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Abstract—In this paper, we consider a two-way relay network
where two sources can communicate only through an unauthen-
ticated intermediate relay node. We investigate the secure com-
munication of this two-way relay scenario using physical layer
security. Specifically, we treat the relay node as an eavesdropper
from whom the information transmitted by the sources needs to
be kept secret, despite the fact that its cooperation in relaying this
information is essential. We first find that a non-zero secrecy rate
is indeed achievable in this two-way relay network even without
external jammers. Further still, with the help of friendly jammers
that transmit the jamming signals to confuse the malicious relay,
a positive gain of the secrecy rate can be realized. In order to
obtain the maximum secrecy rate, we define and then analyze
a source optimization problem. Finally, an optimal solution on
the transmit power allocation of all the nodes is provided for the
system without and with using friendly jammers.

I. INTRODUCTION

Traditionally, security in wireless networks has been mainly
considered at higher layers using cryptographic methods.
However, recent advances in wireless decentralized and ad-hoc
networking have led to an increasing attention on studying the
physical layer based security. The basic idea of physical layer
security is to exploit the physical characteristics of the wireless
channel to provide secure communication. The security is
quantified by the secrecy capacity, which is defined as the
maximum rate of reliable information sent from the source to
the intended destination in the presence of eavesdroppers. This
line of work was pioneered by Aaron Wyner, who introduced
the wire-tap channel and established the possibility of creat-
ing perfectly secure communication links without relying on
private keys [1]. Wyner showed that when the eavesdropper
channel is a degraded version of the main channel from the
source to the destination, they can exchange perfectly secure
messages at a non-zero rate. Follow-up work in [2] the secrecy
capacity of Gaussian wire-tap channel was studied and in [3]
the authors extended Wyner’s approach to the transmission of
confidential messages over the broadcast channel.

Motivated by the fact that if the source-wiretapper chan-
nel is less noisy than the source-destination channel, the
perfect secrecy capacity will be zero [3], recently, jamming
schemes have been introduced into physical layer security to
improve the secret capacity by confusing the eavesdropper
with codewords independent of the source message [4]. In
[5], the author studied the classical three node one way relay
channel by treating the relay as an eavesdropper. In [6], it was
established that cooperation even with an unauthenticated relay

node could be beneficial in relay channels with orthogonal
components. Then in [7], the authors considered a two-hop
communication system using an untrusted relay and showed
that a cooperative jammer enables a positive secrecy rate
which would be otherwise impossible. In [8]–[10], the authors
employed the game theory to the physical layer security to
study the interaction between the source and the friendly
jammers who assist the source by confusing the eavesdropper
and got some distributed game solutions.

In this paper, we investigate the physical layer security in
a two-way relay network with friendly jammers. The two
source nodes could exchange information only through an
unauthenticated relay node, as there is no direct communi-
cation link between them. The unauthenticated relay node
employing amplify-and-forward (AF) protocol, acts as both an
essential relay and a malicious eavesdropper who also wants
to eavesdrop the transmitted data coming from the sources. As
a special case and for convenience, we first study the system
without jammers. We find that a non-zero secrecy rate here is
indeed available even without the help of jammers confusing
the malicious relay. We also derive an optimal power vector
of the relay and the sources by maximizing the secrecy rate.
Then, we investigate the two-way relay communications with
friendly jammers, and we find that a positive gain could be
obtained in the secrecy rate. We further derive the optimal
power allocation from the friendly jammers through a source
optimization problem. In the optimization problem that we
formulate here, the sources will have to pay the jammers for
interfering the malicious relay, in order to increase the secrecy
rate. The friendly jammers charge the sources with a certain
price for their service of jamming. The proposed schemes are
verified by simulations.

