r(τ̃ ) has upper bounded support∆MAX. Then, by appealing to Lemma

9 in part I [1] withp = 4 and by making use of the bound for any Hermitian matrixC ∈ CN×N , (trC)2 ≤

Ntr(C2) we obtain

ζ1 = E

∣∣∣∣|ak|
2sHk ∆

H
φ,r(τ̃k)∆φ,r(τ̃k)sk −

|ak|2
N

tr(∆H
φ,r(τ̃k)∆φ,r(τ̃k))

∣∣∣∣
4

≤ K4|ak|4
N3

tr(∆H
φ,r(τ̃k)∆φ,r(τ̃k))

4

≤ K4|ak|4
N2

∆4
MAX.

Since|ak| ≤ aMAX < +∞, the Bienaymé inequality yields∀ε > 0

Pr

{∣∣∣∣R̂kk −
|ak|2
N

tr(∆H
φ,r(τ̃k)∆φ,r(τ̃k))

∣∣∣∣ ≥ ε

}
≤

E
∣∣∣R̂kk − |ak|2

N
tr(∆H

φ,r(τ̃k)∆φ,r(τ̃k))
∣∣∣
4

ε4

≤ K4|ak|4∆4
MAX

N2ε4
(46)

5Note thatn = n(N) is also a function of the matrix sizeN.
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Thanks to the bound (46)∀ε > 0

Pr
{∣∣∣R̂kk − R1(|ak|2, τ̃k)

∣∣∣ ≥ ε
}
≤ o(N−2).

Furthermore, appealing to the Borel Cantelli lemma (see e.g. [27]), this bound implies the following

almost sure convergence.

R1(λ, τ)|(λ,τ)=(|ak |2,τk) = lim
K=βN→∞

R̂kk

= lim
K=βN→∞

|ak|2
N

tr(∆H
φ,r(τ̃k)∆φ,r(τ̃k))

= lim
K=βN→∞

|ak|2
N

N∑

ℓ=1

(∆H
φ,r(τ̃k))ℓ,ℓ(∆φ,r(τ̃k))ℓ,ℓ

=
λ

2π

∫ 2π

0

∆
H
φ,r(Ω, τ)∆φ,r(x, τ)d x

∣∣∣∣
(λ,τ)=(|ak |2,eτk)

. (47)

Let us now consider the block matrix̂T [nn] whose(u, v) element(T̂ [nn])uv is given by

(T̂ [nn])uv = σ̂nA∇∇∇n,u∇∇∇H
n,vA

Hσ̂
H
n .

Thanks to the assumption of Theorem 1 that the support ofF|A|2,T (λ, τ) is bounded andφ(Ω, τ) is bounded

in absolute value, the diagonal elements of the diagonal matrix A∇∇∇n,u∇∇∇H
n,vA

H are upper bounded in absolute

value by a positive constantTMAX. Then, by appealing to Lemma 9 in part I [1] we obtain

E

(∣∣∣∣(T̂ [nn])u,v −
1

N
trA∇∇∇n,u∇∇∇H

n,vA
H

∣∣∣∣
4
)

≤ K4

N3
tr(A∇∇∇n,u∇∇∇H

n,vA
H)4

≤ K4

N2
T 4

MAX. (48)

By appealing again to the Bienaymé inequality and by makinguse of the bound (48) we obtain∀ε > 0

Pr

{∣∣∣∣(T̂ [nn])u,v −
1

N
tr(A∇∇∇n,u∇∇∇H

n,vA
H)

∣∣∣∣ > ε

}
≤ 1

ε4
E

(∣∣∣∣(T̂ [nn])u,v −
1

N
tr(A∇∇∇n,u∇∇∇H

n,vA
H)

∣∣∣∣
4
)

≤ K4T
4
MAX

ε4N2
. (49)

Thus, the following convergence in probability holds

lim
K=βN→∞

(T̂ [nn])u,v = lim
K=βN→∞

1

N
trA∇∇∇n,u∇∇∇H

n,vA
H

= lim
K=βN→∞

β

K

K∑

k=1

|ak|2φ
(

2π
n−1

N
, τ̃k−

u−1

r
Tc

)
φ∗
(

2π
n−1

N
, τ̃k−

v−1

r
Tc

)

= β

∫
λφ

(
Ω, τ−u−1

r
Tc

)
φ

(
Ω, τ− v−1

r
Tc

)
dF|A|2,T (λ, τ), (50)
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with Ω = limN→∞ 2π n
N

and0 ≤ Ω ≤ 2π. Therefore, the block matrix̂T [nn] converges in probability and in

mean square sense to ther × r matrix

T 1(Ω) = lim
K=βN→∞

T̂ [nn]

= β

∫
λ∆φ,r(Ω, τ)∆

H
φ,r(Ω, τ)dF|A|2,T (λ, τ)

with 0 ≤ Ω ≤ 2π. Thanks to the bound (48) for largeK = βN and∀ε > 0 the bound

Pr
{∣∣∣(T̂ [nn])u,v − (T (Ω))u,v

∣∣∣ < ε
}
≤ o(N−2)

holds. Making use of this bound and applying the Borel Cantelli lemma the almost sure convergence is also

proven. This concludes the proof of the first step.

