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Abstract—This paper considers a game theoretical approach to
study the problem of energy-efficient power control in cognitive
wireless networks where some hierarchy exists between cognitive
devices. This hierarchical structure is introduced either to model
cognitive networks where some transmitters have more sensing
capabilities than the others (they can observe more transmit-
ters) or networks for which the degrees of knowledge about
the network are different. The optimum selfish power control
policy under consideration is determined in two scenarios: 1.
K transmitters with K hierarchy levels; 2. two hierarchy levels
comprising K1 non-cognitive terminals and K − K1 cognitive
terminals. For both scenarios, it is shown that the derived
equilibria Pareto-dominate the one obtained without hierarchy.
Interestingly, in scenario 1 we show that following is better than
leading in terms of individual energy-efficiency. In scenario2,
considering the global network efficiency, we show that there
exists an optimum number of cognitive terminals to put in the
network.

I. I NTRODUCTION

Over the past decade, more and more research works have
been devoted to study decentralized or distributed wireless
networks. There are many relevant concepts such as cognitive
radio, unlicensed bands, ad hoc networks, scalable resource
allocation and control policies, which play an important role
in this development. In this paper, the problem of distributed
power control is studied. The network is said to be distributed
because each transmitter can choose freely his power control
policy. As communications are mutually interfered at the
receiver side and transmitters are free to decide their strategies,
a natural analytical method is to model such a situation as a
game problem [1]. In this game, transmitters are assumed to be
selfish and maximize their energy-efficiency utilities. Thefirst
work analyzing this non-cooperative energy-efficient power
control game is [2], in which a block fading multiple access
channel is assumed and a static game model is used to model
the power control problem on each block. This scenario has
been extended to single-carrier systems with pricing in [3], to
single-carrier systems under a Stackelberg formulation in[4],
and to multi-carrier systems in [5].

The purpose of the present work is to provide several
new results on the hierarchical formulation of the problem
for single-carrier systems introduced in [4]. Note that allthe
results can be generalized, as a second step, to multi-carrier

systems. The restriction to the first type of systems is made
deliberately in order to present the new ideas and results as
clearly as possible. There are many motivations for studying
hierarchical wireless networks, but the most important ones in
the framework of this paper are: improving the global network
efficiency and modeling aspect. As explained in the abstract,
hierarchy means that the knowledge levels of the transmitters
are asymmetric. This would be a typical situation in wireless
networks where only certain transmitters are cognitive and
the others are not. More generally, this is the case in a
network where a transmitter, sayk ∈ {1, ...,K} can sense or
observeNk transmitters and the sensing capability numbers
Nk are different. In [4] the authors focus on a special case
with one leader who cannot observe anyone (i.e.,N1 = 0)
and K − 1 followers who can only observe the leader (i.e.,
Nk = 1, ∀k ≤ 1). Here, we analyze two new scenarios which
are more general and useful to the application of cognitive
wireless networks. In the first scenario (see Section IV), there
areK hierarchy levels andN1 = 0, N2 = 1, · · · , NK = K−1
meaning that the leader (transmitter1) is not equipped with
cognitive radio, the follower at level2 (transmitter2) can
observe the leader,. . ., and finally the follower at levelK−1
(transmitterK − 1) is the one who has the greatest sensing
capability and can sense everyone. In the second scenario,
we assume thatNk = 0 for k ∈ {1, ...,K1} and Nk = 1
for k ∈ {K1 + 1, ...,K}, meaning that there areK1 non-
cognitive transmitters who are observed byK −K1 cognitive
transmitters (see Section V).

The paper is organized in the following form: In Section II,
we introduce the system model and state important assump-
tions. In Section III, we review the non-cooperative games.
In Section IV, we introduce the hierarchical game model and
we characterize the hierarchical equilibrium. In Section V, we
consider the two-level power control game model. Finally, we
close with some concluding remarks in Section VII.

