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Abstract— In current peer-to-peer file sharing networks, a large
number of peers with heterogeneous connections simultaneously
seek to download resources, e.g., files or file fragments, from
a common seed at the time these resources become available,
which incurs high download delays on the different peers. Unlike
existing literature which mainly focused on cooperative strategies
for data exchange between different peers after all the peers
have already acquired their resources, in this paper, we study
the cooperation possibilities among a number of peers seeking
to download, concurrently, a number of resources at the time the
availability of the resources is initially announced at a common seed.
We model the problem as a coalitional game in partition form and
we propose an algorithm for coalition formation among the peers.
The proposed algorithm enables the peers to take autonomous
decisions to join or leave a coalition while minimizing their average
download delay. We show that, by using the proposed algorithm,
a Nash-stable partition composed of coalitions of peers is formed.
Within every coalition, the peers distribute their download requests
between the seed and the cooperating partners in a way to minimize
the total average delay incurred on the coalition. Analytically,
we study the 2-peer scenario and derive the optimal download
request distribution policies. Simulation results show that, using
the proposed coalition formation game, the peers can improve their
average download delay per peer of up to 99.6% compared to the
non-cooperative approach for the case with N = 15 peers.

I. INTRODUCTION
Peer-to-peer (P2P) file sharing services such as BitTorrent [1]

have recently become one of the most popular resource sharing
medium among users. Using a combination of advanced search
and communication techniques as well as large-scale distributed
file storage systems, P2P file sharing systems allow a number
of users to download and share content among each other in a
decentralized, scalable, and fault tolerant manner.

Due to the heterogeneous capabilities of the peers as well
as the decentralized nature of P2P file sharing, current P2P
systems face many challenges at different perspectives [2]. For
instance, in [3], the authors proposed incentives, using tit-for-tat
strategies, for allowing the peers in a P2P system to efficiently
exchange their data. The work in [4] studied the problem of
resource reciprocation of multimedia content among peers using
a stochastic game. Further, in [5], mesh-based architectures for
content dissemination are studied in P2P networks.

Most of the aforementioned work in P2P networks focuses
on the P2P sharing of resources after these resources were
entirely acquired by the peers, independently, from different
seeds. However, a prominent challenge of P2P systems that
remains relatively unexplored is the study of the scenario where
a number of peers compete for downloading, concurrently, a
number of resources, e.g., files or file fragments that complement
their already owned resources, from the same seed at the time the
availability of the resources is announced. For instance, when-
ever a new file, fragment, or group of files/file fragments, become
available at a certain seed, i.e., a server or another peer, a large
number of interested peers, e.g., a flash crowd of nodes interested
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in these resources, will, concurrently, attempt to download these
resources from the seed. Eventually, due to the limited upload
capabilities of the seed and the heterogeneous characteristics of
the peers, this scenario yields increased download delays on the
competing peers (this issue is highlighted in [5]). Hence, one
important challenge is to propose cooperative schemes for P2P
networks that can alleviate the download delays of the peers
during this phase of simultaneous download of resources at the
time they become available.

The main contribution of this paper is to propose cooperative
strategies, using the framework of coalition formation games in
partition form, for enabling the peers to improve their download
delays during the concurrent download of resources from a
common seed. Another contribution of this paper is to discuss
the optimal division of the peers’ download request between the
main seed and other cooperative peers. For this purpose, we
formulate a coalition formation game in partition form among
a number of peers that seek to cooperatively improve their
download delay while downloading resources from a common
seed at the time the resources become available. For the devised
game model, we propose a coalition formation algorithm through
which each peer can take an individual decision to join or leave
a coalition while minimizing its average download delay. We
show that the proposed coalition formation algorithm enables
the peers to self-organize into a Nash-stable partition composed
of coalitions of peers. Analytically and through simulations, we
assess different aspects of the proposed scheme.

II. SYSTEM MODEL
Consider a P2P network consisting of N peers and let N

denote the set of all peers. We consider that each peer already
owns a small number of resources, e.g., files or fragments,
related to a particular content and is seeking to download the
remainder of this content. Whenever a seed, e.g., a server or
another independent peer (not in the set N ) that owns the entire
content of interest to the peers, announces the availability of
a number of resources, all N peers will concurrently attempt
to download these resources from the seed. In this model, it is
considered that the seed owns all the data related to the content
of common interest to the peers while each peer in N owns
different chunks of this data.

