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Abstract— In this paper we study the optimal placement
and optimal number of active relay nodes through the
traffic density in mobile sensor ad-hoc networks. We
consider a setting in which a set of mobile sensor sources
is creating data and a set of mobile sensor destinations
receiving that data. We make the assumption that the
network is massively dense,i.e., there are so many sources,
destinations, and relay nodes, that it is best to describe
the network in terms of macroscopic parameters, such as
their spatial density, rather than in terms of microscopic
parameters, such as their individual placements.

We focus on a particular physical layer model that is
characterized by the following assumptions: i) the nodes
must only transport the data from the sources to the
destinations, and do not need to sense the data at the
sources, or deliver them at the destinations once the
data arrive at their physical locations, and ii) the nodes
have limited bandwidth available to them, but they use it
optimally to locally achieve the network capacity.

In this setting, the optimal distribution of nodes induces a
traffic density that resembles the electric displacement that
will be created if we substitute the sources and destinations
with positive and negative charges respectively. The analogy
between the two settings is very tight and have a direct
interpretation in wireless sensor networks.

I. I NTRODUCTION

Various approaches inspired by physics have been pro-
posed to deal with the routing problem in massively
dense wireless sensor networks. Starting with the pio-
neering work of Jacquet (see [1], [2]) who used ideas
from geometrical optics to deal with the case of one
source and one destination and a distribution of relay
nodes.

Approaches based on electrostatics have been studied
in [3], [4], [5], [6] (see the survey [7] and references
therein) to deal with the case of a distribution of sources
and destinations with a density of relay nodes in a static
environment.

The development of the theory of routing in massively
dense wireless sensor networks has emerged in a com-
plete independent way of the theory developed within

the community of road traffic engineers, introduced in
1952 by Wardrop [11] and Beckmann [12], see also [13,
pp. 644, footnote 3] for the abundant literature of the
early 50’s, and which is still an active research area
among that community, see [14], [15], [16], [17], [18]
and references therein.

Only very recently, new approaches based on road traf-
fic theory have been studied in [8], [9], [10] defining
the Wardrop equilibrium and a characterization of the
Wardrop equilibrium in this type of setting and including
a geometrical characterization of the flow of information
for some particular cost functions.

Consider that a spatially distributed set of mobile sources
is creating data that must be delivered to a spatially
distributed set of mobile destinations. In this context,
our objective is to study the optimal traffic distribution
and to find the minimum amount of relay nodes needed
to transport the data from the sources to the destinations.

The main contribution of this work is to address this
problem for a mobile context where we analyze the cases
where (i) only sources are mobile and the destinations
are static as it would be in the case when the aggregation
centers are fixed and the sensor nodes have the capability
to move, (ii) the case when both sources and destinations
are mobile, and given that the mathematics involve are
similar (iii) we also analyze the case when the sources
are static and the destinations are mobiles.

In section II-A we first analyze the case where the
sources and destinations are static and spatially dis-
tributed in the one dimensional line in order to illustrate
the behavior of the flow function and the optimal location
of the relay nodes on this simple case. We analyze in
section II-B the case when the sources and destinations
are static and spatially distributed in the two dimensional
plane. In section III we analyze the case where the
sources and destinations can move with a deterministic
velocity and we are able to find the optimal flow of
information and to give the optimal spatial density of the
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relay nodes at each period of time. Within this section
we also give an example with numerical results related
to the previous mobility setting. In section IV we are
able to find the optimal spatial density of the relay
nodes for the Brownian mobility model. In section VI
we summarize the main results and future perspectives
for the continuation of our work.

II. T HE MODEL

We first consider the one dimensional case in order to
explain the main concepts involved in our model and
how this concepts can be extended to the two dimen-
sional case in order to obtain the optimal deployment of
the relay nodes in a wireless sensor network.

A. Fluid Approximations

Consider a grid area network that contains wireless
sensor nodes. As a first approach we consider the line
segment[0, L], which will be the geographical reference
of a network.