II. SYSTEM MODEL

We consider the uplink of a single-cell network, in whichK
users are simultaneously sending information to one base sta-
tion (BS) in a decentralized manner. We assume that the users
transmit their data over block Rayleigh flat-fading channels
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and the receiver knows on each block all the channel gains
whereas each transmitter has only access to the knowledge of
its own channel. The latter assumption is realistic in systems
where the uplink-downlink channel reciprocity is valid anda
reliable feedback mechanism is available or if the BS sends
training sequences to the terminals. The signal received bythe
BS can be expressed as

y =

K
∑

k=1

hkxk + z

wherexk andhk are the input signal and channel coefficient
for user k. We denote bygk = |hk|2 the fading channel
gain of userk, which varies over time but is assumed to
be constant over each transmission block. The quantityz
represents a zero-mean additive white Gaussian noise (AWGN)
with varianceσ2. The input signalxk can be further written
asxk =

√
pksk wherepk and sk are the transmit power and

data of userk. We will assume that the receiver applies single
user decoding throughout this paper. This assumption is very
relevant in practical wireless systems with limitations onthe
decoder complexity. Therefore, for any userk ∈ {1, . . . ,K},
the received single-user signal-to-noise plus interference ratio
(SINR) can be expressed as

γk =
gkpk

∑

j 6=k

gjpj + σ2
. (1)

III. R EVIEW OF THE STANDARD NON-COOPERATIVE

POWER CONTROL GAME

In [2] the power control problem is modeled as strategic-
form non-cooperative game, which is given by: the set of
playersK = {1, ...,K} who are the transmitters here, the set
of actions for each transmitterPk = [0, Pmax

k ], wherePmax
k

represents the transmit power constraint of playerk, and the
utility functionsuk. In this game, the objective of a transmitter
is to choose his best power control policy (the best power level
for each block) to maximize his utility function which is his
energy-efficiency and is given by

uk(p1, ..., pK) =
Rkf(γk)

pk
(2)

wheref(·) is called efficiency function representing the packet
success rate (which is assumed to be identical for all users in
this paper), andRk is the transmission rate of userk. An
important solution concept of the game under considerationis
the Nash equilibrium (NE) [6], which is a fundamental concept
in non-cooperative strategic games. It is a vector of strategies
(or actions in our case)pNE = {pNE1 , . . . , pNEK }, one for each
player, such that no player has incentive to unilaterally change
his strategy, i.e.,uk

(

pNEk ,pNE−k

)

≥ uk

(

pk,p
NE
−k

)

, ∀pk ∈ Pk,
where the−k subscript on vectorp stands for “except userk”,
i.e., p−k = {p1, . . . , pk−1, pk+1, . . . , pK}. From above, it is
clear that an NE simply represents a particular “steady” state
for a system which is stable to unilateral deviations. In many
cases, an NE represents the result of learning and evolution

of all involved players. It is therefore important to predict and
characterize such points from the perspective of system design.

It is shown in [2] that, under certain conditions (given
below), the NE of the game with utility (2) exists, and is
given by

pNEk =
σ2

gk

γ∗

1− (K − 1)γ∗
, ∀k ∈ {1, ...,K} (3)

whereγ∗ represents the SINR of userk (which is the same for
all users) and is the positive solution of the first order equation
xf ′(x)−f(x) = 0. This type of equation has a unique solution
if the efficiency functionf(·) is sigmoidal [7], and we will
use this assumption throughout our paper. More precisely, the
existence of a (pure) NE is insured if the conditionγ∗ < 1

K−1

is satisfied. Note that whenγ∗ ≥ 1
K−1 , this game still has

an NE if the transmit power is limited, i.e.,pk ∈ [0, Pmax
k ].

Therefore, if the users have not enough power to reach the
SINR γ∗, they will all transmit with full power, which is also
an equilibrium. For the sake of clarity, in this paper we will
only consider the most interesting regime where the transmit
powers are lower than their maximal levels. In this regime,
even if a user has an infinite transmit power he will not
necessarily use all of it. This is what (3) shows: each player
tunes its transmit power such that its SINR is equal to a certain
value γ∗. In this paper, we will denote byγNE and uNEk the
SINR and utility that userk obtains at the NE, respectively.