Each peer i ∈ N has an upload rate µi, and, in a non-
cooperative manner, attempts to download the remainder of its
data from the common seed with a download rate λi. With no
loss of generality, we assume that, for any peer i, the arrival
process for the download requests is exponentially distributed
with parameter λ−1

i . In such a scenario, given that the seed has
an upload rate of µs and considering that the file service process
is an M/D/1 queue, the average delay τnc for any peer i ∈ N
non-cooperatively downloading data from the seed is

τnc =
λs

2µs(µs − λs)
, (1)

where λs =
∑

i∈N λi is the total request rates at the seed.



As the seed has a limited upload rate µs, one can see from
(1) that, whenever the number of peers interested in the seed’s
content is large, the download delay increases significantly. In
particular, the total download requests that the seed can handle
must satisfy the stability condition of the queueing system in
(1), i.e., λs < µs. As a direct result of this condition, the
number of peers that can concurrently download the data from
the seed, non-cooperatively, is limited and strongly depends on
the heterogeneous download rates of the peers. For example, a
single peer with large download rate can congest the seed and
forbid other peers from utilizing the resource.

To reduce their performance, instead of solely downloading
the remaining content from the seed directly, the peers can
download the content of interest from the seed as well as from
a subset of other peers. By doing so, the peers can potentially
reduce the load on the seed and possibly improve their delay.
Within each group of cooperating peers, i.e., a coalition S ⊆ N ,
every peer i ∈ S can direct its download requests to the seed
as well as to other cooperative peers j ∈ S \ {i} with a certain
fraction pij such that

0 ≤ pij ≤
µj

λi
,∀j ∈ S \ {i} and

∑
j∈S\{i}

pij + pi0 = 1 (2)

where the upper bound in the first condition ensures that no peer
i ∈ S will download data from another peer j ∈ S with a rate
that exceeds the upload rate µj of peer j and 0 ≤ pi0 ≤ µs

λi

is the fraction of requests directed to the seed from peer i. For
every peer i ∈ S, we define the (|S| + 1) × 1 (| · | is the set
cardinality operator) column vector pi = [pi0, . . . , pi|S|]

T of all
the fractions of requests directed by by peer i to its partners
in S and the seed. Note that, pii = 0,∀i ∈ S. Further, we let
P S = [p1, . . . ,p|S|] be the (|S| + 1) × |S| matrix of all the
fractions of the peers in coalition S. Note that, we assume that
any peer outside a coalition S, i.e., in N \S, will not allow peers
inside S to use its upload bandwidth.

Subsequently, for any cooperative peer i member of a coalition
S ⊆ N which is downloading data from the seed and the peers
in K ⊆ S with |K| = K, given that each of the K queues are
independent and by using Little’s Law [6] the average download
delay will be

τi(P S) =
1

K + 1

 ∑
j∈S,j ̸=i

Λj

2µj(µj − Λj)
+ τs

 , (3)

where the first term is the delay from the data downloaded by
peer i from K partners in coalition S with µj the service rate
of peer j ∈ S, and τs the delay from the data downloaded by
i from the seed which is the same for all i ∈ S and is given
using the same expression as (1) with λs =

∑
i∈S pi0λi. Further,

Λj = (P S)jλ in (3) represents the total load at peer j ∈ S
with (P S)j the jth line of P S and λ an |S| × 1 vector with
each element λk corresponding to the download rate of a peer
k ∈ S. Note that, we assume that, for any coalition S that forms,
∃i ∈ S such that pi0 ̸= 0, i.e., at least one peer downloads
from the seed, otherwise, the download delay in (3) is considered
to be infinite. By adequately selecting the distribution of their
download requests, i.e., the matrix P S , the cooperative peers
might be able to improve their average.

Although the peers can divide their download requests in any
way between the cooperative peers and the seed, one scheme
that the peers can adopt is to distribute their requests in a way

to minimize the total average delay experienced by the coalition
as a whole. Such an optimization is quite popular both in game
theory and networking whereby a group of nodes can act so as
to minimize the total social cost (or alternatively maximize the
overall social welfare) on the network as a whole [7], [8].

