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Abstract: This paper addresses the real-time control problem of a group of agents in the
presence of non-convex collision avoidance constraints. The goal is to guarantee the convergence
towards a tight formation. Convex (polyhedral) regions will be used to define safety regions
around each agent. Then, using the dynamics and constraints, an optimization-based control
design can be adopted upon an appropriate receding horizon principle. A single optimal control
problem is solved based on a prediction of the future evolution of the system and the resulting
control law is implemented in a centralized way. At the supervision level, it is shown that
the decision about which agents should take on what role in the desired tight formation is
equivalent with a classical pairing (or task assignment) problem. An important contribution is
the re-evaluation of the pairing at each iteration. Copyright c©IFAC 2011

Keywords: Multi-Agent Systems, constrained MPC, non-convex constraints, ultimate bounds

1. INTRODUCTION

In many applications, maintaining a formation is funda-
mental, for example in multiple satellite where the for-
mation is used for astronomical observations and science
missions [Mesbahi and Hadaegh, 2001], or in multiple air-
craft where the formation is used to explore aerodynamic
effects [Blake and Multhopp, 1998]. Questions about the
characterization and the convergence towards a forma-
tion represents classical concerns for multi-agent systems.
The problems become even more challenging if one needs
to ensure that all the agents avoid collisions inside the
group. Consequently, these problems are relevant in many
applications involving the control of cooperative systems
[Dunbar and Murray, 2002].

The main goal of this paper is to control a set of agents
having independent dynamics while achieving a global
objective, such as a tight formation with desired speci-
fications and collision free behavior.

The collision avoidance between the agents is known
to be a difficult problem, since certain constraints are
non-convex. A popular framework for the treatment of
such decision problems is represented by Mixed-Integer-
Programming (MIP) [Osiadacz et al., 1990]. The main mo-
tivation for using mixed-integer techniques is their ability
to include non-convex constraints and discrete decisions
in the optimization problem. There is a large literature
dedicated to the design of multi-agent cooperative control
strategies. For example, [Osiadacz et al., 1990],[Richards
and How, 2002] detailed the use of MIP for ”off-line”
trajectory design with collision avoidance constraints. In
? The research of Ionela Prodan is financially supported by the
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a different framework, [Bemporad and Morari, 1999] pro-
posed the combination of MIP and Model Predictive Con-
trol (MPC) to stabilize general hybrid systems around
equilibrium points. Finally, hierarchical methods are used
for multi-vehicle target assignment and intercept problems
in [Beard et al., 2002], [Earl and D’Andrea, 2007]. It is well
known that mixed-integer techniques are NP-hard [Garey
and Johnson, 1979], i.e. the computational complexity in-
creases exponentially with the number of binary variables
used in the problem formulation. Therefore, an important
contribution of this work is that we formulate the problem
using fewer binary variables through a more compact cod-
ification of the inequalities describing the feasible region
Stoican et al. [2011].

The contributions of the present paper are on the one hand
reducing the computational cost and on the other hand
efficiently handling an increased number of constraints. To
the best of the authors’ knowledge there does not exist any
similar methods and approaches in the open literature.

In this paper, the ideal formation is described starting
from the definition of ultimate bounds for the dynamics
in presence of additive disturbances, e.g. [Kofman et al.,
2007]. This choice is adopted in order to guarantee a degree
of robustness despite the fact that the real-time control
is performed using nominal prediction models. Once the
positions in the formation are established, the safety
regions are defined around the nodes of the formation.
The formation control problem is decomposed in two
separate problems:
• The ”off-line” definition of the ideal configuration. A
minimal configuration is determined with respect to a
given cost function under the constraints imposed by the
safety regions.



• In real-time, a receding horizon optimization combined
with task assignment relative to the minimal configuration
will be employed.
The real-time control is designed based on the following
two-stage procedure:

(1) Determine ”who-goes-where” in the formation. This
is equivalent with solving a standard assignment
problem, which is a special case of the so-called
Hitchcock Transportation Problem (TP) [Hallefjord,
1993].

(2) Solve a mixed-integer optimization problem according
to the target geometry of the formation and the
associated safety regions.

Finally, this two separate problems are embedded within a
model predictive control problem, leading to an optimiza-
tion problem for driving the group of agents to a specified
formation with associated target locations.