IV. M ULTI -LEVEL POWER CONTROL GAME WITH ONE

PLAYER PER LEVEL

In this section, we introduce the hierarchy concept in
the described non-cooperative game. We consider different
hierarchical levels among the users, i.e., some users’ decision
priority is higher/lower than the others. It is easy to see that
this hierarchy concept can be directly applied to the cognitive
radio networks, where primary users can act in the most
efficient way, taking into account the behaviors and impacts
of secondary users. Specifically, we assume that the wireless
system hasK users andK hierarchical levels, i.e., one user
per level. We also assume that the super leader is assigned
with level index1, and the last follower is assigned with level
indexK. Without loss of generality, we let the user index and
level index be identical, i.e., userk is assigned to levelk, for
any k ∈ {1, . . . ,K}.

A. Characterization of hierarchical equilibria

The equilibrium of this game is called hierarchical equi-
librium (HE). In the following context, we will denote by
pHEk , γHEk anduHEk the transmit power, SINR and utility of user
k at the HE, respectively. To characterize HE, we shall first
look at the last follower (userK) who ”makes the first move”
to decide his transmit powerpHEK , according to the following
maximization problem:

max
pK

f
(

gKpK∑
j 6=K gjpj+σ2

)

pK
(4)
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whose solutionpHEK satisfies

gKpK
∑

j 6=K gjpj + σ2
= γHEK (5)

where γHEK is the solution of equationxf ′(x) − f(x) = 0.
Equation (5) implies that: at the HE, the last follower’s (user
K) best response is to tune his SINR toγHEK , which is equal
to the SINR at the NE, i.e.,γHEK = γNE.

For the sake of simplicity of our presentation, we introduce
zk andωk to simplify the notations:

zk , gkp
HE
k (6)

ωk ,
∑

j<k

gjp
HE
j + σ2 (7)

Then, (5) can be simply expressed as

zK = γHEK ωK , (8)

and the similar expression holds for the second last follower
(userK − 1):

zK−1 =

[

γK−1(1 + γK)

1− γK−1γK

]

ωK−1

In fact, this recursion can be proceeded until the super leader
(user 1), and it can be further verified that such a relation
always holds for some parameterdk (which will be defined
later on):

zk = dkωk (9)

It turns out that this reasoning can be generalized by math-
ematical induction, which is the purpose of the following
proposition.

Proposition 1. At the hierarchical equilibrium, the power
allocationp

HE satisfies the following condition, for anyk and
any i with k ≥ i

pHEk =

{

dkωi/gk i = k

dk
∏k−1

j=i (1 + dj)ωi/gk i < k
(10)

where

dk =
γHEk (1 + bk)

1− γHEk bk
> 0 (11)

where

bk =
∑

j>k



dj
∏

k<n<j

(1 + dn)



 , ∀k < K (12)

with bK = 0, andγHEk is the solution of

x(1− bkx)f
′(x)− f(x) = 0 (13)

Proof: First, from (6), (7) and (9), we observe that

ωk = ωk−1 + zk−1 = (dk−1 + 1)ωk−1

which implies

ωk =

k−1
∏

j=i

(dj + 1)ωi, ∀i < k

and from (9), we have

zk = dk

k−1
∏

j=i

(dj + 1)ωi, ∀i < k

This shows that the relation (10) holds for somedk.
Then, we show that (11) is the exact expression fordk.

Whenk = K, (8) givesdk = γHEK ; Whenk < K, we have

zk = γHEk





∑

j 6=k

zj + σ2



 = γHEk



ωk +
∑

j>k

zj



 (14)

By using (10) to (14), we obtain

zk = γHEk (ωk + bkωk+1) = γHEk [ωk + bk(ωk + zk)] (15)

where

bk =
∑

j>k



dj
∏

k<n<j

(dn + 1)





From (15), we have

zk =
γHEk (1 + bk)

1− γHEk bk
ωk

This confirms (11).
Finally, we prove that userk’s SINR γHEk must satisfy (13).