In this context, given a coalition S ⊆ N of cooperative peers,
the peers in the coalition distribute their download requests, i.e.,
compute the vectors pi, ∀i ∈ S such that the total social cost,
i.e., the total average delay of the coalition, is minimized. In other
words, each coalition jointly solves the following optimization

min
PS

∑
i∈S

τi(P S), (4)

s.t. 0 ≤ pi0 <
µs

λi
and 0 ≤ pij <

µj

λi
, ∀j ∈ S \ {i}, i = 1 . . . |S|,∑

j∈S\{i}

pij + pi0 = 1, i = 1 . . . |S|,

where τi is given by (3) and the two constraint describe previ-
ously mentioned properties of the download request fractions.
Note that, as previously mentioned, at least one peer in the
coalition must be connected to the seed, i.e., ∃i ∈ S with pi0 ̸= 0,
otherwise the delay is infinite. Subsequently, whenever a group
of peers cooperate within a coalition S, they can compute the
download request distribution which minimizes the total average
delay of their coalition as per (4) which is a standard constrained
optimization problem that can be solved using several known
optimization methods [9]. As a result of this optimization, the
delay of every peer i in coalition S will be given by τi(P

∗
S) as

per (3) with P ∗
S denoting the solution of (4).

Nonetheless, although minimizing the social cost is an at-
tractive approach, in several scenarios, the social optimum and
the individual incentives of the peers might not be aligned, i.e.,
optimizing the social cost of a coalition does not guarantee a
better individual delay for every peer involved in the coalition
[7]. Hence, there is a need to devise cooperative strategies
which allow each peer to autonomously form coalitions while
taking into account two conflicting objectives: (i)- Improving its
individual delay through cooperation and (ii)- Distributing its
download requests inside the coalition in a way to minimize the
overall social cost on the network as per (4).

III. PEERS COOPERATION AS A COALITIONAL GAME IN
PARTITION FORM

We use the framework of coalitional game theory [8] to study
the proposed cooperative P2P model. Denoting by B as the set
of all partitions of N , the proposed P2P cooperation problem
is modeled as a coalitional game in partition form with non-
transferable utility defined as follows [8]:

Definition 1: A coalitional game in partition form with non-
transferable utility (NTU) is defined by a pair (N , V ) where N
is the set of players and V is a mapping such that for every
partition Π ∈ B , and every coalition S ⊆ N , S ∈ Π, V (S,Π)
is a closed convex subset of RS that contains the payoff vectors
that players in S can achieve.

Denoting by ϕi(S,Π) the payoff of any peer i in coalition
S ∈ Π within a partition Π ∈ B of N , we define the coalitional
value set, i.e., the mapping V in partition form, as follows
V (S,Π) = {ϕ(S,Π) ∈ RS |∀i ∈ S, ϕi(S,Π) = −τi(P

∗
S)}, (5)

where τi(P
∗
S) is given by (3) with P ∗

S the solution of (4) for
coalition S and the minus sign is inserted for convenience, in



order to turn the problem into a maximization problem. Note
that, the delay τi(P S) in (3) depends, through it second term,
not only on the download request distribution inside S but also on
the distribution outside S through the seed, and, thus, it depends
on the partition Π (for notational convenience this dependence
is dropped from τi(P

∗
S)). Thus, the proposed P2P cooperative

approach is formulated as an (N , V ) coalitional game in partition
form with NTU where the mapping V is a closed and convex
subset of RS as given by (5) (singleton set).

The main challenge of a coalitional game in partition form
is to construct algorithms for forming the coalitions. First, we
define the following concept:

Definition 2: Given any peer i ∈ N , a preference relation
denoted by ≽i is defined as a complete, reflexive, and transitive
binary relation over the set of all coalition/partition pairs that
peer i can be a member of, i.e., the set {(Sk,Π)|Sk ⊆ N , i ∈
Sk, Sk ∈ Π, Π ∈ B}.