Stepℓ:

By appealing to the induction assumptions, i.e. the almost sure convergence of the diagonal elements of

R̂
s

and of the diagonalr × r blocks ofT̂
s
, for s = 1, . . . , ℓ − 1, we prove that the following almost sure

convergence holds:

lim
K=βN→∞

trA∇∇∇n,uR̂
s

�n∇∇∇H
n,vA

H

N
= lim

K=βN→∞

K∑

k=1

|ak|2
N

φ

(
2π
n−1

N
, τ̃k−

u−1

r
Tc

)
φ∗
(
2π
n−1

N
, τ̃k−

v−1

r
Tc

)
(R̂

s

�n)kk

= β

∫
λφ

(
Ω, τ − u− 1

r
Tc

)
φ∗
(

Ω, τ − v − 1

r
Tc

)
Rs(λ, τ)dF|A|2,T (λ, τ)

(51)

with Ω = limN→∞ 2π n−1
N
, s = 1, . . . ℓ− 1 and

Rs(λ, τ)|(λ,τ)=(|ak |2,eτk) = lim
K=βN→∞

(R̂
s
)kk + o(N−2) (52)

as from the recursion assumptions. Furthermore, we prove the following almost sure convergence

lim
K=βN→∞

|ak|2
N

tr∆H
φ,r(τ̃k)T̂

s

∼k∆φ,r(τ̃k) = lim
K=βN→∞

|ak|2
N

N∑

n=1

(∆H
φ,r(τ̃k))nn(T̂

s
)nn(∆φ,r(τ̃k))nn

=
λ

2π

∫ 2π

0

∆
H
φ,r(Ω, τ)T s(Ω)∆φ,r(Ω, τ)d Ω

∣∣∣∣
(λ,τ)=(|ak |2,eτk)

(53)

with s = 1, . . . ℓ− 1 and

T s(Ω) = lim
K=βN→∞

(T̂
s
)nn. (54)
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In fact, for (51) we can write

ζ2 = Pr

{∣∣∣∣
1

N
trA∇∇∇n,uR̂

s

�n∇∇∇H
n,vA

H

− 1

N

K∑

k=1

|ak|2φ
(
2π
n−1

N
, τ̃k−

u−1

r
Tc

)
φ∗
(
2π
n−1

N
, τ̃k−

v−1

r
Tc

)
Rs(|ak|2, τ̃k)

∣∣∣∣∣ > ε

}

≤ ζ2a + ζ2b

where

ζ2a = Pr

{∣∣∣∣
1

N
trA∇∇∇n,u(R̂

s − R̂
s

�n)∇∇∇H
n,vA

H

∣∣∣∣ >
ε

2

}

and

ζ2b = Pr

{∣∣∣∣∣
1

N

K∑

k=1

|ak|2φ
(
2π
n−1

N
, τ̃k−

u−1

r
Tc

)
φ∗
(
2π
n−1

N
, τ̃k−

v−1

r
Tc

)(
(R̂

s
)kk − Rs(|ak|2, τ̃k)

)∣∣∣∣∣ >
ε

2

}
.

Note that

ζ2a ≤ Pr

{∣∣∣∣
1

K
tr(R̂

s − R̂
s

�n)

∣∣∣∣ >
ε

2βa2
MAXφ

2
MAX

}
.

The expansion of the matrix̂R
s

= (R̂�n + δ̂
H

n δ̂n)
s yields

trR̂
s
= trR̂

s

�n +
∑

(i0,i1,...is−1)

i0+
Ps−1
j=1(j+1)ij=s0

ϕ(i0, i1, . . . is−1)

s−1∏

u=0

(
δ̂
H

n R̂
u

�nδ̂n

)iu

whereϕ(i0, i1, . . . is−1) ≤ 2s is the number of the terms of the expansion ofR̂
s

whose trace equals
∏s−1

u=0

(
δ̂
H

n R̂
u

�nδ̂n

)iu
. Then,

ζ2a ≤ 2s
∑

(i0,i1,...is−1)

i0+
Ps−1
j=1(j+1)ij=s0

Pr

{
1

N

s−1∏

u=0

(
δ̂
H

n R̂
u

�nδ̂n

)iu
>

ε

βa4
MAXφ

4
MAX2s+1

}

Thanks to Property B on the convergence in probability,ζ2a converges in probability with rateo(N−2− 4
s )

at worst, i.e.∀ε > 0,

lim
K=βN→∞

Pr

{∏s−1
u=0 δ̂

H

n R̂
u

�nδ̂n

N
> s

√
ε

β2s+1a4
MAXφ

4
MAX

}
≤ o

(
1

N2+ 4
s

)
. (55)
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In fact, forε′ = ε
β2s+1a4MAXφ

4
MAX

Pr

{∏s−1
u=0(δ̂

H

n R̂
u

�nδ̂n)
iu

N
> ε′

}
≤

s−1∑

u=0

Pr
{

δ̂
H

n R̂
u

�nδ̂n >
s
√
ε′N
}

(a)

≤
s−1∑

u=0

Pr

{∣∣∣∣∣δ̂
H

n R̂
u

�nδ̂n −
trR̂

u

�n

N

∣∣∣∣∣ >
s
√
ε′N − trR̂

u

�n

N

}

(b)

≤
s−1∑

u=0

E

{∣∣∣δ̂
H

n R̂
u

�nδ̂n − tr bR
u

�n

N

∣∣∣
4
}

s
√

(ε′N)4

(c)

≤ K4C
(u)

N2((Nε′)
1
s − C(u))4

(56)

where inequality (a) holds forN sufficiently large, inequality (b) follows from the Bienaymé inequality, and

inequality (c) is a consequence of Lemma 9 in part I [1] and thebound on the eigenvalues moments of the

matrix R̂.