The rest of the paper is organized as follows. Section 2
describes the individual agents model and the ultimate
bound concept. Considering the nominal dynamics of the
agents, in Section 3, we state the mixed-integer optimiza-
tion problem to determine a desired target formation for
the group of agents and then, use the result for formulat-
ing the assignment problem. Further on, in Section 5 we
formulate the optimal control problem embedded within
MPC, which explicitly involves the agents dynamics. Fi-
nally, several concluding remarks are drawn in Section 6.

The following notations will be used throughout the paper:
Denote by N[a,b] the set of consecutive natural numbers
between a and b. Minkowski’s addition of two sets X
and Y is defined as X ⊕ Y = {A+B : A ∈ X , B ∈ Y}.
Denote Rn the space of real numbers and the projection
from Rn+p to the first p coordinates Rp as Projp(.).
The closure of a set S, cl(S) is the intersection of all
closed sets containing S. The collection of all possi-
ble nc combinations of binary variables will be noted
{0, 1}nc = {(b1, . . . , bnc

) : bi ∈ {0, 1} , i = 1, . . . , nc}. De-
note as Bnp = {x ∈ Rn : ‖x‖p ≤ 1} the unit ball of norm p,
where ‖x‖p is the p-norm of vector x.

2. PRELIMINARIES AND PREREQUISITES

In the sequel, several basic concepts are revisited in order
to provide a systematic procedure for describing a minimal
configuration for the group of agents. A set of Na linear
systems (vehicles, pedestrians or agents in a general form)
will be used to model the behavior of individual agents.
The ith system is described by the following discrete-time
invariant dynamics affected by additive disturbances:

xik+1d
= Aix

i
kd

+Biu
i
kd

+ wik, i ∈ N[1,Na], (1)

where xikd
∈ Rn are the state variables, uikd

∈ Rm is the
control input vector and wik ∈ Rn represents a bounded
disturbance for the agent i. Henceforth we assume the
following:

(1) The pairs (Ai, Bi) are stabilizable, with Ai ∈ Rn×n,
Bi ∈ Rn×m.

(2) The disturbance wi is bounded, i.e. w ∈ W, whereW
is a convex and compact set containing the origin.

The nominal systems corresponding to (1) for the ith

system is defined by:
xik+1 = Aix

i
k +Biu

i
k, i ∈ N[1,Na]. (2)

Remark 1. The system (1) will be used in oder to describe
the characteristics of the minimal group formation at the
”off-line” stage. The control defines the target positions
and the shape of the safety region around them. The
nominal system (2) is used ”on-line” for the optimization-
based real-time control. This will provide a computational
efficient nominal trajectory. The state of the real system
is then expected to reside in a tube around this nominal
trajectory [Raković et al., 2005], [Mayne et al., 2005].

2.1 Prerequisites

The following definitions in set invariance analysis are
necessary throughout the paper.
Definition 1. ([Blanchini and Miani, 2007]) A set Si is
called robustly positive invariant (RPI) for the discrete-
time system (1), if Aixikd

+Biuikd
+wik ∈ Si for all xikd

∈ Si,
wik ∈ W, with i ∈ N[1,Na], i.e. if

(Ai +BiKi)Si ⊕W ⊆ Si. (3)
Definition 2. ([Blanchini and Miani, 2007]) A set Ω∞ is
called minimal robustly invariant (mRPI) for (1) if it is a
RPI set in Rn contained in every RPI set for (1).
Remark 2. The existence of a stabilizable pair (Ai, Bi)
implies the existence of an optimal control law for each
agent i, Ki ∈ Rn×m such that the matrices Ai +BiKi are
stable, where the controller Ki, i ∈ N[1,Na] is constructed
either by a LQ design using the solution of the discrete
algebraic Riccati equation or alternatively by pole place-
ment technique. In both cases the existence of a quadratic
Lyapunov function is supposed to account for the infinite-
time cost function.

Taking into account the above remarks, the control law
for the ith system defined along the lines in [Mayne et al.,
2005] is used:

uikd
= uik +Ki(xikd

− xik), (4)

such that the tracking error of the ith nominal system (2)
is described as zik = xikd

− xik, with the dynamics:

zik+1 = (Ai +BiKi)zik + wik. (5)
Using this tracking error information, it follows that an
RPI set Szi

can be determined and the following expression
holds:

xikd
− xik ∈ Szi

for all zi0 ∈ Szi and k ≥ 0.

