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Abstract—In this paper, we study precoded MIMO based
small cell networks. We derive the theoretical sum-rate capacity,
when multi-antenna base stations transmit precoded information
to its multiple single-antenna users in the presence of inter-
cell interference from neighboring cells. Due to an interference
limited scenario, increasing the number of antennas at the base
stations does not yield necessarily a linear increase of thecapacity.
We assess exactly the effect of multi-cell interference on the
capacity gain for a given interference level. We use recent tools
from random matrix theory to obtain the ergodic sum-rate
capacity, as the number of antennas at the base station, number of
users grow large. Simulations confirm the theoretical claims and
also indicate that in most scenarios the asymptotic derivations
applied to a finite number of users give good approximations of
the actual ergodic sum-rate capacity.

Index Terms—Cellular networks; MIMO; Small cells; random
matrix theory; linear precoding.

I. I NTRODUCTION

Small cell based wireless networks are gaining wide popu-
larity to provide the end user with uniform coverage, symmetry
and throughput [15], [14]. Existing cellular networks likeGSM
and WiMAX do not achieve expected throughput to ensure
seamless mobile broadband, owing to large coverage area and
inability to reach indoor users. For a given radio architecture,
dividing a large (macro) cell into number of small (Pico) cells
is one of the most effective ways to increase both system
capacity [14] and coverage to bring the user a step closer to
any-place, any-time, any-device mobile broadband access.

While, dividing a macro-cell into multiple small cells en-
hances the capacity, the spatial dimension has been exploited
in the recent past to enhance the capacity further. It is now well
established that Multiple antenna at the transmitter (Nt) and
the receiver (Nr) achieve capacity gains which grow linearly
asmin(Nt, Nr).

Recently, the MIMO broadcast channel [13], [6], [7], where,
a multi-antenna base station, transmitting on M antennas to
K single antenna users is shown to achieve capacity gains
which grow linearly asmin(M, K), provided the transmitter
and receivers all know the channel [9]. To achieve this,
several methods have been proposed among which linear
precoders offer a good compromise between complexity and
performance trade-off [1],[8].

Further, MIMO based systems have been studied in the
framework of multi-cell networks. In a multi-cell scenario,
the achievable sum-rate in the downlink, diminishes due to
interference from neighboring base stations. Thus increasing
the number of antennas at the base-stations does not neces-
sarily yield a linear increase in capacity. Frequency reuseand
various forms of interference co-ordination [3], [5] have been
proposed to achieve linear growth in capacity.

Fig. 1. System model: multi-cell network. BS withM antennas, servingK
users. Users atX experience nominal interference and users atY experience
high interference

In our contribution, we want to asses exactly the effect of
multi-cell interference in MIMO based small cell networks.
Small cells being in close proximity experience higher lev-
els of interference, which would bring down the capacity
gains significantly. We want to study the impact of multi-
cell interference when base-stations employ linear precoding
techniques, such as channel inversion (CI) at the base station.

As mentioned before, linear precoding techniques such
as channel inversion(CI) and regularized channel inversion
(RCI) offer a convenient trade-off between complexity and
achievable sum-rate performance [7], [8]. The behavior of CI
in uncorrelated MIMO broadcast channels (MIMO-BC) has
already been studied in [7], [8] for i.i.d. Gaussian channels.
In particular, the authors in [7] showed that CI achieves linear
growth in multiplexing-gain. Further, authors in [2], extended
the case to include antenna correlations due to dense packing
of the antennas at the transmitter. The analysis carried out
considers single cell systems and they show that for the case
of CI, the sum-rate is maximized when the number of antennas
M on the BS is equal to the number of usersK.

For the multi-cell case, the problem of interference co-
ordination in uplink has been discussed at length in [4].
In [5], authors address downlink macro-diversity in cellular
systems. They study the potential benefit of base-station (BS)
cooperation for downlink transmission in a modified Wyner-
type multicell model. They compare various precoders and
obtain analytical sum rate expressions for both the fading
and the non-fading case. They demonstrate via monte-carlo
simulations the effectiveness of linear precoding. Authors in
[13] suggests that asymptotically, equal power allocationis
optimal when the channel is i.i.d. Gaussian.