Let us consider now the probabilityζ2b,

ζ2b ≤ Pr

{
1

N

K∑

k=1

|(R̂s
)kk −Rs(|ak|2, τ̃k)| >

ε

a2
MAXφ

2
MAX

}

≤ Pr

{
max
k

|(R̂s
)kk − Rs(|ak|2, τ̃k)| >

ε

βa2
MAXφ

2
MAX

}
(57)

for s = 1, . . . ℓ − 1. Thanks to the assumption of the recursive step that∀ε′ > 0 and largeK = βN,

Pr{|(R̂s
)kk − Rs(|ak|2, τ̃k)| > ε

′} ≤ o(N−2), ζ2b → o(N−2), i.e. it vanishes asymptotically asN,K → ∞

with constant ratio with the same converge rate aso(N−2) at worst. Therefore, (51) converges in probability

with a rate aso(N−2) for N → +∞, at worst. This convergence rate enables the application of the Borel-

Cantelli lemma to prove that (51) converges almost surely.

The proof of the convergence (53) in probability one followsalong similar lines.

Following the same approach as in the proof of Theorem 1 in [2], we can expand(R̂
ℓ
)kk and T̂

ℓ

[nn] as

follows:

(R̂
ℓ
)kk =

ℓ−1∑

s=0

ĥ
H

k T̂
ℓ−s−1

∼k ĥk(R̂
s
)kk ℓ = 1, 2, . . . (58)

T̂
ℓ

[nn] =

ℓ−1∑

s=0

δ̂nR̂
ℓ−s−1

�n δ̂
H

n T̂
s

[nn]. ℓ = 1, 2, . . . (59)

beingT̂
0

andR̂
0

the identity matrices of dimensionsrN × rN andK ×K, respectively.

Thanks to Property A and Property B of the convergence in probability of random sequences and the

induction assumptions, the convergence in probability oneof the sequences{(R̂ℓ
)kk} and{T̂ ℓ

[nn]} reduces
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to the following two steps. First we show the convergence in probability of ĥ
H

k T̂
s

∼kĥk andδ̂nR̂
s

�nδ̂
H

n to a

deterministic limit, respectively. Then, we show that the convergence holds with an appropriate convergence

rate which enables the application of the Borel Cantelli lemma. Let us define

ζ3 = ĥ
H

k T̂
s

∼kĥk −
|ak|2
N

tr∆H
φ,r(τ̃k)T̂

s

∼k∆φ,r(τ̃k).

Lemma 9 in part I [1] applied to the quadratic form̂h
H

k T̂
s

∼kĥk with p = 4 yields

E |ζ3|4 <
K4|ak|4
N3

E
(
tr(∆H

φ,r(τ̃k)T̂
s

∼k∆φ,r(τ̃k))
4
)

≤ K4

N3
a8

MAXφ
8
MAXtr(T̂

4s

∼k). (60)

Thanks to the bound on the eigenvalues moments of the matrixT̂ , limK=βN→∞
1
N

E(trT̂
4s

∼k) is almost sure

upper bounded∀s asN = βK → +∞. Therefore,E|ζ3|4 → 0 asK,N → ∞ with K
N

→ β andĥ
H

k T̂
s

∼kĥk

converges in mean square sense, and thus in probability. Furthermore, the Bienaymé inequality implies that

Pr{|ζ3| > ε} ≤ o(N−2) asN → +∞. Thanks to (53)

lim
N=βK→∞

|ak|2
N

tr∆H
φ,r(τ̃k)T̂

s

∼k∆φ,r(τ̃k) =
λ

2π

∫ 2π

0

∆
H
φ,r(Ω, τ)T s(Ω)∆φ,r(Ω, τ)d Ω

∣∣∣∣
(λ,τ)=(|ak |2,eτk)

+ o(N−2)

= g(T s, λ, τ) + o(N−2). (61)

then

Pr{|ĥH

k T̂
s

∼kĥk − g(T s, λ, τ)| > ε} → o(N−2) (62)

for property A. Thanks to the convergence rate in (62) and theBorel Cantelli lemma, the almost sure con-

vergence (52) follows.

The convergence in probability one of the diagonal blocksT̂
ℓ

[nn] can be proven in a similar way. More

specifically, it can be shown that ther × r block δ̂nR̂
s

�nδ̂
H

n converges to ther × r deterministic matrix

f(Rs,Ω) = β

∫
λ∆φ,r(Ω, τ)∆φ,r(Ω, τ)

HRs(λ, τ)dF|A|2,T (λ, τ). (63)

such thatPr
{∣∣∣(δ̂n)uR̂

s

�n(δ̂
H

n )v − (f(Rs,Ω))u,v

∣∣∣ > ε
}
→ o(N−2).

Finally, by making use of equations (58) and (59) and the definitions (52), (54), (63), and (61) we obtain

Rℓ(λ, τ) =
ℓ−1∑

s=0

g(T ℓ−s−1, λ, τ)Rs(λ, τ) ℓ = 1, 2, . . . (64)
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and

T ℓ(Ω) =

ℓ−1∑

s=0

f(Rℓ−s−1,Ω)T s(Ω) ℓ = 1, 2, . . . . (65)

with g(T s, λ, τ) andf(Rs,Ω) given in (61) and (63), respectively. Consistently to the definitions of T̂
0

and

R̂
0
, T 0(Ω) = Ir, beingIr ther × r identity matrix andR0(λ) = 1.

