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Magnetworks: how mobility impacts the design
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* INRIA, Sophia-Antipolis, France
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Abstract— In this paper we study the optimal placement the community of road traffic engineers, introduced in
and_ optimal_ nu_mber o_f active relay nodes through the 1952 by Wardrop [11] and Beckmann [12], see also [13,
traffic density in mobile sensor ad-hoc networks. We ., g4 footnote 3] for the abundant literature of the

consider a setting in which a set of mobile sensor sources earlv 50's. and which is still an active research area
is creating data and a set of mobile sensor destinations y !

receiving that data. We make the assumption that the among that community, see [14], [15], [16], [17], [18]
network is massively densei.e., there are so many sources, and references therein.

destinations, and relay nodes, that it is best to describe onl | hes b d d traf
the network in terms of macroscopic parameters, such as nly very recently, new approaches based on road traf-

their spatial density, rather than in terms of microscopic fic theory have been studied in [8], [9], [10] defining
parameters, such as their individual placements. the Wardrop equilibrium and a characterization of the
We focus on a particular physical layer model that is Wardrop equilibrium in this type of setting and including
characterized by the following assumptions: i) the nodes a geometrical characterization of the flow of information
must only transport the data from the sources to the for some particular cost functions.

destinations, and do not need to sense the data at the ) ) o )
sources, or deliver them at the destinations once the Consider that a spatially distributed set of mobile sources

data arrive at their physical locations, and ii) the nodes is creating data that must be delivered to a spatially
have limited bandwidth available to them, but they use it djstributed set of mobile destinations. In this context,
optimally to locally achieve the network capacity. our objective is to study the optimal traffic distribution

In this setting, the optimal distribution of nodes induces a and to find the minimum amount of relay nodes needed

traffic density that resembles the electric displacement tat , yransport the data from the sources to the destinations.
will be created if we substitute the sources and destination

with positive and negative charges respectively. The anayy The main contribution of this work is to address this
between the two settings is very tight and have a direct problem for a mobile context where we analyze the cases
interpretation in wireless sensor networks. where (i) only sources are mobile and the destinations
are static as it would be in the case when the aggregation
centers are fixed and the sensor nodes have the capability
Various approaches inspired by physics have been pig-move, (ii) the case when both sources and destinations
posed to deal with the routing problem in massivelare mobile, and given that the mathematics involve are
dense wireless sensor networks. Starting with the pigimilar (i) we also analyze the case when the sources
neering work of Jacquet (see [1], [2]) who used ide&ae static and the destinations are mobiles.

from geometrical optics to deal with the case of ong, section II-A we first analyze the case where the
source and one destination and a distribution of relayrces and destinations are static and spatially dis-
nodes. tributed in the one dimensional line in order to illustrate

Approaches based on electrostatics have been studiee behavior of the flow function and the optimal location
in [3], [4], [5], [6] (see the survey [7] and reference®f the relay nodes on this simple case. We analyze in
therein) to deal with the case of a distribution of sourceggction II-B the case when the sources and destinations
and destinations with a density of relay nodes in a sta#@e static and spatially distributed in the two dimensional
environment. plane. In section Ill we analyze the case where the

L . sources and destinations can move with a deterministic
The development of the theory of routing in masswelzelocity and we are able to find the optimal flow of
dense wireless sensor networks has emerged in a com-

plete independent way of the theory developed within ormation and to give the optimal spatial density of the

|I. INTRODUCTION



relay nodes at each period of time. Within this sectioNotice that if we have an estimation of the proportion
we also give an example with numerical results relatesf packet loss in the network, we can ponderate our
to the previous mobility setting. In section IV we ardunction p in order to adequate it to equation (1).

able to find the optimal spatial density of the relay,qiqer the continuously differentiatttaffic flow func-
nodes for the Brownian mobility model. In section Vi, T(x), measured in bpsn, such that its direction
we summarize the main results and future perSpeCt'V&ﬁ)sitive or negative) coincides with the direction of the
for the continuation of our work. flow of information at pointz and|T'(z)| is the rate at
which information propagates at positiani.e, |T(x)]
Il. THE MODEL gives the total amount of traffic that is passing through
the positionz.