From (15), we observe that the power-efficiency maximization
problem of any userk < K is given by

max
pk

f
(

gkpk

(1+bk)ωk+bkgkpk

)

pk
(16)

Let x = gkpk

(1+bk)ωk+bkgkpk
, then (16) is equivalent to

max
x

(1− bkx)f (x)

(1 + bk)ωkx
(17)

The first order condition of (17) implies thatγHEk should satisfy

x(1− bkx)f
′(x)− f(x) = 0

This completes the proof.
From (12), we can observe thatbk = (1+dk+1)bk+1+dk+1.

This implies thatbi ≥ bj for anyi andj with i < j. Then from
a simple geometrical argument, ifbi ≥ bj holds, the solution
γHEi of the equationx(1− bix)f

′(x)− f(x) = 0 is not higher
than the solutionγHEj of x(1 − bjx)f

′(x) − f(x) = 0, i.e.,
γHEi ≤ γHEj . This means that, at the hierarchical equilibrium, a
follower has better (or the same) SINR than a leader. Then,
from equation (5), we can conclude that the SINR values of
theK users at the hierarchical equilibrium are organized from
the lower level to the higher level of hierarchy, i.e.,

γHE1 ≤ γHE2 ≤ . . . ≤ γHEK = γNE. (18)

Proposition 2. At the hierarchical equilibrium, any user can
obtain a better energy-efficient utility (2) by being in a lower
hierarchical level.
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Proof: We consider a userk and compare his utility if he
is in the hierarchical leveli or in the levelj with i < j. We
havegk = gi = gj and we compare the two utilities:

uHEi
uHEj

=
f(γi)/pi
f(γj)/pj

=
f(γi)/gkpi
f(γj)/gkpj

=
f(γi)/gipi
f(γj)/gjpj

=
f(γi)

f(γj)

(1 + γi)/γi
(1 + γj)/γj

=
h(γi)

h(γj)

(1 + γi)

(1 + γj)
,

whereh(x) , f(x)/x, which is a strictly increasing function
on the interval[0, γNE] whereγNE = argmaxx h(x) [7]. Then
combining withγHEi ≤ γHEj , we have thatu

HE
i

uHE
j

≤ 1. This proves
the result.

Considering the multi-level hierarchical game, we know
that if the first player (the super leader) plays the Nash
equilibrium, all other players will react by playing the Nash
equilibrium. Then, the utility perceived by the super leader at
the hierarchical equilibrium is almost equal to the one obtained
at the Nash equilibrium of the system. Moreover, we have
shown than the utility perceived is better for players at low
levels than the super leader, their utility will be also better at
the hierarchical equilibrium than at the Nash equilibrium.

Proposition 3. (Comparison to Nash equilibrium) At the hier-
archical equilibrium, all users’ transmit powers are reduced.
Moreover, the hierarchical equilibrium Pareto-dominatesthe
Nash equilibrium, ifγHE1 ≥ γ⋆ = argmaxx f(x)/x holds.

Proof: We have

K
∑

k=1

1

1 + γk
=

∑K
k=1

(

σ2 +
∑

j 6=k gkpk

)

σ2 +
∑K

k=1 gkpk

= K − 1 +
σ2

σ2 +
∑K

k=1 gkpk
(19)

From (18) and (19), we have

K
∑

k=1

gkp
NE
k ≥

K
∑

k=1

gkp
HE
k (20)

Suppose thatpNEk < pHEk for some userk. Then from (20), we
have

∑

j 6=k

gkp
NE
k ≥

∑

j 6=k

gkp
HE
k =⇒ γNE < γHEk

which is contradict to (18). This implies that the assumption
of pNEk < pHEk is not true. Therefore, we havepNEk ≥ pHEk for all
k ∈ {1, . . . ,K}, i.e., the power level of any userk at the HE
is not greater than that at the NE. This proves our first claim.
The following proof is not given in this paper due to lack of
space.