In our work, we are interested in studying the impact
of interference from adjacent base stations, which is more
pronounced in MIMO based small cell networks on the achiev-
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able sum-rate capacity. We consider multiple-input multiple-
output (MIMO) multi-cell systems, each cell composed of a
transmitter equipped withM antennas andK single-antenna
receivers. We consider Wyner-type cellular models in our
study. We neglect the effects of channel correlation due to
densely packed antennas at the base-station transmitter, with
a view to keep the analysis tractable.

The analytic expressions of the sum-rates for CI are derived
by applying recent tools from random matrix theory (RMT).
These expressions are independent of the specific channel
realizations.

In our study, we find that
• The achievable sum-rate is significantly diminished by

the effect of multi-cell interference in MIMO based small
cell networks.

• The sum-rate capacity tends to grow sub-linearly with
increasing interference.

• Also, there is an optimal number of users for a given
number of antennas at the transmitter, which maximizes
the sum-capacity. This depends on the interference level
and the transmit power at the base-station.

The remainder of this paper is organized as follows: Section
II briefly reviews various tools of random matrix theory which
will be used in later derivations. Section IV introduces the
multi-cell system model. In Section V we study channel
inversion precoding. Section VI provides simulation results
which are shown to corroborate the theoretical derivations.
Finally in Section VII we provide our conclusions.

Notations: In the following, boldface lower-case symbols
represent vectors, capital boldface characters denote matrices
(IN is theN × N identity matrix). The Hermitian transpose
is denoted(·)H. The operatortr[X] represents the trace of
matrixX. The eigenvalue distribution of an Hermitian random
matrix X is µX(x). The symbolE[·] denotes expectation. The
derivative of a functionf(x) of a single variablex is denoted
f ′(x). All logarithms are base-2 logarithms.

II. RANDOM MATRIX THEORY TOOLS

In this work, we are interested in the behavior of large
random Hermitian matrices, and particularly in the asymptotic
distribution of their eigenvalues. Specifically, the eigenvalue
distribution of large Hermitian matrices converges, in many
practical cases, to a definite probability distribution, hereafter
called theempirical distribution of the random matrix, when
the matrix dimensions grow to infinity.

A tool of particular interest in this work is theStieltjes
transform SX of a large Hermitian nonnegative definite matrix
X, defined on the half the spaceC− R+ = {z ∈ C, Re(z) <
0}, as

SX(z) =

∫ +∞

0

1

λ − z
µX(λ)dλ (1)

whereµX is the empirical distribution ofX.
Couillet et al. [10] derived a fixed-point expression of the

Stieltjes transform for Gaussian matrices with left- and right-
side correlations in the following theorem,

Theorem 1: Let the entries of theK×M matrixW be i.i.d.
Gaussian with zero mean and variance1/M . Let X andQ be

respectivelyK×K andM×M Hermitian nonnegative definite
matrices with eigenvalue distributionsµX andµQ. We impose
further that the largest eigenvalues ofX andQ are bounded
independently ofK, M . Let Y be an K × K Hermitian
matrix with the same eigenvectors asX and let f be some
function mapping the eigenvalues ofX to those ofY. Let
z ∈ C+ = C \ R+. Then, forM , K large withK/M = 1/β,
the Stieltjes transformSH(z) of H = X1/2WQWHX1/2+Y

is approximately

SH(z) =

∫

(

f(x) + x

∫

q · µQ(q)dq

1 + 1

β qTH(z)
− z

)−1

µX(x)dx

(2)
whereTH is a solution of the fixed-point equation

TH(z) =

∫

x

(

f(x) + x

∫

q · µQ(q)dq

1 + 1

β qTH(z)
− z

)−1

µX(x)dx

(3)
An immediate corollary, when only right-correlation is

considered, unfolds naturally as follows,
Corollary III: [11] Let the entries of theK×M matrix W

be i.i.d. Gaussian with zero mean and variance1/M . Let Y

be anK × K Hermitian non-negative matrix with eigenvalue
distributionµY(x). Moreover, letQ be aM ×M nonnegative
definite matrix with eigenvalue distributionµQ(x), such that
the eigenvalues ofQ are bounded irrespectively ofM . Then,
for largeK, M , such thatK/M = α, the Stieltjes transform
on C

+ of the matrix

H = WQWH + Y (4)

verifies approximately

SH(z) = SY

(

z −
∫

q

1 + αqSH(z)
µQ(q)dq

)

(5)