The rest of this paper is organized as follows. In Section
II, the system model of two-way relay communication with
jammers is described and the corresponding secrecy rate is
formulated. In Section III, a two-way relay system without
jammers is investigated. In Section IV, we formulate a source
optimization problem and analyze the optimizing problem
of physical layer security with jammers. Simulation results
are shown in Section V and main conclusions are drawn in
Section VI.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a two-way relay network
consisting of two source nodes, one unauthenticated relay
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Fig. 1. System model for two-way relay communications with friendly
jammers

node, and N friendly jammer nodes, which are denoted by Sk,
k = 1, 2, R, and Ji, i = 1, 2, . . . , N , respectively. We denote
by N the set of indices {1, 2, . . . , N}. All the nodes here
are equipped with only a single omni-directional antenna and
operate in a half-duplex way, i.e., each node cannot receive and
transmit simultaneously. Then the complete transmission can
be divided into two phases. During the first phase, shown with
solid lines, both source nodes transmit their information to the
relay. Simultaneously, the friendly jammers also transmit the
jamming signals in order to confuse the malicious relay. In the
second phase, shown with dashed lines, the relay broadcasts
a combined version of the received signals to both source
nodes. We should also note that this two phases’ transmission
will lead to a loss in spectral efficiency due to the pre-log
factor 1/2 in corresponding expressions for the achievable
capacity. A key assumption we make here is that the sources
have perfect knowledge of the jamming signals transmitted by
the friendly jammers, for they have paid for the service. And
global channel state information (CSI) is also available in our
assumptions.

Let s1 ∈ A, s2 ∈ A, and sJ
i ∈ A, i ∈ N , denote

the signal to be transmitted by the source S1, S2, and the
jammers Ji, i ∈ N , respectively, where A represents a unity
power constellation set. Suppose the source nodes S1 and S2

transmit with power p1 and p2, and the channel gains from
the source nodes to the relay node are denoted by hSk,R,
k = 1, 2. Each friendly jammer node i transmits with power
pJ

i , and the channel gain from it to the relay node is denoted
by hJi,R, i ∈ N . The channel gain contains the path loss
and the Rayleigh fading coefficient with zero mean and unit
variance. For simplicity, we assume that the fading coefficients
are constant over one frame, and change independently from
one frame to another.

In phase 1, the received signal in the relay can be expressed
as

yr = nr +
√

p1s1hS1,R +
√

p2s2hS2,R +
∑

i

√
pJ

i sJ
i hJi,R,

(1)

where nr denotes the thermal noise at the relay note, which is
a zero mean Gaussian random variable with two sided power

spectral density of σ2. Furthermore, we assume that S1, S2,
and R have the same noise variance.

In phase 2, the malicious relay node, who works in AF
mode, amplifies the received signal yr by a factor β and then
broadcasts the signal to both S1 and S2 with power pr. For
power normalization at the relay we have

β =

(
p1 |hS1,R| 2 + p2 |hS2,R| 2 +

∑

i

pJ
i |hJi,R| 2 + σ2

)−1/2

.

(2)
Considering the jamming signals transmitted by the jam-

mers in phase 1, the corresponding signal received by S1 ,
denoted by y1, can be written as

y1 = β
√

prhS1,Ryr +
∑

i

√
pJ

i hJi,S1s
J
i + n1

= ξ1s1 + υ1s2 +
∑

i

µ1,is
J
i + ω1, (3)

where ξ1
∆= β

√
prp1h

2
S1,R, υ1

∆= β
√

prp2hS1,RhS2,R, µ1,i
∆=

β
√

prpJ
i hJi,RhS1,R +

√
pJ

i hJi,S1 , and ω1
∆= β

√
prhS1,Rnr +

n1.
Similarly, the signal received by S2 , denoted by y2, can be

written as

y2 = β
√

prhS2,Ryr +
∑

i

√
pJ

i hJi,S2s
J
i + n2

= ξ2s1 + υ2s2 +
∑

i

µ2,is
J
i + ω2, (4)

where ξ2
∆= β

√
prp1hS1,RhS2,R, υ2

∆= β
√

prp2h
2
S2,R, µ2,i

∆=

β
√

prpJ
i hJi,RhS2,R +

√
pJ

i hJi,S2 , and ω2
∆= β

√
prhS2,Rnr +

n2.
Assuming that both the source nodes and the jammer nodes

are independent, from (1), in phase 1, using the matched filter,
the unauthenticated relay node has the capacity with respect
to S1 and S2 as

Cm
1 =

W

2
log


1 +

p1gS1,R

σ2 + p2gS2,R +
∑
i

pJ
i gJi,R


 , (5)

and

Cm
2 =

W

2
log


1 +

p2gS2,R

σ2 + p1gS1,R +
∑
i

pJ
i gJi,R


 , (6)

where W represents the channel bandwidth, gS1,R = |hS1,R|2,
gS2,R = |hS2,R|2, and gJi,R = |hJi,R|2, i ∈ N .