V. TWO-LEVEL POWER CONTROL GAME WITHK1

LEADERS AND K −K1 FOLLOWERS

We consider the second scenario withK1 non-cognitive
transmitters who are observed byK − K1 cognitive trans-
mitters. In this context, the non-cognitive transmitters can be
considered as leaders of a hierarchical non-cooperative game

where the cognitive transmitters are the followers. This type
of game leads to the concept of Stackelberg equilibrium [8].
Moreover, within each group, non-cognitive and cognitive,
there exists a non-cooperative game that leads to the concept
of Nash equilibrium. We denote byL (resp.F) the set of
mobiles that are in the group of leaders (resp. followers). This
means that the size ofL (resp.F) is K1 (resp.K −K1).

We have the first result that shows the existence and unique-
ness of a stable decision between all the transmitters. This
stable decision is a Stackelberg equilibrium of the hierarchical
non-cooperative game.

Proposition 4. (Existence and uniqueness of Stackelberg equi-
librium) There exists a unique Stackelberg equilibriumpSE in
the proposed hierarchical game where:

pSEi =
σ2

|hi|2
γ⋆
F (1 + γ⋆

L)

1− (K − 1)γ⋆
Fγ

⋆
L − (K −K1 − 1)γ⋆

L

, ∀i ∈ L

pSEj =
σ2

|hj |2
γ⋆
L(1 + γ⋆

F )

1− (K − 1)γ⋆
Fγ

⋆
L − (K −K1 − 1)γ⋆

L

, ∀j ∈ F

if the following (sufficient) conditions hold:










(1) : f ′′(0)
f ′(0) ≥ 2

(K−K1)γ
⋆
L

1−(K−K1−1)γ⋆
L
, and

(2) : φ(x) = x
[

1− (K−K1)γ
⋆
L

1−(K−K1−1)γ⋆
L
x
]

f ′(x)− f(x)

has a single maximum point in(0, γ⋆
L)

whereγ⋆
L is the positive solution ofxf ′(x) − f(x) = 0 and

γ⋆
F is the positive solution ofφ(x) = 0.

Proof: Using the utility function defined by equation (2),
we obtain from equation of the NE (3) that for all vectorpi,
the optimal decision of a followerj 6= i, given the power of
the leaders, is to choose the power

pSEj (pi) =
γ⋆
L

1− (K −K1 − 1)γ⋆
L

(σ2 +
∑

i∈L gipi)

gj
. (21)

This equation is given by a non-cooperative game between
followers where the power of the leaders are included in the
noise. Note that theK−K1−1 term comes from interferences
generated by all other followers than userj. The SINR of one
leaderi ∈ L is expressed by:

SINRi =
gipi

σ2 + (K −K1)gjpSEj (pi) +
∑

k∈L/{i} gkpk
.

We denoteθ =
(K−K1)γ

∗
L

1−(K−K1−1)γ∗
L

and then the SINR of a leader
transmitteri is

SINRi =
gipi

σ2(1 + θ) + θgipi + (1 + θ)
∑

k∈L/{i} gkpk
.

Plugging this value in the utility function of one leader, says
useri, we obtain:

ui(pi) =
Rif

[

gipi

σ2(1+θ)+θgipi+(1+θ)
∑

k∈L/{i} gkpk

]

pi
,

,
Rif [g(pi,p−i)]

pi
.
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With respect to the action of the other leadersp−i, we
have that the power used by the leaderi pSEi has to verify
pSEi

∂g(pSEi ,p−i)
∂pi

f ′ [g(pSEi ,p−i)] = f [g(pSEi ,p−i)]. This equation
is equivalent to findingpi such that

g(pi,p−i) (1− θg(pi,p−i))f
′ [g(pi,p−i)] = f [g(pi,p−i)] ,

becausepSEi
∂g(pSEi ,p−i)

∂pi
= g(pSEi ,p−i) (1− θg(pSEi ,p−i)). We

define x ,
gipi

σ2(1+θ)+θgipi+(1+θ)
∑

k∈L/{i} gkpk
= g(pi,p−i),

then studying the existence and uniqueness issues forpi is
equivalent to analyzing those ofx0 such thatφ(x0) = 0 with
φ(x) = x(1− θx)f ′(x)− f(x) where:

1) f is continuous over[0,+∞);
2) f(0) = 0;
3) ∀x ≥ 0, f ′(x) ≥ 0;
4) f is S-shaped, and there exists anx⋆ such that∀x ≤

x⋆, f ′′(x) ≥ 0 and∀x ≥ x⋆, f ′′(x) ≤ 0;
5) lim

x→+∞
f(x) = const;

6) lim
pi→0

ui(pi) = 0.