As a result, for any peer i ∈ N that can provide a quantifica-
tion of its benefit for every potential coalition that it can form,
the preference relation ≽i can be used to compare the peer’s
preference between any two coalitions S1 ⊆ N , S1 ∈ Π and,
S2 ⊆ N , S2 ∈ Π′ such that i ∈ S1 and i ∈ S2 and their
respective partitions. Hence, (S1,Π) ≽i (S2,Π

′) implies that
peer i is better off working cooperatively in coalition S1 when
Π is in place, over being member of coalition S2 when Π′ is in
place, or at least, i prefers both coalition/partition pairs equally
(when the preference is strict, it is denoted by ≻i). Note that a
preference relation can be used to compare two coalitions in the
same partition, or the same coalition in two different partitions.
For the peer-to-peer cooperation game, we propose the following
preference relation for any peer i ∈ N :

(S1,Π) ≽i (S2,Π
′) ⇔ wi(S1,Π) ≥ wi(S2,Π

′), (6)

where S1 ∈ Π, S2 ∈ Π′, with Π,Π′ ∈ B, are any two coalitions
that contain peer i, i.e., i ∈ S1 and i ∈ S2 and wi is a preference
function defined for a peer i ∈ N as follows:

wi(S,Π) =


ϕi(S,Π), if ϕj(S,Π) ≥ ϕj(S \ {i},Π),

∀j ∈ S \ {i}& S /∈ h(i) or (|S| = 1),

0, otherwise,
(7)

where ϕi(S,Π) is given by (3) through (5) and it represents the
delay perceived by peer i ∈ S when partition Π is in place and
h(i) is the history set of peer i which holds the coalitions of size
larger than 1 that i was member of in the past, and had parted.

The main idea behind the function wi is that a peer i assigns a
preference equal to its achieved payoff for any coalition/partition
pair (S,Π) as long as coalition S is either a singleton coalition
(i.e., i is acting non-cooperatively) or S is a coalition of size
larger than 1, which was not previously visited by i (not in h(i)),
and where the joining of peer i to coalition S is not detrimental
to any of the peers already in S\{i}. Otherwise, the peer assigns
a zero preference value to any coalition whose members’ payoffs
decrease due to the presence of i, since the members of such a
coalition will refuse to have i join the coalition. Also, peer i
assigns a zero preference to any coalition it already visited and
left since i has no incentive to revisit such a coalition.

IV. PROPOSED COALITION FORMATION ALGORITHM

For forming coalitions, we propose the following rule that can
be followed individually by each peer in the network:

Definition 3: Change Rule - For a given partition Π =
{S1, . . . , SM} of the set of peers N , a peer i can decide to
change its coalition, i.e., leave its current coalition Sm, for
some m ∈ {1, . . . ,M} and join another coalition Sk ∈ Π∪{∅},
with Sk ̸= Sm, if and only if (Sk ∪ {i},Π′) ≻i (Sm,Π)
where Π′ = {Π \ {Sm, Sk}} ∪ {Sm \ {i}, Sk ∪ {i}} is the
partition resulting of the change. This change rule is represented
by {Sm, Sk} → {Sm \ {i}, Sk ∪ {i}} and Π → Π′.

Using the change rule, any peer can decide to leave its present
coalition Sm ∈ Π and join a new coalition Sk ∈ Π, forming a
new partition Π′, as long as the new pair (Sk∪{i},Π′) is strictly
preferred over (Sm,Π) through the preference relation defined
by (6) and (7). That is, a peer can move to a new coalition if
it can strictly improve its payoff, without decreasing the payoff
of any member of the new coalition, i.e., given the consent of
the new members as per (6). Further, each time a peer executes
a change rule from its current coalition Sm ∈ Π, coalition Sm

is stored in its history set h(i) (if |Sm| > 1).
Consequently, we propose a coalition formation algorithm

composed of three main stages: Peer discovery, coalition for-
mation, and cooperative download. During the first stage, as the
seed announces the availability of the resources, all interested
peers attempt to download the content from the seed. Meanwhile,
the peers can use a tracker or other well known peer-discovery
algorithms such as in [1], [2] to learn of the presence of other
peers downloading from the seed. Once peer discovery is done,
the peers engage in the coalition formation stage. In this stage,
each peer attempts to estimate its payoff from changing its
current coalition and joining another coalition (or peer). Once
a peer finds a potential change possibility (satisfying (6) and
(7)), it can make a distributed decision to break from its current
coalition and join a new coalition. In this stage, we consider
that the peers make decisions in a certain random order (dictated
by who requests first to cooperate). The peers take their change
decisions based on an assessment, using (3) and (4), of the payoff
given the current partition and not on the long term payoff. Such
a strategy is a quite common approach for decision making,
referred to as myopic strategy [8]. Following the convergence
of the coalition formation process, a partition Πf is in place
in the network for downloading the resources from the seed
which occurs in the last stage of the algorithm using the model
described in Section II. A summary of the proposed algorithm
is given in Algorithm 1.