In phase 2, at S1, as s1 and sJ
i is also known to its own

source node, and thus we can get

y1 = υ1s2 + ω1. (7)

Then the corresponding SNR for the transmission from S2

to S1, denoted by γ2, can be expressed as

γ2 =
|υ1|2

V ar {ω1}
=

p2gS2,R

σ2 + K2 +
∑
i

σ2gJi,R

prgS1,R
pJ

i

, (8)
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where K2
∆= σ2(p1gS1,R+p2gS2,R+σ2)

prgS1,R
.

Similarly, at S2, the received signal with s2 and sJ
i removed

can be written as

y2 = ξ2s1 + ω2. (9)

The corresponding SNR for the transmission from S1 to S2,
denoted by γ1, can be expressed as

γ1 =
|ξ2|2

V ar {ω2}
=

p1gS1,R

σ2 + K1 +
∑
i

σ2gJi,R

prgS2,R
pJ

i

, (10)

where K1
∆=

σ2(p1gS1,R+p2gS2,R+σ2)
prgS2,R

.
Capacities of two-way relay channel between the source

nodes are denoted by C1 and C2, then we can get

C1 =
W

2
log (1 + γ1) , (11)

and

C2 =
W

2
log (1 + γ2) . (12)

The secrecy rate for S1 and S2 can be defined as

Cs
1 = (C1 − Cm

1 )+, (13)

and

Cs
2 = (C2 − Cm

2 )+. (14)

where (x)+ represents max {x, 0}.

III. SECRECY RATE OF TWO-WAY RELAY CHANNEL
WITHOUT JAMMERS

In this section, we investigate a conventional two-way relay
communication scenario without the presence of jammers.
Compared to the system model described above, this system
can be regarded as a reduced one with all the jammers’
transmit power pJ

i set to zero, ∀i ∈ N . We assume that
all the system conditions are the same as the previous one
except those referring to the jammers. Then from the derivation
above, we can get the secrecy rate here as

C̃s
1 =

W

2

(
log

(
1 +

p1gS1,R

σ2 + K1

)
− log

(
1 +

p1gS1,R

σ2 + p2gS2,R

))+

,

(15)

and

C̃s
2 =

W

2

(
log

(
1 +

p2gS2,R

σ2 + K2

)
− log

(
1 +

p2gS2,R

σ2 + p1gS1,R

))+

.

(16)

A. Existence of Non-zero Secrecy Rate

When the eavesdropper channels from the two sources to
the malicious relay are degraded versions of the main two-
way relay channel between S1 and S2, the two sources can
exchange perfectly secure messages at a non-zero rate. Firstly
we consider the transmission from S1 to S2. In phase 1, the
malicious relay receives the signal s1 from S1, which consists
of the information for S2. Meanwhile, S2 also transmits the
signal at the relay, which acts as both the information carrier
for S1 and a jamming signal that makes the eavesdropper
channel from S1 to the malicious relay getting worse. In phase
2, the combined signal consisting of s1 and s2 arrives at S2. As
S2 has a perfect knowledge of its own signal s2, the signal that
jammed the malicious relay in phase 1 has no such an effect on
S2. Therefore it makes possible that the eavesdropper channel
is worse than the message transmission channel from S1 to
S2, which means a non-zero rate for secure communication
from S1 to S2 is available. It is the same situation in the
transmission from S2 to S1. From (15) and (16), we can write
the probability of the existence of a non-zero secrecy rate as

P
(
C̃s

1 > 0, C̃s
2 > 0

)
= P (K1 < p2gS2,R,K2 < p1gS1,R)

= P

(
pr > max

{
K

p2g2
S2,R

,
K

p1g2
S1,R

})
,

(17)

where K = (p1gS1,R + p2gS2,R + σ2)σ2.
Considering the power constraint p1 ≤ pmax, p2 ≤ pmax,

and pr ≤ pmax, we can get that there exists at least one pair

of (pr, p1, p2) that satisfies pr > max
{

K
p2g2

S2,R
, K

p1g2
S1,R

}
,

under the channel condition of gS1,R+gS2,R

gS1,RgS2,R
< pmax

σ2 . Therefore

we have P
(
C̃s

1 > 0, C̃s
2 > 0

)
> 0 at some power vectors of

(pr, p1, p2), which actually indicates that a non-zero secrecy
rate in the two-way relay channel is indeed available.