Then,g(R0, λ, τ) = λ
2π

∫ π
−π ∆

H
φ,r(Ω, τ)∆φ,r(Ω, τ)dΩ andf(T 0,Ω) = β

∫
λ∆φ,r(Ω, τ)∆

H
φ,r(Ω, τ)dF|A|2,T (λ, τ)

and (64) and (65) reduce to the asymptotic limitsR1(λ, τ) andT 1(Ω) already derived instep 1. Therefore,

we can begin the recursion withℓ = 0, R0(λ, τ) = 1 andT 0(Ω) = Ir.

Properties A, B, and C, the induction assumptions, relations (58) and (64), the convergence ratesζ2 →

o(N−2), Pr{ζ3 > ε} ≤→ o(N−2), and the Borel Cantelli lemma yield (44). The proof of (45) follows

immediately along similar lines.

This concludes the proof of Theorem 1.

APPENDIX II

PROOF OFCOROLLARY 1

Corollary 1 is derived by specializing Theorem 1 to a unitaryFourier transformΦ(ω) with bandwidth

B ≤ r
2Tc

. Let us recall here that the unitary Fourier transform in thediscrete time domain is given by

φ(Ω, τ) =
1

Tc
ej

τ
Tc

Ω

sign(Ω)⌊ r2⌋∑

s=−sign(Ω)⌊ r−1
2 ⌋

ej2π
τ
Tc
sΦ∗

(
Ω + 2πs

Tc

)
for |Ω| ≤ π. (66)

The matrixQ(Ω, τ) = ∆φ,r(Ω, τ)∆φ,r(Ω, τ)
H , with ∆φ,r(Ω, τ) defined in (26), can be decomposed as

Q(Ω, τ) = Q(Ω) + Q(Ω, τ) with the elements ofQ(Ω) andQ(Ω, τ) defined by

(Q(Ω))k,ℓ =
1

T 2
c

sign(Ω)⌊ r2⌋∑

s=−sign(Ω)⌊ r−1
2 ⌋

∣∣∣∣Φ
(

Ω + 2πs

Tc

)∣∣∣∣
2

e−j
k−ℓ
r

(Ω+2πs) for |Ω| ≤ π, (67)

and

(Q(Ω, τ))k,ℓ =
1

T 2
c

sign(Ω)⌊ r2⌋∑

s,u=−sign(Ω)⌊ r−1
2 ⌋

s 6=u

Φ

(
Ω + 2πu

Tc

)
Φ∗
(

Ω + 2πs

Tc

)
e−j2π

τ
Tc

(s−u)e−j(
k−1
r

(Ω−2πs)− ℓ−1
r

(Ω−2πu))

for |Ω| ≤ π, (68)
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respectively.

Equations (24) and (25) can be rewritten as

f (Rs,Ω) = βQ(Ω)

∫
λRs(λ, τ)dF|A|2,T (λ, τ)

+ β

∫
λRs(λ, τ)Q(Ω, τ)dF|A|2,T (λ, τ), −π ≤ Ω ≤ π (69)

g(T s, λ, τ) =
λ

2π

∫ π

−π
tr(T s(Ω)Q(Ω))dΩ +

λ

2π

∫ π

−π
tr(T s(Ω)Q(Ω, τ))dΩ, (70)

respectively. If the conditions of Corollary 1 are satisfied, i.e. if B ≤ r
2Tc

andτ is uniformly distributed in

[0, Tc], it can be shown that

• Rℓ(λ, τ), ℓ ∈ Z+, are independent ofτ and

• T ℓ(Ω) is a matrix of the form (71).

B = B(Ω) =




b0 b1e
j Ω
r . . . . . . br−1e

j
(r−1)
r

Ω

br−1e
−j Ω

r b0 b1e
j Ω
r . . . br−2e

j
(r−2)
r

Ω

. . .
. . . . . . . . . . . .

b1e
−j (r−1)

r
Ω . . . . . . br−1e

−j Ω
r b0




, (71)

beingb0 = b0(Ω), b1 = b1(Ω), . . . br−1 = br−1(Ω), eventually functions ofΩ.

These properties can be proven by strong induction. It is straightforward to verify that they are satisfied

for s = 0. In fact,R0(λ, τ) = 1 is independent ofτ andT 0(Ω) = I is of the form (71) withb0 = 1 and

bi(Ω) = 0 with i = 1, . . . r − 1. By appealing to Lemma 1 in part I [1] Appendix Itr(Q(Ω, τ)) = 0 and

g(T 0, λ, τ) = λ
2π

∫ π
−π tr(Q(Ω))dΩ. Hence,g(T 0, λ, τ) is independent ofτ.

The induction step is proven using the following induction assumptions:

• Fors = 0, 1, . . . ℓ− 1, Rs(λ, τ) is independent ofτ ;

• Fors = 0, 1, . . . ℓ− 1, T s(Ω) is of the form (71).

Thanks to the form (71) ofT s(Ω), s = 1, . . . ℓ − 1, given by the induction assumptions and by applying

Lemma I in part I Appendix I we havetr(T s(Ω)Q(Ω, τ)) = 0, for s = 0, 1, . . . , ℓ − 1. Then, (70) reduces

to g(T s, λ, τ) = λ
2π

∫ π
−π tr (T s(Ω)Q(Ω)) dΩ andg(T s, λ, τ) is independent ofτ for s = 0, 1, . . . , ℓ − 1.