With these basic remarks, note that it is sufficient to adjust
the trajectory based on the nominal system (2), which does
not depend on disturbance. This always guarantees that
the real system (1) resides in a tube

xikd
∈ xik ⊕ Szi

along the reference path xik for all uik.

There are various algorithms able to offer arbitrary close
outer approximation of the mRPI set associated to (5)
(as for example, the approaches proposed by [Raković
et al., 2005], [Olaru et al., 2008]). It is worth mentioning
that, these algorithms ignore the exponentially increase



in the complexity of the representation. To overcome this
inconvenient, an ultimate bound construction is further
used, as proposed in [Kofman et al., 2007] due to its
low computational demands. The following theorem from
[Kofman et al., 2007] is recalled here as an instrumental
result for the linear class of systems (1).
Theorem 1. [Kofman et al., 2007] Consider a system
xk+1 = Axk + w and let A = V JV −1 be the Jordan
decomposition of A. Consider also a nonnegative vector
w such that |w| ≤ w, ∀w ∈ W ⊂ Rn. Then the set

ΩUB =
{
x ∈ Rn : |V −1x| ≤ (I − |J |)−1)|V −1|w

}
(6)

is robustly positive invariant with respect to the dynamics
xk+1 = Axk + w.

For the collision avoidance problem, the nominal dynamics
(2) will be used, but it is required that the real agents do
not intersect. Since their true position is unknown (due to
the disturbance affecting them), we can however be certain
that an agent i will always reside in a region

Si(xik) , xik ⊕ ΩiUB , (7)
where ΩiUB is the RPI set under the dynamics (5), as in
Theorem 1, with i ∈ N[1,Na].
Remark 3. For the ease of the computation, the agents
are considered as unidimensional points in the position
space. Even if they are characterized by a nonempty region
Ri ⊂ Rn, one can define the set in (7) as

S̃i(xik) , Si(xik)⊕Ri,
where Ri denotes the region describing the ith agent.

2.2 Exemplification for construction of the RPI sets

Consider a set of three heterogeneous agents in two spatial
dimensions with the dynamics described by:

Ai =


0 0 1 0
0 0 0 1
0 0 − µi

mi
0

0 0 0 − µi

mi

 , Bi =


0 0
0 0
1
mi

0
0 1

mi

 (8)

affected by the additive disturbances:
|wi| < [0.5 0.3 0.5 0.2]T . (9)

where [xi yi vix v
i
y]T , [uix u

i
y]T are the state and the input of

each system. The components of the state are: the position
(xi, yi) and the velocity (vix, v

i
y) of agent i, i ∈ N[1,3].

The parameters mi, µi are the mass of the agent i and
the damping factor, respectively: m1 = 45kg, m2 = 60kg,
m3 = 30kg , µ1 = 15Ns/m, µ2 = 20Ns/m, µ3 = 30Ns/m.

Using pole placement methods we obtain the values of the
gain matrices K1, K2, K3. The RPI sets ΩiUB are obtained
as detailed in (6) and their projections on the position
subspace are depicted in Figure 1.a. For the first system a
nominal trajectory (2) is constructed and one observes in
Figure 1.b that any trajectory affected by disturbance (1)
will reside in a tube described by a set as in (7).

3. OPTIMAL TARGET CONFIGURATION FOR A
GROUP OF AGENTS

Once a robustly positive invariant set (7) around each
agent (1) was defined, one can introduce a solution for the
collision avoidance problem. Then, in order to describe a

(a) (b)

Fig. 1. (a) Projection of the RPI sets Ω1,2,3
UB on the position

subspace, (b) Nominal trajectory and disturbance affected
trajectory for the first system.

minimal configuration for the group of agents a mixed-
integer optimization problem is solved. The results will be
further used such that the agents will converge towards
the predefined formation without colliding.