B. Maximizing the Secrecy Rate

In this sub-section, we will try to get an optimal power
vector of (pr, p1, p2) which maximizes the secrecy rate of the
two-way relay channel. We can formulate the problem subject
to the individual secrecy rate constraint and power constraint
as

max C̃s = max
2∑

k=1

C̃s
k,

s.t. C̃s
1 > 0, C̃s

2 > 0,

p1 ≤ pmax, p2 ≤ pmax, pr ≤ pmax. (18)

From (17), we know that

C̃s
1 > 0, C̃s

2 > 0 ⇔ pr > max

{
K

p2g2
S2,R

,
K

p1g2
S1,R

}
. (19)

From (15), (16), and (18), we can get that

C̃s =
W

2

(
log F̃ (pr, p1, p2)

)+

, (20)
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where

F̃ (pr, p1, p2) =

(
1 + p1gS1,R

σ2+K1

)(
1 + p2gS2,R

σ2+K2

)
(
1 + p1gS1,R

σ2+p2gS2,R

)(
1 + p2gS2,R

σ2+p1gS1,R

) . (21)

As F̃ (pr, p1, p2) has the same monotonic property as C̃s

under the conditions of (18), we can transform the optimiza-
tion problem as

max F̃ (pr, p1, p2) ,

s.t. pr > max

{
K

p2g2
S2,R

,
K

p1g2
S1,R

}
,

p1 ≤ pmax, p2 ≤ pmax, pr ≤ pmax. (22)

It can be calculated that ∂F̃ (pr,p1,p2)
∂pr

> 0 is always
established under the conditions in (22), which implies that
F̃ (pr, p1, p2) is a monotonically increasing function of pr.
Therefore when maximizing the secrecy rate C̃s, the relay
should always transmit at the maximum power pmax, i.e.,
pr opt = pmax, where pr opt denotes the optimal relay power.
As a result, the problem can be further transformed into
max F̃ (pmax, p1, p2).

From (21), we can observe that how large the value of
F̃ (pmax, p1, p2) could reach is determined by the gap between
K1 and p2gS2,R, as well as K2 and p1gS1,R. And thus, we can
obtain that when maximizing the secrecy rate C̃s, at least one
of the sources should transmit at pmax, and the one which is
chosen to transmit with this maximum power is determined by
the channel gains gS1,R and gS1,R. Hence, the optimal power
allocation of S1 and S2 can be given as follows:

1) For the case that gS1,R > gS2,R, we can get that p2 opt =
pmax. Meanwhile, if there exists a solution p∗1 ∈
(0, pmax] that satisfies the equation ∂F̃ (pmax,p1,pmax)

∂p1
=

0, then we have p1 opt = p∗1. Otherwise, we have
p1 opt = pmax, where p1 opt and p2 opt denote the
optimal power transmitted by S1 and S2, respectively.

2) For the case that gS1,R < gS2,R, it yields that p1 opt =
pmax. Meanwhile, if there exists a solution p∗2 ∈
(0, pmax] that satisfies the equation ∂F̃ (pmax,pmax,p2)

∂p2
=

0, then we have p2 opt = p∗2. Otherwise, we have
p2 opt = pmax.

3) For the case that gS1,R = gS2,R, we will have that
p1 opt = pmax, and p2 opt = pmax.

IV. PHYSICAL LAYER SECURITY WITH JAMMERS

In this section, we investigate the physical layer security
for two-way relay communications with friendly jammers.
First, we observe that the secrecy rate of the two-way channel
could be improved using friendly jammers. These jammers
introduce extra interference to the malicious relay while the
interference is known to the source nodes. Then, we formulate
a source optimization problem and optimize the problem utility
function of the two sources.