The stability of the partition Πf can be studied using the
following stability concept:

Definition 4: A partition Π = {S1, . . . , SM} is Nash-stable
if ∀i ∈ N s. t. i ∈ Sm, Sm ∈ Π, (Sm,Π) ≽i (Sk ∪ {i},Π′) for
all Sk ∈ Π∪{∅} with Π′ = (Π\{Sm, Sk}∪{Sm\{i}, Sk∪{i}}).

Hence, a partition Π is Nash-stable, if no peer has an incentive
to move from its current coalition to another coalition in Π or
to deviate and act alone. Given this notion, the convergence of
the proposed algorithm during the coalition formation stage is
guaranteed as follows:

Theorem 1: Starting from any initial network partition Π0,
the coalition formation stage of the proposed algorithm always
converges to a final Nash-stable network partition Πf ∈ B.

Proof: This is a result of the finite number of partitions of
the set N (given by the Bell number [8]) and of the definition
of the change rule.



Algorithm 1 Proposed peer-to-peer coalition formation algorithm.
Initial State
The network is partitioned by Π0 = {S1, . . . , SM}. At the beginning of all time, the
network is non-cooperative, hence, Π0 = N .

Stage 1 - Peer Discovery:
The seed announces the availability of resources sought by all peers.
Each peer in N attempts to download the content from the seed.
Using peer discovery algorithms such as trackers or others [1], [2], the
peers discover the presence of other peers at the seed.

Stage 2 - Coalition Formation:
repeat

Each peer i ∈ N investigates potential change operations using the preference in
(6) by engaging in pairwise negotiations with existing coalitions in partition Π.

Once a change operation is found:
a) Peer i leaves its current coalition.
b) Peer i updates its history h(i), if needed.
c) Peer i joins the new coalition with the consent of its members.

until convergence to a Nash-stable partition
Stage 3 - Cooperative Download:
The formed coalitions perform cooperative download from the seed
and their partners as per Section II.

V. SIMULATION RESULTS AND ANALYSIS
A. Analysis of a network with 2 peers

In the scenario of a network with 2 peers, under certain
conditions on the upload rate of the seed µs, the optimal social
cost minimizing solution for the coalition S = {1, 2}, if this
coalition forms, can be given by the following theorem:

Theorem 2: Consider two peers seeking to download data
from a common seed and having, respectively, the download
and upload rates λ1, λ2, µ1, and µ2. In this scenario, given
λT = λ1+λ2, whenever the seed’s upload rate µs > λT satisfies

µs ≤

{
(
√
2 + 1)µ1 − µ2 + λT if µ1 ≤ µ2 < (

√
2 + 1)µ1

(
√
2 + 1)µ2 − µ1 + λT if µ2 < µ1 ≤ (

√
2 + 1)µ2

(8)

The optimal solution that minimizes the social cost of coalition

S = {1, 2}, if S forms, is P ∗
S =

[
p∗10 p∗20
p∗12 p∗21

]
with

p∗12 = 1− p∗10 =
(
√
2− 2)(µ1 + µs − λT ) +

√
2µ2

2λ1
, (9)

p∗21 = 1− p∗20 =
(
√
2− 2)(µ2 + µs − λT ) +

√
2µ1

2λ2
. (10)

Proof: Consider the scenario where 2 peers, with respective
upload and download rates λ1, λ2, µ1, and µ2 wish to download
resources from a common seed having an upload rate µs >
λT , λT = λ1 + λ2. For analyzing whether it is of their benefit
to form coalition S = {1, 2}, the peers need to find the social
cost minimizing request rate distribution matrix P ∗

S , as per (4).
Denote by x12 = p12λ1 as the amount of download requests
directed by peer 1 to peer 2 and x21 = p21λ2 its counterpart
from peer 2 on peer 1. Thus, given the download delays τ1(P S)
and τ2(P S) of peers 1 and 2, respectively, as per (3), the total
delay of the coalition S is (the dependence on P S is dropped
for simplicity)

τStotal(P S) = τ1 + τ2 =
x12

4µ2(µ2 − x12)
+

x21

4µ1(µ1 − x21)
+ τs

(11)
with τs = λT−x12−x21

2µs(µs−(λT−x12−x21))
as per (1) with λs = (λ1 −

x12) + (λ2 − x21).
For finding the optimal P ∗

S using (4), the peers need to
minimize τStotal(P S) given the constraints

0 ≤ p12 <
µ2

λ1
, 0 ≤ p21 <

µ1

λ2
, (12)

p12 + p10 = 1, p21 + p20 = 1.