Therefore, all quantities that appear in the right hand sideof (22) are independent ofτ andRℓ(λ, τ) is

also independent ofτ . In the following we will shortly writeRℓ(λ) andg(T s, λ) instead ofRℓ(λ, τ) and

g(T s, λ, τ). Thanks to the fact that (i)Rs(λ, τ) is independent ofτ and (ii)λ andτ are statistically indepen-

dent withτ uniformly distributed, (69) can be rewritten as

f(Rs,Ω) = β

∫
λRs(λ)dF|A|2

(
Q(Ω) +

1

Tc

∫ Tc

0

Q(Ω, τ)dτ

)
. (72)
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It is straightforward to verify that
∫ Tc
0

Q(Ω, τ)dτ = 0 from the definition ofQ(Ω, τ) in (68). Then,

f(Rs,Ω) = βQ(Ω)

∫
λRs(λ)dF|A|2(λ)

= f(Rs)Q(Ω) (73)

with f(Rs) = β
∫
λRs(λ)dF|A|2(λ). Substituting (73) in (23) yields

T ℓ(Ω) =

ℓ−1∑

s=0

f(Rℓ−s−1)Q(Ω)T s(Ω), −π ≤ Ω ≤ π. (74)

SinceT s(Ω) is of form (71), the conditions of Lemma 2 in part I Appendix I are satisfied forB = T s(Ω).

This implies thatQ(Ω)T s(Ω) is also of the form (71). SinceT ℓ(Ω) is a linear combination of matrices of

the form (71),T ℓ(Ω) is also a matrix of the form (71). Then, the statement of the strong induction is proven.

Thanks to the properties shown by strong induction, the recursive equations in Theorem (1) reduce to the

following set of recursive equations:

Rℓ(λ) =
ℓ−1∑

s=0

g(T ℓ−s−1, λ)Rs(λ) (75)

T ℓ(Ω) =
ℓ−1∑

s=0

f(Rℓ−s−1)Q(Ω)T s(Ω) −π ≤ Ω ≤ π (76)

f(Rs) = β

∫
λRs(λ)dF|A|2(λ), (77)

g(T s, λ) =
λ

2π

∫ π

−π
tr(T s(Ω)Q(Ω))d Ω (78)

with T 0(Ω) = Ir andR0(λ) = 1.

Then, applying again Theorem 1 we obtain the following convergence in probability one

lim
K=βN→∞

(R̂
ℓ
)kk = Rℓ(λ)|λ=|ak|2.

From (76) andT 0(Ω) = Ir it is apparent thatT ℓ(Ω) is a polynomial inQs(Ω), for s = 0, 1, . . . ℓ. Then,

T ℓ(Ω) has the same eigenvectors asQ(Ω) and it can written asT ℓ(Ω) = U(Ω)Λℓ(Ω)UH(Ω) whereΛℓ(Ω)

is a diagonal matrix with diagonal elementstℓ,1, tℓ,2, . . . tℓ,r and

U(Ω) =

(
e

(
Ω − sign(Ω)2π

⌊
r − 1

2

⌋)
, . . .e (Ω) . . .e

(
Ω + sign(Ω)2π

⌊r
2

⌋))
(79)

with e (Ω) r-dimensional column vector defined by

e (Ω) =
1√
r

(
1, e−j

Ω
r , . . . e−j

r−1
r

Ω
)T

.
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By making use of the eigenvalue decomposition of the matrixQ(Ω) in part I Appendix I Lemma 3 the matrix

equation (76) reduces tor scalar equations

tℓ,u(Ω) =

ℓ−1∑

s=0

f(Rℓ−s−1)
r

T 2
c

∣∣∣∣Φ
(

Ω

Tc

− sign(Ω)
2π

Tc

(⌊
r − 1

2

⌋
− u + 1

))∣∣∣∣
2

ts,u(Ω) u = 1, . . . r and |Ω| ≤ π.

By substitutingy = Ω − sign(Ω)2π
(⌊

r−1
2

⌋
− u+ 1

)
for |Ω| ≤ π we obtain

tℓ,u

(
y + 2π

(⌊
r − 1

2

⌋
− u+ 1

))
=

ℓ−1∑

s=0

f(Rℓ−s−1)
r

T 2
c

∣∣∣∣Φ
(
y

Tc

)∣∣∣∣
2

ts,u

(
y + 2π

(⌊
r − 1

2

⌋
− u+ 1

))

(80)

for 0 ≤ y + 2π
(⌊

r−1
2

⌋
− u+ 1

)
≤ π and

tℓ,u

(
y − 2π

(⌊
r − 1

2

⌋
− u+ 1

))
=

ℓ−1∑

s=0

f(Rℓ−s−1)
r

T 2
c

∣∣∣∣Φ
(
y

Tc

)∣∣∣∣
2

ts,u

(
y − 2π

(⌊
r − 1

2

⌋
− u+ 1

))

(81)

for −π ≤ y − 2π
(⌊

r−1
2

⌋
− u+ 1

)
≤ 0. Then, foru = 1, . . . r, the r functions (80) and (81) defined in

not overlapping intervals in[−2πr, 2πr] can be combined in a unique scalar functionsT ′
ℓ(y) in the interval

|y| ≤ 2πr satisfying the recursive equation

T ′
ℓ(y) =

ℓ−1∑

s=0

r

T 2
c

f(Rℓ−s−1)

∣∣∣∣Φ
(
y

Tc

)∣∣∣∣
2

T ′
s(y).

Similar arguments applied to (78) yield

g(Ts, λ) =
λ

2π

∫ rπ

−rπ

r

T 2
c

T ′
s(y)

∣∣∣∣Φ
(
y

Tc

)∣∣∣∣
2

dy.