3.1 Configuration based on representation of RPI sets

In order to avoid collisions between two different agents i
and j inside the formation, it is imposed that

Si(xi) ∩ Sj(xj) = �, ∀ i, j ∈ N[1,Na], i 6= j (10)

where the polytope Si(xi) ⊂ Rn (a similar definition can
be stated for Sj(xj) ⊂ Rn) is defined through its implicit
half-space description:

Si(xi) =
{
x ∈ Rn : Hi(x− xi) ≤ Ki

}
, (11)

with Hi ∈ Rni×n, Ki ∈ Rni×1, ni is the number of half-
spaces describing the set and i ∈ N[1,Na].

In the sequel, the problem (10) of the intersection for
the sets describing safety regions (11) is detailed. To
guarantee that two (or more) agents will not superpose
one needs to give some conditions on (xi, xj) for each
pair (i, j) ∈ N[1,Na] × N[1,Na], i 6= j, that will make the
intersection of their safety regions void. Note that this is
important in both static and dynamic settings (as it will
be further detailed).

Without entering into an exhaustive presentation, the
solution to the problem (10) involves several basic concepts
related to parameterized polyhedra ([Loechner and Wilde,
1997], [Olaru and Dumur, 2004]).

The parametrized polytopes are defined in the implicit form
by a finite number of inequalities and equalities with the
note that the affine part depends linearly on a vector of
parameters for both equalities and inequalities. Each of the
safety regions (11) are actually parameterized polytopes
since are centered ”around” their agents, thus depending
on a vector of parameters xi ∈ Rn, xj ∈ Rn:

Si(xi) =
{
x ∈ Rn : Hix ≤ Hix

i +Ki

}
, (12)

with i, j ∈ N[1,Na] with i 6= j.

As such, the intersection of safety regions Si(xi) and
Sj(xj) may be described through a polytope Sij(p) with
p = [xi xj ]T , parameterized by the positions xi, xj of the
two agents:

Sij(p) =
{
x ∈ Rn :

[
Hi

Hj

]
x ≤

[
Ki

Kj

]
+
[
Hi 0
0 Hj

]
p

}
,

(13)



with p ∈ R2n, i, j ∈ N[1,Na] and i 6= j. In an augmented
space, state and parameters space, the parameterized poly-
tope Sij(p) is identified with a non-parameterized polytope
S̃ij ⊂ R3n:

S̃ij =
{[

x
p

]
∈ R3n :

[
Hi −Hi 0
Hj 0 −Hj

] [
x
p

]
≤
[
Ki

Kj

]}
(14)

[Loechner and Wilde, 1997] states that the p-dimensional
facets of S̃ij describe the parameterized vertices of Sij and
their existence domains. It follows that the projection of
S̃ij on the parameter space describes the region in which
at least a parameterized vertex of Sij exists:

Sijp = Projp(S̃ij). (15)
with the complement of the convex region Sp defined as:

Sijp = cl(X \ Sp) (16)
where X is presumed known or is considered to be the
entire space Rn.

Finally, it follows that Sijp describes all the pairs (xi, xj)
in the parameter space assuring the fulfillment of (10) for
any pair (i, j) ∈ N[1,Na] × N[1,Na], i 6= j.

The above computations can be readily extended to a
general case of Na agents. Only the case of a single pair
will be further considered, in the interest of compactness.

3.2 Minimal configuration

Supposing that the goal is to cluster the agents as closed
as possible to the origin, it is desired to obtain a minimal
configuration for the group of agents (1), with respect to
a given cost function under the constraints described in
(10). As a cost function, the sum of the distances of each
agent to the origin is chosen, which permits to state the
optimization problem:

min
xi, i∈N[1,Na]

Na∑
i=1

‖xi‖2 (17)

subject to: Si ∩ Sj = �, ∀ i, j ∈ N[1,Na], i 6= j .

Following the results in Subsection 3.1 the problem (17) is
rewritten as:

min
xi, i∈N[1,Na]

Na∑
i=1

‖xi‖2 (18)

subject to:
[
xi

xj

]
∈ Sijp , ∀ i, j ∈ N[1,Na], i 6= j .

It can be observed that the constraints introduced in (18)
are non-convex. This imposes the use of mixed integer
techniques for describing the feasible region, which means
that auxiliary binary variables are added to the problem.
This is a sensitive numerical problem since the exist-
ing branch and cut algorithms employed for solving MIP
problems are NP-hard in the number of binary variables.
Preserving a linear structure of the constraints, a generic
solution for reducing the number of binary variables neces-
sary in describing the exterior of a convex set is proposed
in Stoican et al. [2011].