We consider the continuousnode density functionη(x),
measured in nodes/m, such that the total number of
nodes on a segment[ℓ0, ℓ1], denoted byN(ℓ0, ℓ1), is

N(ℓ0, ℓ1) =

ℓ1
∫

ℓ0

η(x) dx.

We consider as well the continuousinformation density
functionρ(x), measured in bit/(s·m), generated by the
sensor nodes such that

• At locationsx whereρ(x) > 0 there is a fraction
of data created by the sensor sources, such that
the rate with which information is created in an
infinitesimal area of sizedε, centered at positionx,
is equal toρ(x) dε.

• Similarly, at locationsx whereρ(x) < 0 there is a
fraction of data received at the sensor destinations
such that the rate with which information is received
by an infinitesimal area of sizedε, centered at
positionx, is equal to−ρ(x) dε.

We assume that the total rate at which sensor destinations
have to receive data is the same as the total rate which
the data is created at the sensor sources,i.e.,

L
∫

0

ρ(x) dx = 0. (1)

Notice that if we have an estimation of the proportion
of packet loss in the network, we can ponderate our
function ρ in order to adequate it to equation (1).

Consider the continuously differentiabletraffic flow func-
tion T (x), measured in bps/m, such that its direction
(positive or negative) coincides with the direction of the
flow of information at pointx and |T (x)| is the rate at
which information propagates at positionx, i.e., |T (x)|
gives the total amount of traffic that is passing through
the positionx.

Next we present the flow conservation condition. For
information to be conserved over a segment[ℓ0, ℓ1],
it is necessary that the rate with which information is
created over the segment, is equal to the rate with which
information is leaving the line segment,i.e.,

T (ℓ1) − T (ℓ0) =

∫ ℓ1

ℓ0

ρ(x) dx

The integral on the right hand side is equal to the
quantity of information generated (if it’s positive) or
demanded (if it’s negative) by the fraction of sensor
nodes over the line segment[ℓ0, ℓ1]. The expression
T (ℓ1) − T (ℓ0), measured in bps/m, is equal at the
rate with which information is leaving (if it’s positive)
or entering (if it’s negative) the segment[ℓ0, ℓ1]. This
holding for any line segment, it follows that necessarily,

dT (x)

dx
= ρ(x). (2)

The problem considered is to minimize the number of
nodesN(0, L) in the line segment[0, L], needed to
support the information created by the sensor sources
and received by the sensor destinations subject to the
flow conservation condition given by equation (2) and
imposing that there is no flow of information leaving
the network,i.e., T (0) = 0 and T (L) = 0. Thus the
system of equations that model our problem in the one-
dimensional case is given by the system of equations:

MinN(0, L) =

∫ L

0

η(x) dx, (3)

subject to
dT (x)

dx
= ρ(x) in(0, L), (4)

T (0) = 0 and T (L) = 0. (5)

Notice that in the one-dimensional case, there is no
minimization problem because only by using the con-
straints (4) and (5), we obtain only one solution. As we
will see, this will not be the case for the two-dimensional
case.
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We suppose that the proportion of sensor nodesη(x)
in an area of infinitesimal sizedε, centered at loca-
tion x, needed as relay nodes, will be proportional to
the traffic flow of information that is passing through
that region, i.e., η(x) dε = |T (x)|α dε where α >
0 is a fixed number calledthe relay-traffic constant.
Then the optimal placement of the relay nodes in the
network will be given byη∗(x) = |T ∗(x)|α, where the
traffic flow function T ∗(x) is the optimal traffic flow
function, given by the solution of the previous system of
equations. Furthermore, the optimal total number of relay
nodesN∗(0, L) needed to support the optimal traffic
flow functionT ∗(x) in the network will beN∗(ℓ0, ℓ1) =
∫ ℓ1

ℓ0
η(x) dx =

∫ ℓ1
ℓ0
|T (x)|α dx. Let us see an example to

illustrate the previous framework.