The substitutionsω = y
Tc

andT ′
ℓ(ωTc) = Tℓ(ω) yield to the recursive equations in Corollary 1.

This concludes the derivation of Corollary 1 from Theorem 1.
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APPENDIX III

DERIVATION OF ALGORITHM 1

Algorithm 1 can be derived from the recursive equations of Corollary 1 by using the following substitu-

tions6:

λ → z

Rs(λ) → ρs(z)

λRs(λ) → vs(z)

E(λRs(λ)) =
1

β
f(Rs) → Vs

1

Tc
|Φ (ω)|2 → y

Ts(·) → µs(y)

r

Tc
|Φ (ω)|2 Ts(ω) → us(y)

r

2πTc

∫ 2πB

−2πB

|Φ (ω)|2 Ts(ω)dω → Us.

Then, the initial step is obtained by definingµ0(y) = 1 andρ0(z) = 1. The recursive equations in stepℓ

are obtained by using the previous substitutions. In order to deriveUs let us observe that1
Tc

|Φ (ω)|2 Ts(ω)

is a polynomial iny = 1
Tc

|Φ (ω)|2 of degrees+ 1. Then,Us is a linear combination ofEn
Tc

where

En =
1

2πT n−1
c

∫ 2πB

−2πB

|Φ (ω)|2n dω

The coefficients of the linear combination are obtained by expandingus(y) as a polynomial iny.

We conclude the derivation of Algorithm 1 by summarizing theprevious considerations and substitu-

tions:

•

ρℓ(z) =

ℓ−1∑

s=0

zUℓ−s−1ρs(z)

µℓ(y) =
r

Tc

ℓ−1∑

s=0

βyVℓ−s−1µs(y).

• Us andVs are obtained fromus(y) = yµs(y) andvs(z) = zρs(z), respectively by

– expandingus(y) andvs(z) as polynomials iny andz, respectively,
6Note that the substitution ofλ with z is redundant. It is used to obtain polynomials in the commonly used variablez.
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– replacing the monomialsyn andzn, n ∈ Z+ with En
Tc

andm(s)

|A|2, respectively.

Then,Rℓ(λ) = ρℓ(λ) and the eigenvalue momentm(ℓ)
R = E{Rℓ(λ)} is obtained by replacing all monomials

z, z2, . . . , zℓ in the polynomialρℓ(z) by the momentsm1
|A|2, m

2
|A|2 , . . . , m

ℓ
|A|2 , respectively.

APPENDIX IV

PROOF OFTHEOREM 2

The proof of Theorem 2 follows along the line of the proof of Theorem 1. As in the proof of Theorem 1

we can focus on the spreading matrixS in (39) and the autocorrelationR.

For a signal with bandwidthB ≤ 1
2Tc
,

φ(Ω, τ) =
1

Tc
ej

τΩ
Tc Φ∗

(
Ω

Tc

)
|Ω| ≤ π

andφ(Ω, τ) = φ(Ω − 2π
⌊

Ω
π

⌋
, τ) for anyΩ. Correspondingly, we define

∆φ,r(Ω, τ) =
1

Tc
Φ(

Ω

Tc
)e−

jτΩ
Tc e(Ω), |Ω| ≤ π

with e(Ω) = (1, ej
Ω
r , . . . ej

(r−1)
r

Ω) and

∆φ,r(Ω, τ) = ∆φ,r(Ω − 2π

⌊
Ω

π

⌋
, τ) for any Ω.

We adopt here the same notation as in the proof of Theorem 1. Then, theK ×K diagonal matrix∇∇∇nt, for

t = 1, . . . r andn = 1, . . .N is given by

∇∇∇nt =
1

Tc
Φ∗
(
j2π

Tc
n

)
e−

j2πn(t−1)
r diag

(
e
j2πneτ1
Tc , e

j2πneτ2
Tc , . . . e

j2πneτK
Tc

)

with n = n−1
N

−
⌊
2n−1

N

⌋
and∆φ,r(τ̃k) is therN×N block diagonal matrix withn diagonal block∆φ,r(n, τ̃k).

We develop the proof by strong induction as in Theorem 1 with similar initial step and similar induction step.

Step 1:In this case

R̂kk = |ak|2sHk ∆
H
φ,r(τ̃k)∆φ,r(τ̃k)sk = |ak|2sHk Φsk

whereΦ is a matrix independent of̃τk and thenth element is given byΦnn = r
Tc

∣∣∣Φ
(
j2πn
Tc

)∣∣∣
2

.

By following the same approach as in Theorem 1 it results∀ε > 0

Pr

{∣∣∣∣∣R̂kk −
r|ak|2
TcN

N−1∑

n=0

∣∣∣∣Φ
(
j2πn

Tc

)∣∣∣∣
2
∣∣∣∣∣ > ε

}
≤ K4|ak|4∆4

MAX

N2ε4
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being∆MAX = maxΩ∈[−π,π]

∣∣∣Φ
(

Ω
Tc

)∣∣∣
2

and

R1(λ)|λ=|ak|2 = lim
K=βN→∞

|ak|2
N

N−1∑

ℓ=0

∣∣∣∣Φ
(

2π

Tc

(
n

N
−
⌊

2n

N

⌋))∣∣∣∣
2

=
λ

2π

∫ π

−π

∣∣∣∣Φ
(

Ω

Tc

)∣∣∣∣
2

dΩ

∣∣∣∣∣
λ=|ak |2

. (82)

Furthermore,Pr
{
|R̂kk − R1(|ak|2)| > ε

}
≤ o (N−2) with consequent convergence in probability one by

the Borel Cantelli lemma.