(a) (b)

Fig. 2. (a) The non-convex feasible region (b) The minimal config-
uration for the three agents

Finally, solving the mixed-integer optimization problem
(18), a set of target positions is obtained:

T =
{
x1
f , x

2
f , . . . , x

Na

f

}
(19)

which describes the minimal configuration under the given
cost function.

3.3 Exemplification for minimal configuration

Consider the same set of three heterogeneous agents
with dynamics described by (8)–(9). Applying the re-
sults described in Subsection 3.1 for all possible pairs
(i, j) ∈ N[1,3] × N[1,3], i 6= j we obtain the feasible re-
gions where no combination of parameters (xi, xj) will
result in an intersection. Figure 2.a depicts a projection
on the position subspace of the feasible region. Then,
by solving the mixed-integer optimization problem (18)
we obtain the set of target positions T = {x1

f , x
2
f , x

3
f}

with x1
f = [1.15 − 0.46 0 0]T , x2

f = [−0.02 − 0.16 0 0]T ,
x3
f = [−1.13 0.63 0 0]T , as depicted in Figure 2.b.

4. OPTIMAL ASSIGNMENT

The problem described in this section is the optimal as-
signment problem from the field of combinatorial opti-
mization [Osiadacz et al., 1990], [Hallefjord, 1993]. Giving
the results in Subsection 3.2 we want to determine who
goes where in the predefined formation. This is equivalent
with finding the best permutation over the set of the final
positions in the target formation, T from (19).

4.1 Task assignment formulation

If a cost cij is associated to the assignment of agent j to
target xif , the problem of finding the best assignment is
defined as:

min
δij , i,j∈N[1,Na]

Na∑
i=1

Na∑
j=1

cijδij (20)

subject to:
Na∑
i=1

δij = 1,
Na∑
j=1

δij = 1, δij ∈ {0, 1}, ∀i, j,

where δij are the decision variables 1 :

δij =
{

1 , if target xif is assigned to agent j,
0 , otherwise.

1 The constraints in the assignment problem (20) ensure that each
agent is assigned to one unique target position.



(a) (b)

Fig. 3. (a)Assignment with a non-minimal cost (b) Assignment with
a minimal cost

The simplest way is to choose the cost cij as the distance
between the actual position of agent j and the desired
target position in the formation. Hence, the problem would
be to determine the minimal distance that an agent has to
travel to establish the optimal assignment in the specified
formation.

A more insightful way is to use the unconstrained dynam-
ics (2) of the agents to describe the cost of reaching from
the initial position to the desired position. Then, cij can
be described by a weighted norm

cij = (xj − xif )TP (xj − xif ), i, j ∈ N[1,Na] (21)

with the matrix P = PT ≥ 0 given by the Lyapunov
function or the infinite time cost-to-go, as long as the
agents follow the unconstrained optimum through the
control action:

uj = −Kj(xj − xif ) + ūi, ∀i, j ∈ N[1,Na], i 6= j, (22)

where ūi is chosen such that xif = Ajx
i
f + Bj ū

i, with
ūi = B−1

j (I −Aj)xif , if the matrix Bj is invertible (or the
alternative pseudo-inverse which allows the definition of a
fixed point for the nominal trajectory).

This optimization problem can be reduced to a simple LP
(Linear Programming) problem, hence it can be efficiently
computed.

4.2 Exemplification for optimal assignment

Consider the set of target positions T = {x1
f , x

2
f , x

3
f} ob-

tained in Subsection 3.3 and a set of initial positions.
Figure 3.a depicts a random assignment and Figure 3.b
illustrates an optimal assignment. It can be observed that
the cost of reaching the target positions is smaller in the
second case.

5. OPTIMIZATION-BASED CONTROL APPROACH

After finding the ideal position of the agents in the desired
formation the centralized MPC problem is designed based
on a two-stage procedure: the optimal assignment which
is re-evaluated at each iteration and the mixed-integer
optimization problem for driving the group of agents to
the specified positions with collision free behavior.