We first consider the one dimensional case in order : .
ext we present the flow conservation condition. For

explain the main concepts involved in our model an .
) . Information to be conserved over a segmeéfit, (1],
how this concepts can be extended to the two dimen-. : L S
is necessary that the rate with which information is

. . . . It
ional in order in th imal loyment of : ) .
sional case in order to obtain the optimal deployme t%reated over the segment, is equal to the rate with which
information is leaving the line segmente.,

the relay nodes in a wireless sensor network.

. N by
A. Fluid Approximations T(41) — T(4o) :/ p(x) dx

‘
Consider a grid area network that contains wireles . | he right h Od ide i | h
sensor nodes. As a first approach we consider the jhge Integral on the right hand side is equal to the

segmenf0, L], which will be the geographical referencequantity of information generated (if it's positive) or
of a netwc;rk, demanded (if it's negative) by the fraction of sensor

nodes over the line segmeify, ¢;]. The expression
We consider the continuousode density functiom(zx), T(¢1) — T(¢y), measured in bpsn, is equal at the
measured in nodgm, such that the total number ofrate with which information is leaving (if it's positive)
nodes on a segmeffy, (1], denoted byN ({o, 1), IS or entering (if it's negative) the segmeft, ¢1]. This

0 holding for any line segment, it follows that necessarily,

N(fo, 1) = / n(z) de. T@) _ ). (2)

dx

. ) ) ) . The problem considered is to minimize the number of
We consider as well the continuoigformation density nodes N(0,Z) in the line segmen{0, L], needed to

functlonp(é:), meaﬁu[‘ed in bit(s- m), generated by the support the information created by the sensor sources

sensor nodes such that and received by the sensor destinations subject to the
« At locationsz wherep(z) > 0 there is a fraction flow conservation condition given by equation (2) and
of data created by the sensor sources, such tiayposing that there is no flow of information leaving

the rate with which information is created in arfhe network,i.e, 7'(0) = 0 and T'(L) = 0. Thus the
infinitesimal area of sizée, centered at position, ~System of equations that model our problem in the one-

Lo

is equal top(z) de. dimensional case is given by the system of equations:
« Similarly, at locations: wherep(z) < 0 there is a L
fraction of data received at the sensor destinations Min N (0, L) = / n(x)dz, 3
0

such that the rate with which information is received
by an infinitesimal area of sizées, centered at

i . : ar .
positionz, is equal to—p(z) de. subject to (2) = p(z) in(0,L), 4)
X
We assume that the total rate at which sensor destinations T(0)=0 and T(L)=0. (5)

have to receive data is the same as the total rate which ) ) ) )
the data is created at the sensor sources Notice that in the one-dimensional case, there is no

minimization problem because only by using the con-
L straints (4) and (5), we obtain only one solution. As we
/p(:c) dx = 0. (1) will see, this will not be the case for the two-dimensional
case.
0



We suppose that the proportion of sensor noges) 1
in an area of infinitesimal sizeés, centered at loca-

tion z, needed as relay nodes, will be proportional toQL

the traffic flow of information that is passing through=2 (5|
that region,i.e, n(z)de = |T'(z)|*de wherea >
0 is a fixed number calledhe relay-traffic constant ©
Then the optimal placement of the relay nodes in thé 0
network will be given byy*(x) = |T*(z)|*, where the &

traffic flow function 7*(z) is the optimal traffic flow £
function, given by the solution of the previous system och> —0.5
equations. Furthermore, the optimal total number of relay
nodes N*(0, L) needed to support the optimal traffic

flow functionT™*(x) in the network will beN*(¢y, ¢1) =
£y

ens

—_

| |
0.2 04 0.6 0.8
Line Segment

|
0

4, N(x)dz = f;;l |T'(z)|* dz. Let us see an example to
illustrate the previous framework.

Example 1.- Suppose that we can divide the line segment

[0,L] in two parts: (i) in the first par{0, L/2] there

will be a uniform information density function generated
by the sensor sources, given lyxz) =1 bpsym and

(i) in the second halfL/2, L] there will be a uniform __
information density function received at the sensor des=
tinations given byp(x) = —1 bpsm (See Figure 1).
From the equations (4) and (5) we obtain that the optimakt
traffic flow function will be given byT™*(z) = = bpym
for all x € [0,L/2] andT*(z) = L — = bps/m for
all z € [L/2, L] with positive direction (See Figure 2). If
we assume that the relay-traffic constant 2, then the
optimal placement of the relay nodes needed to relay the
information from the sources to the destinations on the

ow

0.2

Traffic

—_
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network will be given byy*(z) = 22 for all z € [0, L/2]
andT*(x) = (L — z)? bpg/m for all = € [L/2, L].