Similarly, (T̂ [nn])uv, the(u, v)-element of the matrix̂T [nn] is given by

T̂ [nn] = σ̂nA∇∇∇n,u∇∇∇H
n,vA

Hσ̂
H
n

=
1

Tc

∣∣∣∣Φ
(

2πn

Tc

)∣∣∣∣ e
−j2πnv−u

r σ̂nAAHσ̂
H
n . (83)

As in Theorem 1 it can been shown that

Pr

{∣∣∣∣∣(T̂ [nn])uv −
1

NTc

∣∣∣∣Φ
(

2πn

Tc

)∣∣∣∣
2

e−j2πn
v−u
r tr(AAH)

∣∣∣∣∣ > ε

}
≤ K4T

4
MAX

N2ε4

with TMAX =

(
maxΩ∈[−π,π]

∣∣∣Φ
(

2πn
Tc

)∣∣∣
2
)

(supK maxk |ak|2) and the following convergence in probability

holds

lim
K=βN→∞

(T̂ [nn])uv = lim
K=βN→∞

β

TcK

∣∣∣∣Φ
(

2πn

Tc

)∣∣∣∣
2

e−j2πn
v−u
r

K∑

k=1

|ak|2

=
β

Tc

∣∣∣∣Φ
(

Ω

Tc

)∣∣∣∣
2

e−j2πn
v−u
r

∫
λdF|A|2(λ)

with Ω = 2π limN→∞ n and|Ω| ≤ π. Thus, the diagonal block converges in probability as follows

T 1(Ω) = lim
K=βN→∞

(T̂ [nn])uv

=
β

Tc

∣∣∣∣Φ
(

Ω

Tc

)∣∣∣∣
2 ∫

λdF|A|2(λ)e(Ω)eH(Ω) (84)

Furthermore,

Pr
{∣∣∣(T̂ [nn])uv − (T 1(Ω))uv

∣∣∣ > ε
}
≤ o(N−2)

with consequent convergence in probability one by the BorelCantelli lemma. This concludes the first step

of the induction.
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Stepℓ: Let us observe that

ϑ1 =
1

N
trA∇∇∇n,uR̂

s

�n∇∇∇H
n,uA

H

=
e−j2πn

u−v
r

N

K∑

k=1

|ak|2
T 2
c

∣∣∣∣Φ
(

2πn

Tc

)∣∣∣∣
2

(R̂
s

�n)kk

and

ϑ2 =
|ak|2
N

tr∆H
Φ,r(τ̃k)T̂

s

∼k∆Φ,r(τ̃k)

=
|ak|2
N

N∑

n=1

1

T 2
c

∣∣∣∣Φ
(

2πn

Tc

)∣∣∣∣
2

eH(2πn)(T̂
s

∼k)nne(2πn).

By following the same approach as in Theorem 1 it can be shown thatϑ1 andϑ2 converge almost surely

to the following limits

lim
K=βN→∞

ϑ1 =
β

T 2
c

e−j2πn
u−v
r

∣∣∣∣Φ
(

Ω

Tc

)∣∣∣∣
2 ∫

λRs(λ)dF|A|2(λ)

and

lim
K=βN→∞

ϑ2 =
λ

2πT 2
c

∫ π

−π

∣∣∣∣Φ
(

Ω

Tc

)∣∣∣∣
2

eH(Ω)T s(Ω)e(Ω)dΩ

∣∣∣∣∣
λ=|ak|2

with Rs(λ)|λ=|ak|2 = limK=βN→∞(R̂
s
)kk andT s(Ω)| = limK=βN→∞ T̂

s

[nn] given by the recursion assump-

tions.

Additionally, it can be shown that the following almost sureconvergence holds

g(T s, λ)|λ=|ak|2 = lim
K=βN→∞

ĥ
H

k T̂
s

∼kĥk

=
λ

2πTc

∫ π

−π

∣∣∣∣Φ
(

Ω

Tc

)∣∣∣∣
2

eH(Ω)T s(Ω)e(Ω)dΩ

∣∣∣∣∣
λ=|ak|2

(85)

and

f (Rs,Ω) = lim
K=βN→∞

δ̂nR̂
s

�nδ̂
H

n

=
β

T 2
c

∣∣∣∣Φ
(

Ω

Tc

)∣∣∣∣
2

e(Ω)eH(Ω)

∫
λRs(λ)dF|A|2(λ) (86)

Additionally, the convergence satisfies the bounds

Pr
{
|ĥH

k T̂
s

∼kĥk − g(T s, |ak|2)| > ε
}
< o(N−2)
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and

Pr
{
|(δ̂n)uR̂

s

�n(δ̂
H

n )v − (f(Rs,Ω))u,v| > ε
}
< o(N−2)

for largeN and∀ε.