IV. SYSTEM MODEL AND ASSUMPTIONS

We discuss the system model in this section. We consider a
multi-cell Wyner-type model, for example as shown in figure
(1). For simplicity and to be able to keep the analysis tractable,
we consider a three-cell network. The cell at the center is our
reference. The users in this cell experience interference from
the neighboring base stations as shown. Each cell servesK
users from a base-station withM antennas. We assume that
the base station antennas are uncorrelated. The information
from the base-station to its user set is precoded assuming
perfect channel state information at the transmitter (CSIT).
i.e, each base station knows perfectly the channel towards
the users in its cell, but not the interfering channels. Users
receive desired signal plus interference signals from adjacent
base stations. The signal to interference noise (SINR) ratio at
the user depends on its relative position with respect to its
base station and adjacent base stations. We assume channel
inversion (CI) precoding at the transmitter. The transmitted
signals from the base stations undergo Rayleigh fading and
path-loss. Further, we assume that the channel is constant for
some interval long enough for the transmitter to learn and use
it until it changes to a new value. We are interested in the
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behavior of the system and its sum-rate capacity. Many of
our results are obtained for large limits, because the limiting
results are often tractable. Nevertheless, we often consider
M, K small in our simulation examples. Further, all users
are assumed to have the same average (but not instantaneous)
received signal power, so our model assumes that the users
are similar distances from the base station and are not in deep
shadow fades.

V. CHANNEL INVERSION PRECODING

Channel inversion precoding, also referred to as zero-forcing
(ZF) precoding, annihilates all the inter-user interference by
performing an inversion of the channel matrixH at the
transmitter. We begin our analysis with the single cell case,
where the results are well documented ([7], [2]) and further
we shall consider the multi-cell case.

A. Single cell

Without loss of generality, we consider cell 0. The signal
received by users in this cell is

y = Hx + n. (6)

where, H is the K × M channel matrix with zero-mean
unit-variance i.i.d complex Gaussian entries,x = Gs is the
transmit vector obtained by linear precoding of the symbol
vectors with the precoding matrixG. Symbolsk ∈ s for any
userk is complex Gaussian with zero mean and unit variance.
The M × K linear precoding matrix is defined as

G = αHH
(

HHH
)−1

. (7)

whereα is chosen appropriately to satisfy the total transmit
power constrainttr(E[xxH ]) ≤ tr(GGH) ≤ P .

Now the received vector in Cell 0

y = αs + n. (8)

The parameterα which satisfies the transmit power con-
straint and depends only on the channel realizationH is given
by

α2 =
P

tr ((HHH)−1)
(9)

The SNR (signal to noise ratio) for any userk is defined as

γk =
Es

[

|αsk|2
]

E|n|2 =
α2

σ2
. (10)

is independent of the selected user.σ2 is the noise variance.
The ergodic capacity for userk is

Ck = log(1 + γk). (11)

and the sum-rate is

Rci =

K
∑

i=1

log(1 + γk). (12)

B. Asymptotic analysis for a single-cell

α is a function ofH and asM, K → ∞, α tends to a
constant. Thus the sum-rate can be written as

Rci = K log (1 + γk) (13)

Let us denoteH′ = 1√
M

H andH′
w = 1√

M
Hw. It follows

from (9) that

α2 =
P

1

M tr
(

H′H′H
)−1

(14)

When M is large with M/K = β, the denominator of
Equation (14) verifies

1

M
tr
(

H′H′H
)−1

=
1

β

∫

1

λ
µH′H′H(λ)dλ =

1

β
SH′H′H(0)

(15)
As a consequence, for large(K, M)

α2

σ2
→ ρβ

SH′H′H(0)
, whereρ = P/σ2 (16)

and the sum-rate is approximately

Rci = K log

(

1 +
ρβ

SH′H′H(0)

)

(17)

According to Corollary III,SH′H′H(0) is the solution of1

SH′H′H(0) =

(

∫

λ

1 + λ
βSH′H′H(0)

µΘT
(λ)dλ

)−1

=

(

∫

λ δ(λ − 1)

1 + λ
βSH′H′H(0)

)−1

=

(

1 +
SH′H′H(0)

β

)

(18)

Solving forSH′H′H(0) yields,

SH′H′H(0) =
β

(β − 1)
(19)

and the sum-rate is re-written as

Rci = K log (1 + ρ(β − 1)) for β ≥ 1 (20)