The optimal total number of relay node¥*(0,L)

o -

needed to support the optimal traffit () will be given

by N(L) = [y"* a? du + [[,(L — 2)* dw = L?/12.

<
o
T

Node density,
e
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B. The two dimensional case The integral on the left is the surface integral pz(ij1

. ) _ ) ) over the domainD. The integral on the right is the path
Consider a grid area networR in the two dimensional integral of the inner producE-n over the boundargD.
plané X x Y the continuousnformation density func- The vectorn(x) is the unit normal vector t&D at the

tion p(x), measured in bpsn”, such that at locations 1, nqary pointx € 9D and pointing outwards. Then
wherep(x) > 0, there is a distributed data created p¥he functionT - n (x), measured in bpsn?, is equal at

sensor sources, such that the rate with which informatl%le rate with which information is leaving the domain
is created in an infinitesimal area of sizd., centered at D at the boundary point

locationx, is p(x) dA.. Similarly, at locationsx where . . o

p(x) < 0, there is a distributed data received at sensgfis holding for any (smooth) domaih, it follows that
destinations, such that the rate with which informatioRecessarily

can be treated by an infinitesimal area of sizd., T (x)  OT>(x

centered at locatior, is equal to—p(x) dA.. V-T(x) := 811:(1 ) + 823:(2 ) p(x),  (6)

The total rate at which sensor destinations must procsg . «.»

. . . is the divergence operator.
data is the same as the total rate which the data is created 9 P

at the sensor sourcese, Thus the problem considered is to minimize the quantity
of nodesN (D) in the grid area networlD needed to
/ p(x)dx =0 support the information created by the distribution of
XKy sources subject to the flow conservation conditioa,

Consider the continuousiode density functiom(x), our problem is given by the system of equations:

measured in nod¢m?, defined so that the number of Min N (D) 7)
relay nodes in an area of infinitesimal sizd., centered subject toV - T = p(x) ®)
atx, is equal ton(x) dA.. ) = P

The total number of nodes on a regioh denoted by Toumpis and Tassiulas in [3] focus on a particular

N(A), is then given by physical layer model characterized by the following
assumption:

N(4) :/n(x) dx. Assumption : A location x where the node density

A is n(x) can support any traffic flow vector with a

Consider the continuousaffic flow functionT(x), mea- magnitude less or equal to a boufi(x)||ma. Which
sured in bpgm, such that its direction coincides withis proportional to the square root of the densitg
the direction of the flow of information at point, and || T(x)|| < ||T(X)||mae = K+/d(x).

HT_(X)H is the rate with which information rate crosseshe validity of Assumption 1 depends on the physical
a linear segment perpendicular ®(x) centered o, |ayer and the medium access control protocol used by
i.e, [|T(x)|  gives the total amount of traffic crossingihe network. Although it is not generally true, it holds in
a linear segment of infinitesimal length centered at nany different settings of interest. For example, in [3]
locationx, and placed vertically t(x). Toumpis and Tassiulas give an example of network
Next we present the flow conservation condition (segherem? nodes are placed in a perfect square grid of
eg. [4], [14], for more details about this type of con-m x m nodes and each node can listen to transmissions
dition). For information to be conserved over a domaiffom its four nearest neighbors. They give a simple
D of arbitrary shape on th& x Y plane, with smooth time division routine so that the network af? nodes
boundarydD, it is necessary that the rate with whichcan support a traffic on the order ofi. As another
information is created in the area is equal to the ragxample, in [20] it was shown that the traffic that can

with which information is leaving the areag., be supported in the above network, if nodes access the
channel by use of slotted Aloha instead of time division,
/p(X) dD = j{[T ‘n(x)]dl is Tlocal = K x W x m, where nodes transmit data with
D oD a fixed global rate ofiW’ bps, K is a constant-smaller

We wil d i bold f o sd= (@, 5) wil than 1/3-that captures the efficiency of Aloha. Finally,

e wi enote witl Ol onts the vectors and = (x,y) wi : H

denote a location in the two dimensional spa€ex Y. in [19] it was shown that a network @frandomly placed
2The norm||-|| is the Euclidean normi,e, for a vectorx = (z, y), nodes can support an aggr_eg.at.e traffic on the order of

its norm will be ||x|| = /=2 + y2. v/n/logn under a more realistic interference model that



accounts for interference coming from arbitrarily distardenoted bypg. Thus we obtain the following system of
nodes. The logarithm in the denominator appears degquations:

to th i thodol f [19], and it has b .
o the proving methodology of [19], and it has been {%§+V~Vp+pV~vO in D x (0,T)

shown [21] that it can be dispensed off, by use of(TE
4] P y use of(TE) p(0)=po onD x {0},

percolation theory in the proofs.