Example 1.- Suppose that we can divide the line segment
[0, L] in two parts: (i) in the first part[0, L/2] there
will be a uniform information density function generated
by the sensor sources, given byρ(x) = 1 bps/m and
(ii) in the second half[L/2, L] there will be a uniform
information density function received at the sensor des-
tinations given byρ(x) = −1 bps/m (See Figure 1).
From the equations (4) and (5) we obtain that the optimal
traffic flow function will be given byT ∗(x) = x bps/m
for all x ∈ [0, L/2] and T ∗(x) = L − x bps/m for
all x ∈ [L/2, L] with positive direction (See Figure 2). If
we assume that the relay-traffic constantα = 2, then the
optimal placement of the relay nodes needed to relay the
information from the sources to the destinations on the
network will be given byη∗(x) = x2 for all x ∈ [0, L/2]
andT ∗(x) = (L − x)2 bps/m for all x ∈ [L/2, L].

The optimal total number of relay nodesN∗(0, L)
needed to support the optimal trafficT ∗(x) will be given
by N(L) =

∫ L/2

0 x2 dx +
∫ L

L/2(L − x)2 dx = L3/12.
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B. The two dimensional case

Consider a grid area networkD in the two dimensional
plane1 X × Y the continuousinformation density func-
tion ρ(x), measured in bps/m2, such that at locationsx
whereρ(x) > 0, there is a distributed data created by
sensor sources, such that the rate with which information
is created in an infinitesimal area of sizedAε, centered at
locationx, is ρ(x) dAε. Similarly, at locationsx where
ρ(x) < 0, there is a distributed data received at sensor
destinations, such that the rate with which information
can be treated by an infinitesimal area of sizedAε,
centered at locationx, is equal to−ρ(x) dAε.

The total rate at which sensor destinations must process
data is the same as the total rate which the data is created
at the sensor sources,i.e.,

∫

X×Y

ρ(x) dx = 0.

Consider the continuousnode density functionη(x),
measured in nodes/m2, defined so that the number of
relay nodes in an area of infinitesimal sizedAε, centered
at x, is equal toη(x) dAε.

The total number of nodes on a regionA, denoted by
N(A), is then given by

N(A) =

∫

A

η(x) dx.

Consider the continuoustraffic flow functionT(x), mea-
sured in bps/m, such that its direction coincides with
the direction of the flow of information at pointx, and2

‖T(x)‖ is the rate with which information rate crosses
a linear segment perpendicular toT(x) centered onx,
i.e., ‖T(x)‖ ε gives the total amount of traffic crossing
a linear segment of infinitesimal lengthε, centered at
locationx, and placed vertically toT(x).

Next we present the flow conservation condition (see
e.g. [4], [14], for more details about this type of con-
dition). For information to be conserved over a domain
D of arbitrary shape on theX × Y plane, with smooth
boundary∂D, it is necessary that the rate with which
information is created in the area is equal to the rate
with which information is leaving the area,i.e.,

∫

D

ρ(x) dD =

∮

∂D

[T · n (x)] dℓ

1We will denote with bold fonts the vectors andx = (x, y) will
denote a location in the two dimensional spaceX × Y .

2The norm‖·‖ is the Euclidean norm,i.e., for a vectorx = (x, y),
its norm will be‖x‖ =

p

x2 + y2.

The integral on the left is the surface integral ofρ(x)
over the domainD. The integral on the right is the path
integral of the inner productT·n over the boundary∂D.
The vectorn(x) is the unit normal vector to∂D at the
boundary pointx ∈ ∂D and pointing outwards. Then
the functionT · n (x), measured in bps/m2, is equal at
the rate with which information is leaving the domain
D at the boundary pointx.

This holding for any (smooth) domainD, it follows that
necessarily

∇ ·T(x) :=
∂T1(x)

∂x1
+

∂T2(x)

∂x2
= ρ(x), (6)

where “∇·” is the divergence operator.