Note that since µs > λT then p10 and p20 always satisfy the
constraints of (4). By solving ∂τS

total(PS)
∂x12

= 0 and manipulating
the resulting quadratic equation, we obtain, using µs > λT , two
roots for the equation (details are omitted due to page limits)

x′
12 = (α+ 1)x21 + (α+ 1)(µs − λT ) + (α+ 2)µ2, (13)

where α = ±
√
2. By inspecting (13), one can verify that having

α =
√
2 and given µs > λT yields x′

12 > µ2 which is an
infeasible solution since we must have x12 ≤ µ2. Hence, the
only possible solution is

x12 = (1−
√
2)x21 + (1−

√
2)(µs − λT ) + (2−

√
2)µ2 (14)

In a symmetric manner, by setting ∂τS
total(PS)
∂x21

= 0, we find

x21 = (1−
√
2)x12 + (1−

√
2)(µs − λT ) + (2−

√
2)µ1 (15)

and, thus, the optimal solution is the solution of the system (14)
and (15) which satisfies the constraints, and is given by

x∗
12 =

(
√
2− 2)

2
µ1 +

√
2

2
µ2 +

(
√
2− 2)

2
(µs − λT ) (16)

x∗
21 =

(
√
2− 2)

2
µ2 +

√
2

2
µ1 +

(
√
2− 2)

2
(µs − λT ) (17)

By substituting (16) and (17) in the constraints of (12) and
through algebraic manipulations while maintaining µs > λT , we
find that the derived solution is feasible whenever (8) is satisfied.
Finally, given x∗

12 = p∗12λ1, x∗
21 = p∗21λ2, p∗10 = 1 − p∗12, and

p∗20 = 1− p∗21, the optimal matrix P ∗
S can be computed.

In summary, Theorem 2 provides an analytical closed form
solution that the peers can use to compute their optimal policy for
download request distribution, given that the seed’s upload rate
satisfies (8)1. Moreover, once the two peers compute the optimal
divisions for the coalition S = {1, 2}, using (6) and (7) (as per
the change rule), the peers would agree to join into a single
coalition S if at least one peer is better off in the cooperative case
without decreasing the payoff of the other peer, i.e., τ1(P ∗

S) ≥
τnc with τ2(P

∗
S) > τnc or τ1(P

∗
S) > τnc with τ2(P

∗
S) ≥ τnc

where τnc is the non-cooperative delay as per (1).
As seen by (3), (9), and (10), for a given seed load µs >

λ1+λ2, the decision of the two peers to join inherently depends
on the characteristics of the peers, i.e., their download and upload
rates. For instance, from Theorem 2, it is interesting to note
that the optimal divisions p∗12 and p∗21 are linear functions of the
upload rates µ1, µ2, and µs. Further, given a fixed upload rate for
a peer, e.g., µ1, as the upload rate µ2 of the other peer increases,
the social cost minimizing solution dictates that peer 1 leeches
less and less on peer 2. In order to emphasize this aspect and
show how the upload rate of the peers affects their cooperative
policies (9) and (10), we consider the following example.

Example 1: Consider 2 peers with, respectively, the down-
load and upload rates λ1 = 1.4 Mbps, λ2 = 1 Mbps, µ1 =
512 kbps, and µ2 ∈ [256, 850] kbps. We consider the case when
a server, acting as a seed, with an upload rate µs = 2.5 Mbps
announces the availability of resources that peers 1 and 2 seek
to download. These parameters are chosen such that, at all µ2,
(8) is verified and both peers find it always beneficial to form a
single coalition as per the change rule and (6). For this scenario,
we are interested in the variation of the optimal policies of the
peers, as per (9) and (10), when coalition S = {1, 2} forms and

1Alternatively, in the case when (8) is not satisfied, the peers can always find
their optimal download distributions using classical optimization techniques [9].