The recursion assumptions and the limits (85) and (86) in (58) and (59) yield

Rℓ(λ)|λ=|ak|2 =
ℓ−1∑

s=0

g(T ℓ−s−1, λ)Rs(λ)

=

ℓ−1∑

s=0

Rs(λ)
λ

2πT 2
c

∫ π

−π

∣∣∣∣Φ
(

Ω

Tc

)∣∣∣∣
2

tr
(
T s(Ω)e(Ω)eH(Ω)

)
dΩ

∣∣∣∣∣
λ=|ak|2

(87)

and

T ℓ(Ω) =
ℓ−1∑

s=0

f(Rℓ−s−1,Ω)T s(Ω)

ℓ−1∑

s=0

β

T 2
c

∣∣∣∣Φ
(

Ω

Tc

)∣∣∣∣
2 ∫

λRs(λ)dF|A|2(λ) e(Ω)eH(Ω)T s(Ω) (88)

whereR0(λ) = 1 andT 0(Ω) = Ir. With a similar approach as in Theorem 1 it can be proven that for large

N and∀ε > 0

Pr
{∣∣∣R̂

ℓ

kk − Rℓ(|ak|2)
∣∣∣ > ε

}
≤ o(N−2)

and

Pr
{∣∣∣(T̂

ℓ

[nn])uv − (T ℓ(Ω))uv

∣∣∣ > ε
}
≤ o(N−2).

In contrast to Theorem 1 the recursive equations (87), (88),(85), and (86) are independent of the time

delayτ̃k.

The recursive equations can be further simplified by observing that(e(Ω)eH(Ω))m = rm−1e(Ω)eH(Ω).

Then, it is straightforward to verify by recursion that the matrix T s(Ω), s = 1, 2, . . . , ℓ− 1, is proportional

to the matrixe(Ω)eH(Ω) and we can express it asT s(Ω) = Ts(Ω)e(Ω)eH(Ω), s = 1, 2, . . . . Thus, the
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recursive equations can be rewritten as

Rℓ(λ) =
ℓ−1∑

s=0

g(T ℓ−s−1, λ)Rs(λ)

Tℓ(Ω)e(Ω)eH(Ω) =
ℓ−1∑

s=1

f (Rℓ−s−1,Ω)Ts(Ω)e(Ω)eH(Ω) + f (Rℓ−1,Ω)T 0(Ω) ℓ = 1, 2, . . . (89)

f(Rs,Ω) = f(Rs,Ω)e(Ω)eH(Ω) (90)

f(Rs,Ω) =
β

T 2
c

∣∣∣∣Φ
(

Ω

Tc

)∣∣∣∣
2 ∫

λRs(λ)dF|A|2(λ) −π ≤ Ω ≤ π

g(Ts, λ) =





r2λ
2πT 2

c

∫ π
−π

∣∣∣Φ
(

Ω
Tc

)∣∣∣
2

T s(Ω)d Ω s = 1, 2, . . .

rλ
2πT 2

c

∫ π
−π

∣∣∣Φ
(

Ω
Tc

)∣∣∣
2

d Ω s = 0.

with T 0(Ω) = Ir andR0(λ) = 1.

Substituting (90) in (89) we obtain

Tℓ(Ω)e(Ω)eH(Ω) =
ℓ−1∑

s=1

f(Rℓ−s−1,Ω)Ts(Ω)e(Ω)eH(Ω)e(Ω)eH(Ω) + f(Rℓ−1,Ω)T 0(Ω)e(Ω)eH(Ω)

= r
ℓ−1∑

s=1

f(Rℓ−s−1,Ω)Ts(Ω)e(Ω)eH(Ω) + f(Rℓ−1,Ω)T
′

0(Ω)e(Ω)eH(Ω) (91)

Recalling thatT 0(Ω) = Ir and definingT
′

0(Ω) = 1
r
, we obtain from (91) the scalarTℓ(Ω):

Tℓ(Ω) = r

(
ℓ−1∑

s=1

f(Rℓ−s−1,Ω)Ts(Ω) + f(Rℓ−1,Ω)T
′

0(Ω)

)
. (92)

The following equations summarize the recursion in terms ofonly scalar functions.

Rℓ(λ) =

ℓ−1∑

s=0

g(Tℓ−s−1, λ)Rs(λ)

Tℓ(Ω) = r

ℓ−1∑

s=0

f(Rℓ−s−1,Ω)Ts(Ω)

f(Rs,Ω) =
β

T 2
c

∣∣∣∣Φ
(

Ω

Tc

)∣∣∣∣
2 ∫

λRs(λ)dF|A|2(λ) |x| ≤ π

g(Ts, λ) =
r2λ

2πT 2
c

∫ π

−π

∣∣∣∣Φ
(

Ω

Tc

)∣∣∣∣
2

Ts(Ω)d Ω s = 0, 1, . . .

with T0(Ω) = Tc
r

andR0(λ) = 1. Let us observe that the different expressions ofg(Ts, λ) for s = 0, 1, . . .

could be absorbed in a unified expression by initialize the recursion withT0(Ω) = Tc
r

instead of using

T
′

0(Ω) = 1
r
.
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The recursion in the statement of Theorem 2 is obtained by defining

f(Rs) =

∫
λRs(λ)dF|A|2(λ)

and

ν(Ts) =
r2

2πTc

∫ π/Tc

−π/Tc
|Φ (ω)|2 Ts(ω)dω

and by expressingRℓ(λ) andTℓ(ω) as recursive functions off(Rs) andν(Ts).

REFERENCES

[1] L. Cottatellucci, R. R. Müller, and M. Debbah, “Asynchronous CDMA systems with random spreading–part i: Fundamental limits,”

Submitted to IEEE Transactions on Information Theory, Feb. 2007.

[2] L. Cottatellucci and R. R. Müller, “A systematic approach to multistage detectors in multipath fading channels,”IEEE Transactions on

Information Theory, vol. 51, no. 9, pp. 3146–3158, Sept. 2005.
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