Thus the problem considered is to minimize the quantity
of nodesN(D) in the grid area networkD needed to
support the information created by the distribution of
sources subject to the flow conservation condition,i.e.,
our problem is given by the system of equations:

MinN(D) (7)

subject to∇ ·T = ρ(x). (8)

Toumpis and Tassiulas in [3] focus on a particular
physical layer model characterized by the following
assumption:

Assumption : A location x where the node density
is η(x) can support any traffic flow vector with a
magnitude less or equal to a bound‖T(x)‖max which
is proportional to the square root of the density,i.e.
‖T(x)‖ ≤ ‖T(x)‖max = K

√

d(x).

The validity of Assumption 1 depends on the physical
layer and the medium access control protocol used by
the network. Although it is not generally true, it holds in
many different settings of interest. For example, in [3]
Toumpis and Tassiulas give an example of network
wherem2 nodes are placed in a perfect square grid of
m×m nodes and each node can listen to transmissions
from its four nearest neighbors. They give a simple
time division routine so that the network ofm2 nodes
can support a traffic on the order ofm. As another
example, in [20] it was shown that the traffic that can
be supported in the above network, if nodes access the
channel by use of slotted Aloha instead of time division,
is Tlocal = K×W ×m, where nodes transmit data with
a fixed global rate ofW bps, K is a constant-smaller
than 1/3-that captures the efficiency of Aloha. Finally,
in [19] it was shown that a network ofn randomly placed
nodes can support an aggregate traffic on the order of
√

n/ logn under a more realistic interference model that
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accounts for interference coming from arbitrarily distant
nodes. The logarithm in the denominator appears due
to the proving methodology of [19], and it has been
shown [21] that it can be dispensed off, by use of
percolation theory in the proofs.

Tassiulas and Toumpis prove in [3] that among all traffic
flow functions that satisfy∇ · T = ρ, the one that
minimizes the number of nodes needed to support the
network, must be irrotational,i.e.,

∇× T = 0. (9)

where “∇×” is the curl operator.

III. M ODEL IN MOTION

In our work we do a parallel to Electromagnetism by
considering moving sensor nodes or moving distribution
of sensor nodes. In that sense we first define some
terms directly related to Electromagnetism. In our model,
the information density functionρ, the traffic flow
function T, and the node density functionη, defined
previously may depend on time,i.e., ρ = ρ(x, t), T =
T(x, t), andη = η(x, t).We will consider our problem
within a window of timet ∈ [ti, tf ] whereti is the initial
time andtf is the final time.

We define the continuousnode currentJ as the density
of sensor nodesρ(x, t) in the positionx multiplied by
the nodes average drift velocityv(x, t), i.e.,

J = ρ(x, t)v(x, t).

The rate at which nodes leaves an area (or volume)V ,
bounded by a curve (or surface)S = ∂V , will be given
by

∮

S

J · dS (10)

Since the information density function is conserved in
the plane this integral must be equal to

∮

S

J · dS = − d

dt

∮

S

ρ · n dS = −
∫

V

∂ρ

∂t
dV. (11)

From the divergence theorem and imposing the equality
between the equations (10) and (11), we obtain the
equivalent to Kirchhoff’s current law:

∇ · J +
∂ρ

∂t
= 0.

Notice as well that

∇ · J = ∇ · (ρv) = v · ∇ρ + ρ∇ · v.

We assume that we know the initial distribution of the
sensor sources and the sensor destinations at time0

denoted byρ0. Thus we obtain the following system of
equations:

(TE)

{

∂ρ
∂t + v · ∇ρ + ρ∇ · v = 0 in D × (0, T )

ρ(0) = ρ0 on D × {0}.

The previous system of equations is known in the partial
differential equations literature as the linear transport
equation with initial condition for which there exists a
solution (see Proposition II.1 of [22]).

Notice that given the initial distribution of the sources
and destinations and the velocity of the distribution, we
are able to compute the evolution of the distribution of
sensor sources and sensor destinations on timet ∈ [0, T ).
The velocity of sensor sources and sensor destinations
may be estimated by having some previous knowledge
on the behavior of these sources and destinations in our
network.