2 4 6 8 10 12 14

10
−5

10
−4

10
−3

10
−2

Number of peers (N)

A
ve

ra
ge

 d
ow

nl
oa

d 
de

la
y 

pe
r 

pe
er

 (
se

co
nd

s)

 

 

Proposed coalition formation algorithm
Non−cooperative downloading

Fig. 1. Average download delay per peer achieved by the proposed algorithm
and the non-cooperative case as the number of peers N increases.
as µ2 changes. By inspecting (9), we can see that, as the upload
capability of peer 2 increases, peer 1 tends to put more download
requests on peer 2, while peer 2 decreases its download requests
on peer 1. For instance, while at µ2 = 256 kbps, peer 1 does
not download any data from peer 2 as p∗12 ≈ 0 as per (9) (but
still benefits from cooperation due to the reduced load on the
server from the cooperation of peer 2), at µ2 = 850 kbps, peer 1
download up to p∗12 = 30% of its data from peer 2. In contrast,
the fraction of download of peer 2 from peer 1 decreases from
around p∗21 = 25.8% at µ2 = 256 kbps down to p∗21 = 8.4%
at µ2 = 850 kbps. Hence, as one of the peers leeches more
on the other, the optimal policy of the other peer dictates to
download more from the server (which is less congested due
to the cooperative behavior of the other peer) and less from the
other peer. Finally, by solving the system of equalities constituted
by (9) and (10), we can find that, at µ2 = 577.5 kbps, the optimal
policy of both peers is to equally download from each other, i.e.,
p∗12 = p∗21 = 16.3%.

B. Simulation results for a network with N ≥ 2 peers
For simulations, we consider a server as a seed with a robust

connection having, unless stated otherwise, an upload rate of
µs = 15 Mbps. At the time the server announces the availability
of resources for download, N ≥ 2 peers in the set N with
download rates λi,∀i ∈ N , attempt to concurrently download the
content from the server. For all simulations, the download rates
λi,∀i ∈ N are randomly generated from a uniform distribution
over [256, 3000] kbps while maintaining the queueing stability
condition µs >

∑
i∈N λi. Further, all the peers’ connections are

considered asymmetric with upload rates uniformly distributed in
the interval µi ∈ [256,min (λi, 1024)] kbps,∀i ∈ N . All results
are averaged, through a large number of runs, over all possible
random choices of the peers’ download and upload rates.

In Fig. 1, we show the average download delay per peer as
the number of peers downloading from the server N increases.
Fig. 1 shows that, as N increases, the average delay for the
non-cooperative scheme increases due to the increased load on
the server. In contrast, for the proposed algorithm, although the
average delay starts by increasing slowly, at N = 10 peers,
this average delay starts to slightly decrease with N since the
benefit from cooperation grows due to: (i)- The presence of
more peers to cooperate with and (ii)- The growing need for
cooperation with the increasing server load. Fig. 1 demonstrates
that the proposed algorithm presents a significant performance
advantage, in terms of average download delay per peer, increas-
ing with the numbers of peers N (due to the presence of more
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Fig. 2. Average download delay per peer for a scenario with N = 10 peers as
the server upload rate µs varies.
cooperation possibilities) and reaching up to 99.6% (two orders
of magnitude) improvement relative to the non-cooperative case
at N = 15 peers.

In Fig. 2, we show the average download delay per peer
for a scenario with N = 10 peers as the upload rate of the
server µs, increases. In this figure, we can see that, for both
the proposed scheme and the non-cooperative approach, as µs

increases, the average download delay decreases, as the server
becomes less congested. Further, Fig. 2 shows that the increase
of µs decreases the performance advantage of the proposed
algorithm as the peers would have less incentive to cooperate due
to being somehow satisfied with their non-cooperative download
delays (which becomes smaller as µs grows). Nonetheless, Fig. 2
demonstrates that, at all µs, the proposed coalition formation
algorithm yields a performance advantage of at least 29.3% (at
µs = 40 Mbps) relative to the non-cooperative case.

VI. CONCLUSIONS
In this paper, we studied the problem of cooperation among a

number of peers seeking to download a content of interest from a
common seed at the time this seed announces the availability of
the resources. We modeled the problem as a coalition formation
game in partition form and we proposed an algorithm for forming
coalitions. By engaging in the proposed algorithm, the peers can
take individual decisions to join or break from a coalition while
minimizing their average download delay. We demonstrated that
the coalition formation process allows the peers to self-organize
into a Nash-stable partition. For the 2-peer case, we derived
analytical results for the optimal download request divisions.
Through simulations, we showed that the proposed algorithm
yields significant performance gains.
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