That is,

Rci

M
=

1

β
log (1 + ρ(β − 1)) (21)

defines the rate per antenna.
As β → 1, Rci/M → 0, which implies that the sum rate of

channel inversion does not increase linearly withM (or K)

C. Optimizer β∗ for the single cell

Following [7] we now look for a valueβ⋆ of the ratioM/K
such that, for a fixed number of transmit antennasM , the

1it is important to note here that we slightly misapply Corollary III since
the result is only proven valid outside for anyz > 0.
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sum-rateRci(β) is maximized. By differentiating eqn (21)
with respect toβ and setting the derivative to zero,β∗ is the
solution of the implicit equation

ρβ∗ = (1 + ρ(β∗ − 1)) log (1 + ρ(β∗ − 1)) (22)

D. Multi-cell

In this section, we study the effect of multi-cell interference.
Without loss of generality, we consider users in Cell 0 affected
by interference from adjacent base-stations. We consider a3-
cell Wyner-type model as shown in figure 1. CellC0 is at the
center. Adjacent cells are designated CellC1 and CellC−1.

Following our analysis of the single cell case, the received
vector for users of cellC0, is

y = H0G0s0 +
√

γH01G1s1 +
√

γH0−1G−1s−1 + n. (23)

As before,H0 is the channel matrix from base station in cell
C0 to its users.H01 andH0−1 are interfering channels from
cell C1 and C−1, respectively.G1 and G−1 are precoding
matrices for users in cellC1 and C−1, respectively.γ is the
signal (interference) attenuation.

As stated earlier, all users in cellC0 are assumed to have
the same average received signal power, so our model assumes
that the users are similar distances from the base station and
are not in deep shadow fades.

The precoding matrices in celli can be written as

Gi = αiH
H

i (HiH
H

i )−1 (24)

The ergodic capacity for userK is expressed as

Ck = log

(

1 +
α2

0

E[|n′

k|2]

)

(25)

Where,nk is thek − th element of the covariance matrixn.
The expectation of this matrix can be written as

E[n
′

n
′
H] = γH01G1G

H

1 HH

01

+ γH0−1G−1G
H

−1H
H

0−1 + σ2I (26)

Expanding and simplifying,

E[n
′

n
′
H] = γα2

1H01H
H

1 (H1H
H

1 )−2H1H
H

01

+ γα2
−1H0−1H

H

−1(H−1H
H

−1)
−2H−1H

H

0−1

+ σ2I (27)

E[n
′

n
′
H] = γα2

1H01H
H

1 (H1H
H

1 )−2H1H
H

01

+ γα2
−1H0−1H

H

−1(H−1H
H

−1)
−2H−1H

H

0−1

+ σ2I (28)

Since,

E[|n′

1|2] = E[|n′

2|2] . . . = E[|n′

k|2] (29)

We can write,

E[|n
′

k|2] → 1

K

K
∑

k=1

E[|n
′

i|2]

=
1

K
tr
(

E[n
′

n
′
H]
)

(30)

E[|n′

k|2] →
1

K
tr
(

γα2
1H01H

H

1 (H1H
H

1 )−2H1H
H

01

+ γα2
−1H0−1H

H

−1(H−1H
H

−1)
−2H−1H

H

0−1

)

+σ2I (31)

E. Asymptotic analysis for the multi-cell

We can show that

1

K
tr
(

H01H
H

1 (H1H
H

1 )−2H1H
H

01

)

→ 1

β
asK, M → ∞ (32)

Now the expectation reduces to,

E[|n′

k|2] → α2
1γ

1

β
+ α2

−1γ
1

β
+ σ2 (33)

And hence, the sum-rate is

Rci = K log

(

1 +
α2

0β

α2
1γ + α2

−1γ + σ2β

)

(34)

Following 16, for large(K, M),

α2
0

σ2
=

α2
1

σ2
=

α2
−1

σ2
→ ρβ

SH′H′H(0)
, whereρ = P/σ2 (35)

Thus the above sum-rate expression can be simplified as

Rci = K log

(

1 +
ρβ

SH′H′H(0) + 2γρ

)

(36)

Substituting forSH′H′H(0),

Rci = K log

(

1 +
ρβ(β − 1)

(β + 2γρ(β − 1))

)

(37)

Re-writing,

Rci

M
=

1

β
log

(

1 +
ρβ(β − 1)

(β + 2γρ(β − 1))

)

(38)

We observe that whenγ = 0, that is when there is no
interference, the capacity formula is that of the single-cell case.