We want to minimize the number of relay nodesN(D)
in the grid area networkD needed to support the
information created by the distribution of sensor sources
and received by the distribution of sensor destinations
subject to the flow conservation condition, and knowing
that the distribution of mobile sensor nodes and mobile
sensor destinations is the solution to the system of
equations(TE). Thus our problem reads for allt ∈ [0, T ]

Min N(D, t) =

∫

D

η(x, t) dx = =

∫

D

|T(x, t)|2 dx

(12)
subject to ∇ · T(x, t) = ρ(x, t) in D, (13a)

T · n = 0 on ∂D. (13b)

whereρ(x, t) is the solution to the problem(TE).

We recall that Tassiulas and Toumpis in [3] proved
that among all traffic flow functions that satisfy equa-
tion (13a), the one that minimize the number of nodes
needed to support the network, must satisfy

∇× T = 0. (14)

Using Helmholtz’s theorem (also known as fundamental
theorem of vector calculus) to last equation (14) we
obtain that there exists a scalar potential functionϕ such
that

−∇ϕ = T. (15)

Replacing this function into the conservation equa-
tion (13a) we obtain that

−∆ϕ = ρ (16)

and this holds for allt ∈ [0, T ).



6
We impose that no information is leaving the considered
domainD, in equation (13b) and from equation (15) this
condition translates into∇ϕ · n = 0

From equation (16) and last condition we obtain the
following system

(LE)

{

−∆ϕ = ρ in D
∇ϕ · n = 0 on ∂D.

(17)

which is theLaplace equationwith Neumann boundary
conditions.

If the function f is square integrable then the Laplace
equation with Neumann boundary conditions has a
unique solution inH1(D)/R.

In summary in order to solve our problem given by the
equations (12), (13a), (13b), and(TE) we need to

1) Solve the system of equations(TE),
2) Put the solution as input into the system of equa-

tions (LE),
3) Solve the system of equations(LE).

Even as it looks complicated system we give an example
where you can get explicit solutions.

Example 2.-Due to presentation effects we consider the
one dimensional case duringT = 2 hours.
We consider an initial distribution of sensor sourcesρ+

0

and an initial distribution of sensor destinationsρ−0 on
the positive real line[0, +∞), and we scale them to be
probability distributions so it represents in each location
the proportion of sensor sources or the proportion of
sensor destinations respectively:

ρ+
0 = k1e

−(x−3)2 and ρ−0 = −k2e
−(x−10)2 .

where k1 and k2 are normalization factors given
by k1 = 2√

πerfc(−3)
, k2 = 2√

πerfc(−10)
, where

erfc(x) is the complementary error function defined as
erfc(x) = 2√

π

∫ +∞
x

e−s2

ds.

We consider that the nodes average drift velocity is given
by v(x, t) = x. We can think of a highway where the cars
are equipped with sensors and while they are advancing
on the highway they can go faster and faster.

1.- We first need to solve the transportation equation
system(TE), that in our example reads

{

∂ρ
∂t + ∂(xρ)

∂x = 0 on R+ × [0, T )
ρ(0) = ρ+

0 + ρ−0 on R+

Using the method of characteristics we obtain that
the information density function over time is given
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Fig. 1. Distribution of the sources and destinations in the same line

by ρ(x, t) = ρ+(x, t) + ρ−(x, t) where
{

ρ+(x, t) = k1e
−(xe−t−3)2−t

ρ−(x, t) = −k2e
−(xe−t−10)2−t

The solution combining the sources and destinations
information density function over time are showed in
Fig. 1.

2.- We put the solution as input into the system of
equations: from the conservation equation we obtain

∂T (x, t)

∂x
=

∂T +(x, t)

∂x
+

∂T−(x, t)

∂x

where
∂T +(x, t)

∂x
= ρ+ and

∂T−(x, t)

∂x
= −ρ−.

with initial condition that the flow is zero at the boundary
point zero,i.e. T (0, t) = 0.

3.- We solve the laplacean system of equations:
Then the optimal traffic flow function is given by
T ∗(x, t) = T +(x, t) + T−(x, t) where

{

T +(x, t) =
∫ x

0
k1e

−(xe−t−3)2−t dx

T−(x, t) = −
∫ x

0 k2e
−(xe−t−10)2−t dx.