A. Improved Secrecy Rate using Friendly Jammers

From (13) and (14), we have that

Cs
1 =

W

2


log


1 +

p1gS1,R

σ2 + K1 +
∑
i

σ2gJi,R

prgS2,R
pJ

i




− log


1 +

p1gS1,R

σ2 + p2gS2,R +
∑
i

gJi,RpJ
i







+

, (23)

and

Cs
2 =

W

2


log


1 +

p2gS2,R

σ2 + K2 +
∑
i

σ2gJi,R

prgS1,R
pJ

i




− log


1 +

p2gS2,R

σ2 + p1gS1,R +
∑
i

gJi,RpJ
i







+

. (24)

Both Ck and Cm
k , k = 1, 2, are decreasing and convex

functions of jamming power pJ
i , i ∈ N . However, if Cm

k

decreases faster than Ck as the jamming power pJ
i increases,

Cs
k might increase in some region of value pJ

i . But when pJ
i

further increases, both Ck and Cm
k will approach zero. As

a result, Cs
k approaches zero. By comparing (15) with (16),

we can get that if σ2

pr
< min {gS1,R, gS2,R}, the gain of the

secrecy rate will be above zero in some region of the jamming
power pJ

i , i.e., the secrecy rate could be improved with the
help of friendly jammers.

B. Source Optimization Analysis

We consider the two sources as two buyers who want
to optimize their secrecy rate, while the cost paid for the
“service”, i.e., jamming power pJ

i , should also be taken into
consideration. For the sources’ side we can define the utility
function of source optimization problem as

Us = a (Cs
1 + Cs

2)−M, (25)

where a is a positive constant representing the gain per unit
rate, and M is the cost to pay for the friendly jammers. Here
we have

M =
∑

i

mip
J
i , (26)

where mi is the price per unit power paid for the friendly
jammer i by the sources, i ∈ N .

It can be calculated that ∂Us

∂pr
> 0 is always hold when

pr ∈ (0, pmax], i.e., when optimizing the secrecy rate, the relay
should always transmit at the maximum power pmax. As all
the nodes transmit with independent power, we can treat the
jamming power pJ

i as a constant when considering the optimal
power vector of (p1, p2). Therefore we can get the same results
of the optimal vector as given in the previous section. Hence,
our major purpose here is to study how to control the jamming
power so as to achieve the maximum utility value.
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The source optimization problem can be expressed as

max Us = max (a (Cs
1 + Cs

2)−M) ,

s.t. Cs
1 > 0, Cs

2 > 0,

0 ≤ pJ
i ≤ pmax, pr = pmax, fixed p1, p2. (27)

The goal of the sources as buyers is to buy the optimal
amount of power from the friendly jammers in order to
maximize the secrecy rate. From (23), (24), and (27), we have

Us =
aW

2


log

1 + 1
A1+

∑
i

T1,ipJ
i

1 + 1
B1+

∑
i

L1,ipJ
i

+ log
1 + 1

A2+
∑
i

T2,ipJ
i

1 + 1
B2+

∑
i

L2,ipJ
i




−
∑

i

mip
J
i , (28)

where A1
∆= σ2+K1

p1gS1,R
, A2

∆= σ2+K2
p2gS2,R

, B1
∆= σ2+p2gS2,R

p1gS1,R
, B2

∆=
σ2+p1gS1,R

p2gS2,R
, T1,i

∆= σ2gJi,R

prp1gS2,RgS1,R
, T2,i

∆= σ2gJi,R

prp2gS2,RgS1,R
,

L1,i
∆= gJi,R

p1gS1,R
, and L2,i

∆= gJi,R

p2gS2,R
.

By differentiating (28) with respect to pJ
i , we get

∂Us

∂pJ
i

=− aWT1,i

2
(

A1 +
∑
i

T1,ipJ
i

)(
1 + A1 +

∑
i

T1,ipJ
i

)

+
aWL1,i

2
(

B1 +
∑
i

L1,ipJ
i

)(
1 + B1 +

∑
i

L1,ipJ
i

)

− aWT2,i

2
(

A2 +
∑
i

T2,ipJ
i

)(
1 + A2 +

∑
i

T2,ipJ
i

)

+
aWL2,i

2
(

B2 +
∑
i

L2,ipJ
i

)(
1 + B2 +

∑
i

L2,ipJ
i

) −mi.

(29)

Rearranging the above equation, when ∂Us

∂pJ
i

= 0, we can
have a fourth order polynomial equation as

(
pJ

i

)4
+ Fi,3

(
pJ

i

)3
+ Fi,2

(
pJ

i

)2
+ Fi,1p

J
i + Fi,0 = 0, (30)

where Fi,l, l = 0, 1, 2, 3, are formulae of constants Ak, Bk,
Ti,k, Li,k, and variables ∂pJ

j , k = 1, 2, i ∈ N , j ∈ N but
j 6= i.