As β → 1, Rci/M → 0, which implies that the sum rate of
channel inversion does not increase linearly withM (or K)

F. Optimizer β∗ for the multi-cell

Following on similar lines of the single-cell case, we now
look for a value β⋆ of the ratio M/K such that, for a
fixed number of transmit antennasM , the sum-rateRci(β)
is maximized. By differentiating eqn (38) with respect toβ
and setting the derivative to zero,β∗ is the solution of the
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Fig. 2. β∗ vs SNR for various interference factors (M = 16)
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Fig. 3. K∗ vs SNR for various interference factors (M = 16)

implicit equation

ρβ∗ =
[β∗ + 2γρ(β∗ − 1)] [β∗ + ρβ∗(β∗ − 1) + 2γρ(β∗ − 1)]

(

(β∗)
2

+ 2γρ(β∗ − 1)2
)

log

[

1 +
ρβ∗(β∗ − 1)

[β∗ + 2γρ(β∗ − 1)]

]

(39)

One can observe that by settingγ = 0, we fall back to the
implicit equation (22) of the single cell case.

G. Some observations:

Following our single cell and multi-cell analysis, we plot
in figure 2, the optimalβ, i.e, β∗ (refer equation 39), which
maximizes the sum rate and in figure 3 the corresponding
optimal number of usersK∗ = M/β∗ for M = 16 and different
SNR. We observe that,

1). With increasing SNR more and more users should be
served to maximize the sum rate.

2). Also, the number of users required to maximize the sum
rate tends to increase with an increase in the interference factor
γ.

Next, we plot the optimal sum rate (refer equation 38),
i.e, the sum rate achieved whenβ = β∗ in figure 4. We
compare this for example withβ = 2, shown in figure 5.
We obtain the sum-rate by computing the sum-rate per user in
the asymptotic regime and then multiplying this with a finite
number of antennasM at the BS. For this example we have
usedM = 2.

There are some interesting observations here:
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Fig. 4. Sum rate atβ∗ for various interference factors (M = 16)
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Fig. 5. Sum rate atβ = 2 for various interference factors (M = 16)

1). The capacity tends to increase at a constant rate when
β = β∗, irrespective of whether there is interference or not,
albeit at a very slow rate with high interference.

2). We also see that the sum-rate tends to saturate if we
deviate from the optimalβ, i.e, β∗.

3). The saturation occurs sooner when the interference is
higher.

H. Single cell and multi-cell with power constraint

The sum-rate per antenna in the case of single-cell is given
by

Rci

M
=

1

β
log (1 + piρ(β − 1))

Wherepi = P/M .
For the multi-cell case, we re-write the ergodic capacity eqn

25 for userk when base-stations use equal power constraint
p0 = P0/M as

Ck = log

(

1 +
α2

0p0

E[|n′

k|2]

)

(40)

Where,

E[n
′

n
′
H] = γH01G1P1G

H

1 HH

01

+ γH0−1G−1P−1G
H

−1H
H

0−1

+ σ2I (41)

After suitable simplification similar to the multi-cell analysis
in the previous section, we can re-write the above expression
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as

E[|n
′

k|2] →
1

K
tr
(

H01H
H

1 (H1H
H

1 )P1(H1H
H

1 )H1H
H

1

+H0−1H − 1H(H − 1HH

−1)P−1(H−1H
H

−1)H−1H
H

−1

)

+σ2I (42)

It is shown that in the asymptotic regime

1

K
tr
(

H01H
H

1 (H1H
H

1 )P1(H1H
H

1 )H1H
H

1

)

→ 1

β
tr(P1)

Therefore, the expectation can be written as,

E[|n′

k|2] = γα2
1

1

β
tr(P1) + γα2

−1

1

β
tr(P−1) + σ2I. (43)

And hence, the sum-rate is

Rci =

K log

(

1 +
α2

0βp0

(α2
1γtr(P1)) + (α2

−1γtr(P−1) + σ2β

)

(44)

Following 16, for large(K, M),

α2
0

σ2
=

α2
1

σ2
=

α2
−1

σ2
→ ρβ

SH′H′H(0)
, whereρ = P/σ2 (45)

Now, the sum-rate can be written as,

Rci

M
=

1

β
log

(

1 +
ρβ(β − 1)p0

(β + γρ(β − 1)tr(P1) + γρ(β − 1)tr(P−1))

)

(46)

Thus, one can conclude that in the equal power regime,
if some of the users in the adjacent base stations are not
being serviced, i.e, their respective antenna at the transmitter
is switched-off, for example,tr(P1) < P1, the interference
comes down and hence the capacity scales up.