Thus the minimal number of active relay nodes needed
to support the optimal flow at every timet will be given
by

N∗(t) =

∫ +∞

0

|T ∗(x, t)|2 dx

which can be solved numerically.

In next section we present another type of mobility
model where we consider the randomness in the mobility
of the users.
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IV. B ROWNIAN MOBILITY MODEL

One of the most used mobility models used in networks
is the Random Walk Mobility Model also known as the
Brownian Mobility Model (see the survey [24] and the
references therein).

If we have previous knowledge about the velocity drift
of the distribution of information created at the sources
(denotedρ+) and/or the distribution of information re-
ceived at the destinations (denotedρ−), and we assume
the Brownian mobility model, then the distribution of
sources and/or the distribution of the destinations evolves
according to the stochastic differential equation

dρ+(t) = v
+(x, t) dt + σ+(x, t) dW+(t)

and/or dρ−(t) = v
−(x, t) dt + σ−(x, t) dW−(t).

whereW+(t) andW−(t) are two independent brownian
motion with values inX × Y and σ+ := σ+(x, t),
σ− := σ−(x, t) are parameters of the model.

Assume as in the previous case that we know the initial
distribution of the information created at the sources.
Then by using Itô’s lemma,ρ+ evolves in time by the
Kolmogorov Forward Equation

∂

∂s
p(x, s) = − ∂

∂x
[v+(x, s)p(x, s)]+

1

2

∂2

∂x2
[σ2

+p(x, s)].

for s ≥ 0, with initial conditionp(x, 0) = ρ+(x)

Equivalently, the initial distribution of the destinations
evolves in time by the Kolmogorov Forward Equation

∂

∂s
p(x, s) = − ∂

∂x
[v−(x, s)p(x, s)]+

1

2

∂2

∂x2
[σ2

−p(x, s)].

for s ∈ [ti, tf ), with initial conditionp(x, ti) = ρ−(x).

V. OPTIMIZATION ON TIME

Notice that the minimization problem we solved does not
really consider the interaction on time because the prob-
lem describes the movement of sources and destinations
nodes in the space and then we solve the static problem
at each time. The problem solved at each time may not
be optimal in the whole period of time considered.

Another more realistic problem would be to minimize
the quantity of nodes used on the whole network during
a fixed period of time[ti, tf ], i.e.,

Min

∫ tf

ti

N(D, t) dt =

∫ tf

ti

∫

D

η(x, t) dx =

=

∫ tf

ti

∫

D

|T(x, t)|2 dx

whereN(D, t) is the number of active relay nodes in the
networkD at timet, subject to (13a), (13b), and(TE).

For the case we have randomness in the system this
problem will be

Min

∫ tf

ti

E{N(D, t)} dt =

∫ tf

ti

∫

D

E
{

|T(x, t)|2
}

dx

(18)
subject to (13a), (13b), and(TE) sinceD is compact.
From the work of Santambrogio ([25], page 6) we have
the following result: The problem

Min

∫

D

k(x)|T(x)| such that ∇ · T = µ − ν

is equivalent by duality to the problem of finding

Min

∫

D

dk(x, y) dγ such that γ ∈ Π(µ, ν) where

dk(x, y) = inf
{ω : ω(0)=x,

ω(1)=y}

Lk(ω) :=

∫ 1

0

k(ω(t))|ω′(t)| dt
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In our casek(x) = |T(x)| then

Lk(ω) =

∫ 1

0

|T(ω(t))||ω′(t)| dt

Given thatω(0) = x, andω(1) = y then by change of
variablesLk(ω) =

∫ y

x
|T(x)| dx, and as it is independent

of ω thendk(x, y) =
∫ y

x
|T(x)| dx.

Example.- For the case where we do not have previous
knowledge about the velocity drift then we just consider
the standard Brownian mobility model given by

dρ+(t) = σ+(x, t) dW+(t)

and/or
dρ−(t) = σ−(x, t) dW−(t).

whereW+(t) andW−(t) are two independent Brownian
motions with values inX × Y .