Tassiulas and Toumpis prove in [3] that among all traffiThe previous system of equations is known in the partial
flow functions that satisfyV - T = p, the one that differential equations literature as the linear transport
minimizes the number of nodes needed to support tlkguation with initial condition for which there exists a

network, must be irrotational,e., solution (see Proposition 11.1 of [22]).
VvV xT=0. (9) Notice that given the initial distribution of the sources
— and destinations and the velocity of the distribution, we
where V<" is the curl operator. are able to compute the evolution of the distribution of

sensor sources and sensor destinations onitin, T').

The velocity of sensor sources and sensor destinations
In our work we do a parallel to Electromagnetism byn@y be estimated by having some previous knowledge
considering moving sensor nodes or moving distributid® the behavior of these sources and destinations in our
of sensor nodes. In that sense we first define sorf&WOrk.

terms directly related to Electromagnetism. In our modelve want to minimize the number of relay nod&%D)

the information density functiorp, the traffic flow in the grid area networkD needed to support the
function T, and the node density function, defined information created by the distribution of sensor sources
previously may depend on timege., p = p(x,t), T = and received by the distribution of sensor destinations
T(x,t), andn = 7(x,t).We will consider our problem subject to the flow conservation condition, and knowing
within a window of timet € [t;, ;] wheret; is the initial  that the distribution of mobile sensor nodes and mobile
time andt; is the final time. sensor destinations is the solution to the system of

We define the continuousode currentl as the density €duationgTE). Thus our problem reads for alic [0, 7

of sensor nodeg(x, ¢) in the positionx multiplied by ) g )
the nodes average drift velocity(x, t), i.e., Min N(D,1) :/ nix,t)dx = = /D|T(X,t)| dx
(12)

D
subjectto V- T(x,t) = p(x,t) in D, (13a)

IIl. M ODEL IN MOTION

J = p(x,t) v(x,t).

The rate at which nodes leaves an area (or volung)

bounded by a curve (or surfacg)= 0V, will be given T-n=00ndD. (13b)
by wherep(x, t) is the solution to the probleril'E).
}{;J - dS (10) we recall that Tassiulas and Toumpis in [3] proved

. . . , L that among all traffic flow functions that satisfy equa-
Since the information density function is conserved ifg (13a), the one that minimize the number of nodes
the plane this integral must be equal to needed to support the network, must satisfy

d )
}{ldS:f— p~ndS:f/—pdV. (11) V x T =0. (14)
s dt Js ot

From the divergence theorem and imposing the equaligsing Helmholtz's theorem (also known as fundamental
between the equations (10) and (11), we obtain tfieeorem of vector calculus) to last equation (14) we

equivalent to Kirchhoff’s current law: obtain that there exists a scalar potential functiosuch
that
Ip
V-J+a:0. —Ve=T. (15)
Notice as well that Replacing this function into the conservation equa-
tion (13a) we obtain that

V-J=V-(pv)=v-Vp+pV-v.

—Ap = 16
We assume that we know the initial distribution of the v=0e (16)

sensor sources and the sensor destinations at @imeand this holds for alt € [0,T).



We impose that no information is leaving the considere
domainD, in equation (13b) and from equation (15) this
condition translates int&/¢ -n =0

From equation (16) and last condition we obtain th
following system

—Ap=p inD
(LE) { Veo-n=0 ondD. (17)

which is theLaplace equatiomvith Neumann boundary
conditions.

If the function f is square integrable then the Laplace
equation with Neumann boundary conditions has a
unique solution inH!(D)/R. Fig. 1. Distribution of the sources and destinations in th@es line

In summary in order to solve our problem given by the
equations (12), (13a), (13b), af@E) we need to
by p(z,t) = p*(z,t) + p~(z,t) where
1) Solve the system of equatiofi$E), o
2) Put the solution as input into the system of equa- pt(x,t) = ke~ (e =371

tions (LE), p(x,t) = —kpe~ (e =107t
3) Solve the system of equatiofEE).
'|'he solution combining the sources and destinations
information density function over time are showed in
Fig. 1.