Recall thatconst= 1 in [5]. This property is essential to insure
the existence and uniqueness ofγ⋆

L. Therefore our problem
reduces to find the sign ofφ′(x) for x ≥ 0.

Existence ofx0: We know φ(0) = 0 and φ(x) <
0, ∀x ≥ θ. Therefore, if we can prove thatf is lo-
cally strictly positive on the interval(0, θ), the existence
of x0 will be guaranteed. A sufficient condition for the
existence ofx0 is f ′′(0)

f ′(0) ≥ 2θ. To check this, useφ′′(x) =

−2θf ′(x)+ f ′′(x)+x [−4θf ′′(x) + (1− θx)f ′′′(x)] and call
for the Taylor-Lagrange theorem, i.e., there exists a constant
c ∈ (0, x) such thatφ(x) = φ′′(0)x

2

2 +φ′′′(c) c
3

6 . The quantity
c3

x2 ≤ x can be made arbitrary small in the neighborhood of
zero. The proposed sufficient condition insures the convexity
of φ andφ is therefore locally strictly positive.

Uniqueness ofx0: It follows from the existence and the fact
thatφ is assumed to have a single stationary point in(0, γ⋆

L).
Each leader’s transmit power at the equilibrium must satisfy

gip
SE

i = gkp
SE

k , for any leader indexi andk with i 6= k. Then,
the SINR of leaderi at equilibrium is

gip
SE

i

σ2(1 + θ) + θgipSEi + (1 + θ)(n− 1)gipSEi
= γ∗

F .

Inverting this function we obtain:

p
SE

i =
σ2

gi

γ⋆

F (1 + γ⋆

L)

1− (K − 1)γ⋆

F
γ⋆

L
− (K −K1 − 1)γ⋆

L

.

Finally, taking equation (21), we obtain the transmit power
of a follower j 6= i:

pSE
j =

σ2

gj

γ⋆
L(1 + γ⋆

F )

1− (K − 1)γ⋆
Fγ

⋆
L − (K −K1 − 1)γ⋆

L

.

This completes the proof.
The powers at the Stackelberg equilibrium depends on

the repartition between leaders and followers in the system,
that is the number of leadersK1. Then, in the numerical
illustrations section, we present global performance of the
system as the social welfare depending on the number of
cognitive transmitters.

VI. N UMERICAL ILLUSTRATIONS

We illustrate the second scenario with the impact of the
number of cognitive transmitters on the global metric of the
system which is the social welfare, i.e. the summation of the
utilities of all players. We consider the efficiency function
f(x) = (1− e−x)100, K = 10 transmitters totally symmetric,
i.e. all transmitters have the same channel conditions and rates.

1 2 3 4 5 6 7 8 9 10
2.87

2.871

2.872

2.873

2.874

2.875

2.876

K−K
1

S
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l w
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Fig. 1. Social welfare depending on the number of cognitive transmitters.

We observe on figure 1 that the social welfare of the system
is maximized when there areK −K1 = 4 cognitive transmit-
ters andK1 = 6 non-cognitive ones. This simple result hints
that the choice of the number of cognitive transmitters has
an impact on the global network performance, and apparently
there exists an optimum choice for this number.

VII. C ONCLUSION

This paper studies the hierarchical equilibria in the context
of cognitive networks where multiple cognitive and non-
cognitive transmitters coexist and competitively maximize
their individual energy efficiencies. In the case of multiple
hierarchy levels, an interesting result showed that followers
(non-cognitive users) can obtain better energy efficiency than
leaders (cognitive users). In the case of two hierarchy levels,
it was shown that there exists an optimal partition between all
users in the networks. These results provide some insights to
the system design perspective of future cognitive networks.
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