In the following we will refer to the set of Na constrained
systems as the global system defined as:

x̃k+1 = Agx̃k +Bgũk, (23)
with the corresponding vectors which collects the states
and the inputs of each individual nominal system (2) at

time k, i.e. x̃k = [x1
k
T |· · · |xNa

k

T
]T , ũ = [u1

k
T |· · · |uNa

k

T
]T

and the matrices which describe the model:
Ag = diag[A1, · · · , ANa

], Bg = diag[B1, · · · , BNa
].

So far the subsystems belonging to the global system are
completely decoupled. Further on, we consider an optimal
control problem for the global system where the cost
function and the constraints couple the dynamic behavior
of the individual agents. Also, perfect knowledge of each
agent dynamics described by equation (2) is available to all
the other agents. Consequently, the global model is used
in a predictive control context which permits the use of
non-convex constraints for collision avoidance behavior.

The receding horizon control is used in order to drive the
agents to a target assigned by the optimization problem
(20). Also the agents have to avoid collisions along their
evolution towards the formation, therefore the constraints
will impose that the inherited safety regions associated to
each agent do not intersect. In what follows this receding
horizon mixed-integer optimization problem is described
in detail.

5.1 Receding horizon optimization problem

Let x̃k+l|k denote the value of x̃ at time instant k + l
predicted at the current time instant k, k ∈ N. A finite
receding horizon implementation is typically based on
the solution of an open-loop optimization problem. An
optimal control action ũ∗ is obtained from the control
sequence ũ ,

{
ũk|k, ũk+1|k, · · · , ũk+N−1|k

}
as a result of

the optimization problem:

ũ∗ = arg min
ũ
VN (x̃k|k, ũk|k)

subject to: (24){
x̃k+l|k = Agx̃k+l−1|k +Bgũk+l−1|k, l ∈ N[1,N ]

xik+l|k, x
j
k+l|k ∈ S

ij
p , ∀i, j ∈ N[1,Na], i 6= j,

In order to assure that the target positions (19) are reached
the cost function is defined as:

VN (ξk|k, ũk|k) = ξTk+N |kP̃ ξk+N |k +
N−1∑
l=1

ξTk+l|kQ̃ξk+l|k +

+
N−1∑
l=0

ũTk+l|kR̃ũk+l|k, (25)

with ξk , x̃k−xi(k)f and xi(k)f represents the optimal target
position at current time k. Here Q̃ = Q̃T ≥ 0, R̃ > 0
are the weighting matrices with appropriate dimensions,
P̃ = P̃T ≥ 0 defines the terminal cost and N denotes the
length of the prediction horizon. After introducing ξ in
(25), the cost function is reformulated as:

VN (x̃k|k, ũk|k) = x̃Tk+N |kP̃ x̃k+N |k +
N−1∑
l=1

(x̃Tk+l|kQ̃x̃k+l|k +

+2F̃T x̃k+l|k) +
N−1∑
l=0

ũTk+l|kR̃ũk+l|k, (26)

with F̃T , −[xi(1)f · · ·xi(k)f ]Q̃.



(a) (b)

Fig. 4. (a)Target positions in the minimal configuration (b) Trajec-
tories of the three agents

Through the task assignment mechanism the association
between an agent and a target position may change at any
moment of time. This means that the matrices defining
the cost function must be computed at every moment of
time.

5.2 Exemplification for driving the agents towards the
predefined formation

Consider the three agents described as in (8) with their
target positions obtained in Subsection 3.3. We next
apply the receding horizon scheme (24) for the global
system with a prediction horizon N = 2. The optimal
trajectories for the agents are obtained such that the set
of target points is reached through task optimization and
under state constraints. The effectiveness of the present
algorithm is confirmed by the simulation depicted in
Figure 4.b, where the evolution of the agents is represented
at three different time instances. The agents successfully
reach their target positions in the predefined formation
(depicted in Figure 4.a) without violating the constraints.

6. CONCLUSIONS

This paper presents first several tools in order to provide
a systematic off-line procedure for the control of multiple
agents towards a minimal configuration. Second, in real-
time a two stage receding horizon control design is adopted
for driving the agents to the predefined formation with col-
lision free behavior. At a first stage an optimal assignment
problem which is re-evaluated at each iteration is solved
in order to find the best association between an agent and
the target position within the formation. In a second stage
we solve a mixed-integer optimization problem according
to the target geometry of the formation and the associated
safety regions. Mixed-integer techniques are employed in
order to assure a collision free behavior along the evolution
of the agents.
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