5.- we put the solution as input into the system of
equations: from the conservation equation we obtain

Even as it looks complicated system we give an exam
where you can get explicit solutions.

Example 2.Due to presentation effects we consider th
one dimensional case duririg= 2 hours.
We consider an initial distribution of sensor sourggs

and an initial distribution of sensor destinatiops on T (z,t)  OTT(xz,t) OT (=)
the positive real lind0, +o0), and we scale them to be or oz T or
probability distributions so it represents in each loaatio _
the proportion of sensor sources or the proportion ofyhere M =pt and M =—p
sensor destinations respectively: Oz Oz
, , with initial condition that the flow is zero at the boundary
pd =kie” @37 and py = —kpe” ("T10 point zero,i.e. T(0,t) = 0.

where k; and k, are normalization factors given3.- We solve the laplacean system of equations:
by ki = 2 ko where Then the optimal traffic flow function is given by

2
merfc(—3)"’ Vmerfc(—10)"’ « . _
erfe(x) is the complementary error function defined ad ™ (%:t) = T (2, 1) + T~ (x,t) where

— 2 [*o —s? —t 2
erfe(x) = N fa, € ds. T+($,t> — foz kle*(ace =3)"—t
We consider that the nodes average drift velocity is given T (x,t) = — [ kye— (@ =10)°~t o
by v(z,t) = x. We can think of a highway where the cars 0

are equipped with sensors and while they are advancigys the minimal number of active relay nodes needed

on the highway they can go faster and faster. to support the optimal flow at every tintewill be given
1.- We first need to solve the transportation equatid®y
system(TE), that in our example reads N*(t) = /+00|T*($ D do

0

9p | O(=p) _
L+=L =0 onRy x[0,7T)
ot g + ) ; ;
- which can be solved numerically.

{ p(0) =py +py ONRy y

In next section we present another type of mobility
Using the method of characteristics we obtain thabodel where we consider the randomness in the mobility

the information density function over time is giverof the users.



Assume as in the previous case that we know the {nitial
distribution of the information created at the sources.
Then by using Itd’s lemmap™* evolves in time by the
Kolmogorov Forward Equation

2

x,9)p(x, ) 3 35 0 (. )]

for s > 0, with initial conditionp(x,0) = p*(x)

0 0,
Sp(x,s) = — 5[V

Equivalently, the initial distribution of the destinat®n
evolves in time by the Kolmogorov Forward Equation
0 0. _ 10%

ap(xys) = —%[V (%, 8)p(x, S)]+§@[U_P(X78)]-

Fig. 2. Optimal traffic flow for s € [t;,ty), with initial conditionp(z,t;) = p~(z).

V. OPTIMIZATION ON TIME

Notice that the minimization problem we solved does not
really consider the interaction on time because the prob-
lem describes the movement of sources and destinations
nodes in the space and then we solve the static problem
at each time. The problem solved at each time may not
be optimal in the whole period of time considered.

Another more realistic problem would be to minimize
the quantity of nodes used on the whole network during
a fixed period of timgl¢;, ¢ /], i.e,

ty ty
Min N(D,t)dt = / / n(x,t)dx =
ti ti D
Fig. 3. Optimal relay node distribution ty
= / / |T(x,t)|* dx
ty JD
V. BROWNIAN MOBILITY MODEL whereN (D, t) is the number of active relay nodes in the

- ) network D at timet, subject to (13a), (13b), and’E).
One of the most used mobility models used in networks

is the Random Walk Mobility Model also known as thé©r the case we have randomness in the system this
Brownian Mobility Model (see the survey [24] and theProblem will be

references therein). ty ty
_ o Mm/ E{N(D,t)}dt:/ / E{|T(x,t)*} dx
If we have previous knowledge about the velocity drift t t, Jp

of the distribution of information created at the sources (18)
(denotedp™) and/or the distribution of information re- subject to (13a), (13b), anl’E) since D is compact.
ceived at the destinations (denoted), and we assume From the work of Santambrogio ([25], page 6) we have
the Brownian mobility model, then the distribution ofthe following result: The problem