The solutions of the quartic equation (30) can be expressed
in a closed form [11], but this is not essential here. The
solution of our particular interest can be expressed as

pJ
i

∗
= pJ

i

∗ (
mi, {Ak} , {Bk} , {Tk,i} , {Lk,i} ,

{
pJ

j

}
j 6=i

)
,

(31)

which is a function of the friendly jammer’s price mi, the
other jammers’ jamming power

{
pJ

j

}
j 6=i

and other system
parameters. Note that with 0 ≤ pJ

i ≤ pmax in the optimization
problem, we can get the optimal strategy as

pJ
i opt = min

(
max

(
pJ

i

∗
, 0

)
, pmax

)
. (32)

V. SIMULATION RESULTS

To investigate the performances, we conduct the following
simulations. For simplicity and without loss of generality, we
consider a simple two-way relay system model with only one
friendly jammer, where the sources S1, S2, and the malicious
relay are located at the coordinate (−1, 0), (1, 0), and (0, 0),
respectively. Here we study two jammer locations which are
(0.3, 0.4) and (0.6, 0.8). The other simulation parameters are
set up as follows: The maximum power constraint pmax is
10dB; the transmission bandwidth is 1; the noise variance is
σ2 = 0.1; Rayleigh fading channel is assumed, where the
channel gain consists of the path loss and the Rayleigh fading
coefficient; the path loss factor is 2. Here we select a = 1 for
the source optimization utility in (27).
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Fig. 2. Secrecy rate vs. p1 and p2 for the case without jammers when
gS1,R > gS2,R
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Fig. 3. Secrecy rate vs. p1 and p2 for the case without jammers when
gS1,R < gS2,R
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For the special case without jammers, we set the jamming
power up to zero. In Fig. 2 and Fig. 3, we show the secrecy
rate as a function of the two sources transmitting power p1 and
p2 in this special case. It shows that the optimal power vector
of (p1, p2) is (0.22pmax, pmax) when gS1,R = 0.3857 and
gS2,R = 0.0443, and (pmax, 0.32pmax) when gS1,R = 0.0508
and gS2,R = 0.3018. After further calculation, we can see that
the results fit the optimal power allocation conclusions given
in Section III well.
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Fig. 4. Secrecy rate vs. jamming power

Fig. 4 shows the secrecy rate as a function of the jamming
power when p1, p2, and pr are all set up to pmax. We can
see that with the increase of the jamming power, the secrecy
rate first increases and then decreases. There indeed exists an
optimal point for the jamming power. Also the optimal point
depends on the location of the friendly jammer, and we can
find that the friendly jammer close to the malicious relay is
more effective to improve the secrecy capacity.

Fig. 5 shows that the optimal amount of the jamming power
bought by the sources depends on the price requested by the
jammer. We can see that the amount of bought power gets
reduced if the price goes high and the sources would even stop
buying after some price point. And thus there is a tradeoff for
the jammers to set the price. If the price is set too high, the
sources would buy less power or even stop buying. But if the
price is given too low, the jammers would benefit very little.

VI. CONCLUSION

In this paper, we have investigated the physical layer secu-
rity for two-way relay communications with friendly jammers.
As a simple case, a two-way relay system without jammers
is studied first, and an optimal power allocation vector of
the sources and relay nodes is found. We then analyzed the
secrecy rate in the presence of friendly jammers. Furthermore,
we defined a source optimization problem and obtained an
optimal solution of jamming power. From the simulation
results, we can see that a non-zero secrecy rate of two-way
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Fig. 5. How much the sources buy as a function of the jammer price

relay channel is indeed available, and it can be improved by
proper power allocation between the source nodes or with the
help of friendly jammers. In the system with jammers, it has
an optimal solution of jamming power allocation. There is
also a tradeoff for the price a jammer set, and if the price
is too high, the sources would not buy or buy from others.
It is worthwhile mentioning that, due to space limitation, we
mainly investigated the sources’ side optimization problem.
But there exists a game between the sources and the friendly
jammers, and this will be studied in our future work.
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