Then the previous equations translate into

∂

∂s
p(x, s) = +

1

2

∂2

∂x2
[σ2

+(x, s)p(x, s)].

∂

∂s
p(x, s) = +

1

2

∂2

∂x2
[σ2

−(x, s)p(x, s)].

which have as solution the following equations

ρ+(x, t) =
1√

2πtσ+
e−

x2

2tσ+

ρ−(x, t) =
1√

2πtσ−
e−

x2

2tσ−

Now we can replace this solution into Step 2 and Step 3.

Remark.- Notice that if we suppose that the distribution
of the destinations is fixed, as it will be the case for
aggregation centers of information, thenσ− = 0 and
thenρ−(x, t) = ρ− for all time t.

VI. CONCLUSIONS

We consider a setting in which a spatially distributed
set of mobile sources is creating data for a spatially
distributed set of mobile destinations. We make the
assumption that the network is massively dense,i.e.,
there are so many sources, destinations, and nodes, that
it is best to describe the network in terms of macroscopic
parameters, such as their spatial distribution, rather than
in terms of microscopic parameters, such as their in-
dividual placements. We focus on a particular physical
layer model that is characterized by the following as-
sumptions: i) the wireless nodes must only transport the

data from the location of the sources to the location of
the destinations, and do not need to sense the data at
the sources, or deliver them at the destinations once the
data arrive at their physical locations, and ii) the nodes
have limited bandwidth available to them, but they use
it optimally to locally achieve the network capacity.

In this setting, the optimal distribution of nodes induces a
traffic flow that resembles the electric displacement that
will be created if we substitute the sources and destina-
tions with positive and negative charges respectively. The
analogy between the two settings is very tight, and many
features of Electromagnetism have a direct interpretation
in wireless sensor networks.
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VII. A PPENDIX

Definition.-[Divergence] Let x, y, z be a system of
Cartesian coordinates on a3-dimensional space and let
ı̂, ̂ and k̂ be the corresponding basis of unit vectors
respectively. Thedivergence of a continuously differ-
entiable vector fieldF = Fx ı̂ +Fy ̂ +Fz k̂ is defined to
be the scalar-valued function:

∇ ·F =
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z
.

An equivalent definition is the following: Given a se-
quence of surfacesAk, that all include in their interior an
arbitrary point(x0, y0, z0), such that their areas|Ak| →
0 with k, then

∇ · F(x0, y0, z0) = lim
k→+∞

1

|Ak|

∫

∂Ak

F(x, y, z) · n dV,

wheren(x) is the unitary normal vector atx.

We notice that both equivalent definitions can similarly
be defined in a2-dimensional Euclidean space.

Definition.-[Curl] Let x, y, z be a system of Cartesian
coordinates on a3-dimensional space and letı̂, ̂ and k̂
be the corresponding basis of unit vectors respectively.
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Thecurl of a continuosly differentiable vector fieldF =
Fx ı̂+Fy ̂+Fz k̂ is defined to be the vector field function:

∇× F =

(

∂Fz

∂y
− ∂Fy

∂z

)

ı̂ +

(

∂Fx

∂z
− ∂Fz

∂x

)

̂+

(

∂Fy

∂x
− ∂Fx

∂y

)

k̂.

Theorem.- [Divergence Theorem] Thedivergence the-
orem states that for any well-behaved vector fieldA
defined within a volumeV surrounded by the closed
surfaceS the relation

∮

S

A · n dS =

∫

V

∇ · A dV

holds between the volume integral of the divergence of
A and the surface integral of the outwardly directed
normal component ofA.

The same result holds in a2-dimensional Euclidean
space considering the corresponding definition of diver-
gence.

Theorem.-[Stokes Theorem] TheStokes theoremstates
that if A is a well-behaved vector field,S is an arbitrary
open surface andC is the closed curve boundingS, then

∮

C

A · dℓ =

∫

S

(∇× A) · n dS (19)

wheren(x) is the unitary normal vector atx.
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