sources and/or the distribution of the destinations ewlve

according to the stochastic differential equation Min/D k(x)|T(x)| suchthat V.T =pn—v

dpt(t) = vT(x,t)dt + o4 (x,t) dWT(t) is equivalent by duality to the problem of finding
and/or dp~(t) = v~ (x,t)dt + o (x,t) dW " (t). Min/ di(z,y)dy such that v € II(u,v) where
D
whereW*(t) andW (t) are two independent brownian 1
motion with values inX x Y andoy := 0.(x,t),  dy(z,y)= inf Li(w) ::/ k(w(t))|w' (t)] dt
o_ :=o_(x,t) are parameters of the model. fore=r, 0



In our casek(x) = |T(x)| then data from the location of the sources to the location of
1 the destinations, and do not need to sense the data at
Li(w) = / IT(w(t))||w (t)| dt the sources, or deliver them at the destinations once the
0 data arrive at their physical locations, and ii) the nodes
Given thatw(0) = x, andw(1) = y then by change of have limited bandwidth available to them, but they use
variablesLy(w) = [|T(x)|dz, and as it is independentit optimally to locally achieve the network capacity.

of w thendy (z,y) = [T (x)| dx. In this setting, the optimal distribution of nodes induces a
Example.- For the case where we do not have previousaffic flow that resembles the electric displacement that
knowledge about the velocity drift then we just considewill be created if we substitute the sources and destina-
the standard Brownian mobility model given by tions with positive and negative charges respectively. The
o N analogy between the two settings is very tight, and many

dp™ (t) = o4 (x,1) dW™(?) features of Electromagnetism have a direct interpretation
and/or in wireless sensor networks.

dp™(t) = o_(x,t) dW ().
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which have as solution the following equations
1 .2 VII. APPENDIX
P (et) = S== TF
2rtot Definition.-[Divergence] Letz,y,z be a system of
1 ) Cartesian coordinates on3adimensional space and let
p (z,t) = T 1,7 and k& be the corresponding basis of unit vectors
V2rto~ respectively. Thedivergence of a continuously differ-

gntiable vector field = F, i+ F, j+ F. k is defined to
beé the scalar-valued function:
Remark.- Notice that if we suppose that the distribution

PP OF, OF, OF.

of the destinations is fixed, as it will be the case for V-F= + =2 4 .
aggregation centers of information, therm = 0 and Ox dy 9z
thenp~(x,t) = p~ for all time ¢.

Now we can replace this solution into Step 2 and Step

An equivalent definition is the following: Given a se-
guence of surfacedy, that all include in their interior an
arbitrary point(xo, yo, 20), such that their areds;| —
We consider a setting in which a spatially distribute@ with %, then

set of mobile sources is creating data for a spatially

distributed set of mobile destinations. We make th& - F(xo,y0,20) = lim ——

- - - - k=too [Ax] Joa
assumption that the network is massively derise, k
there are so many sources, destinations, and nodes, {0géren(x) is the unitary normal vector at.
it is best to describe the network in terms of macroscopic i ) L .
parameters, such as their spatial distribution, rather thive no.tlce t_hat bo_th equ_lvalent deﬁmnons can similarly
in terms of microscopic parameters, such as their irt?-e defined in &-dimensional Euclidean space.
dividual placements. We focus on a particular physic&@lefinition.-[Curl] Let z,y, z be a system of Cartesian
layer model that is characterized by the following assoordinates on &-dimensional space and letj and &
sumptions: i) the wireless nodes must only transport the the corresponding basis of unit vectors respectively.

VI. CONCLUSIONS

F(z,y,2) -ndV,



Thecurl of a continuosly differentiable vector field =
F,1+F,j+F. k is defined to be the vector field function:

8FZ_% i+ an_aFZ A+
oy 0z 0z Ox )
(aFy GFI) i

dy

O
Theorem.- [Divergence Theorem] Thdivergence the-
orem states that for any well-behaved vector fieMd
defined within a volumel” surrounded by the closed
surfacesS the relation

fA~ndS:/V-AdV
S \%

VXF:(
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Theorem.{Stokes Theorem] Th&tokes theoremstates
that if A is a well-behaved vector field; is an arbitrary
open surface an@' is the closed curve bounding then

ﬁA-d@z/g(VxA)-ndS

wheren(x) is the unitary normal vector a.
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