VI. SIMULATIONS RESULTS:

In this section we evaluate by simulation how interference
from neighboring base stations impacts the behavior of the
sum-rate of linearly precoded MIMO small cell networks when
the antenna array at the transmitter is dense. We compare nu-
merical results obtained by Monte-Carlo simulations with our
previously derived asymptotic expressions for finite(K, M).
In particular, we have the following cases.

i.) We fix the SNR (ρ = 20 dB) and calculate rate achieved
per antenna as we varyβ = M/K (refer equation 38). We
plot this in figure 6 for various interference factorsγ. We
observe that the rate per antenna is maximized for a certain
β = β∗. This matches with theβ∗ computed by solving the
implicit equation 39. It is also interesting to observe thatβ∗

decreases with increasing interference. Also, beyondβ∗, the
capacity growth is not in proportion to the growth in number
of antennas at the base stationM

ii.) We fix the SNR (ρ = 20 dB) and the ratioM/K =
β = 2. We compute the rate achieved per antenna as we vary
the interference factorγ. We compare asymptotic results via
monte-carlo simulations. We plot this in figure 7. We observe
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Fig. 6. Rate per antenna vsβ at SNR of 20 dB for various interference
factorsγ
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Fig. 7. Rate per antenna vsγ, when,β = 2, SNR ρ = 20 dB for various
interference factorsγ

that the achievable rate is very sensitive to interference.The
drop in rate is very steep in the beginning and tends to
normalize for higher interference. This seems to indicate that
the high amount of interference envisaged in small cells
might not be as harmful. Many of the proposed interference
management and co-ordination schemes might work well even
in the case of small cells.

iii.) Next we show how the sum-rate increases with increas-
ing number of base-station antennasM at SNR (ρ = 0, 20dB)
for various interference factorsγ, whenβ = 2. We compute
the rate per antenna from equation 38 for the asymptotic part
to compare it with monte-carlo simulations. The observations
are plotted in figures 8, 9. We observe that the increase in
sum-rate is linear when interference is nil. The increase is
sub-linear for other interference factors. Since the number
of antennas at the base station and number of users are
increasing simultaneously, the capacity is expected to grow
in proportion tomin(M, K), scaled by a factor, that depends
on the interference factorγ and the SNRρ.

In all the cases, we observe that in all simulations the
asymptotic results closely match the numerical results even
for small values of(K, M).

VII. C ONCLUSIONS

We looked at the problem of inter-cell interference in MIMO
based small cell networks. We started our analysis with a
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Fig. 9. Sum rate per antenna as a function ofM for β∗ at SNR of 20 dB
for various interference factors

single cell, where multi-antenna base station employ channel
inversion precoding to communicate with multiple single-
antenna users. We extended the case to multi-cell scenario,
using a simple wyner-type model. We derived the sum-rate
capacity in the asymptotic regime, i.e, when the number of
antennas at the base station and number of user grow large, but,
with a fixed ratio. We used recent tools from random matrix
theory, which have proven to give reliable results even when
the quantities involved are practical and finite. We further
derivedβ∗, the ratio of number of transmit antennas to users,
which maximizes the achievable sum-rate. The asymptotic
analysis was validated with monte-carlo simulations in the
finite regime.

We conclude that the achievable sum-rate is significantly
diminished by the effect of multi-cell interference in MIMO
based small cell networks. The sum-rate capacity tends to
grow sub-linearly with increasing interference. Also, there is
an optimal number of users for a given number of antennas
at the transmitter, which maximizes the sum-capacity. This
depends on the interference level and the transmit power at the
base-station. For a given number of transmit antenna, moving
away from the optimal,β∗, tends to saturate the capacity
growth at high SNR. The saturation occurs sooner with higher
interference.
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