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Abstract: This paper presents the application of several advanced control techniques to a nonlinear strongly coupled 
multivariable robot. The main difficulties come from the flexibility of the mechanical chain, but also from 
the lack of joints sensors. In a first stage, a state-feedback linear quadratic (LQG) technique and a model 
predictive control (MPC) are designed using optimal observers. Considering additional sensors that provide 
measurements of accelerations increases the robustness of the controlled system. The second stage consists 
into adding a supplementary robustness layer (i.e. explicitly considering the robust stability under 
unstructured uncertainties) on the stabilizing MPC developed at the previous stage. Comparative results are 
proposed highlighting the trade-off between robust stability and nominal performance for disturbances 
rejection. 

 

1 INTRODUCTION 

Robots are nonlinear, often multivariable systems, 
with a strong interaction between their components. 
Modelling procedures (Book, 1989, Spong et al., 
2005, Sciavicco and Siciliano, 1996) for robots can 
be difficult, leading sometimes to sophisticated 
models, which cannot be used for control. In 
addition, the models have to offer an accurate image 
of the real robots, while preserving the simplicity. 
Neglected or poorly known dynamics can affect the 
behaviour of the controlled robots. Therefore a need 
for robust control techniques is identified. Different 
control laws have been developed: robust state-
feedback controllers (Tomei, 1994), output-feedback 
controllers (Moreno-Valenzuela et al., 2008), robust 
nonlinear control for robots with parametric 
uncertainties (Spong, 1992), LPV (linear parameter 
variant) control (Halalchi et al., 2010). Predictive 
control has also been applied on robots (Merabet and 
Gu, 2009, Maalouf, 2006, Hedjar et al., 2002). 

This paper proposes an application of robustified 
control techniques to a medical robot (Al Assad et 
al., 2008), which is a nonlinear multivariable 
strongly-coupled system. In fact, this paper is an 
extension of the work proposed by (Stoica et al., 
2009) in which a monovariable model of the pivot 

(only one axis model) of the same robot is studied. 
In this paper, we consider two stabilizing initial 
control laws (linear quadratic control and predictive 
control) for a two axes model of the robot. In order 
to explicitly guarantee robust stability under 
unstructured uncertainties, an offline robustification 
procedure of the initial stabilizing MPC (Model 
Predictive Control) law is proposed. This 
robustification method is based on the optimization 
of a Youla-Kučera parameter also known as the Q 
parameter. Addressing the robust stability under 
unstructured uncertainties leads to a convex 
optimization problem, solved with LMI (Linear 
Matrix Inequality) tools. The advantage of this 
robustification method is that it unifies the qualities 
of both robust control and predictive control, while 
keeping a simple implementation: a feedback-gain 
coupled with an observer gain and a Youla 
parameter. The main novelty of this paper is the 
application of the proposed robustified controllers 
on the multivariable two axes model of the robot. 

The proposed approach is an alternative to the 
current implemented structure based on LQ (linear 
quadratic) regulators for each axis (Al Assad et al., 
2007). 

This paper is organized as follows. Section 2 
describes the medical robot, offering a Lagrange 



 

model for the Pivot and C-arc system. Section 3 
deals with control strategies applied on the robot, 
while Section 4 offers some details about the 
technique used to robustify the MPC controller. 
Section 5 focuses on an analysis of the results 
obtained with the proposed control laws. Finally, 
some concluding remarks and perspectives are given 
in Section 6. 

2 DESCRIPTION OF THE ROBOT 

The system considered in this paper is a vascular 
robot (Al Assad et al., 2008) developed by General 
Electric Healthcare and used for medical X-ray 
imaging. It is a four-degree of freedom open-chain 
robot composed of the following links: the L-arm 
(revolute joint), the pivot (revolute joint), the C-arc 
(which can be considered as a revolute joint around 
a virtual axis crossing the C-arc centre) and the lift 
(prismatic joint). Each joint is driven using a DC 
motor. 

The robot is a nonlinear system (especially due 
to the irreversibility of worm gears) and a strongly 
coupled multivariable system (due to the 
interconnection of its joints). The model takes into 
account the hard nonlinearities of the system such as 
joints friction and gear’s irreversibility. The 
flexibility of each axis is modelled as a two-mass 
spring system representing one vibrating mode 
(Fig. 1). A detailed model of the entire robot can be 
found in (Al Assad et al., 2008). 

 

Figure 1: Two-mass spring system. 

This paper considers the flexible model of only 
two axes: the pivot and the C-arc. The other two 
axes (the L-arm and the lift) were considered to be 
fixed. The dynamics of this model is given by the 
following Lagrange equations: 
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where [ ]Tq 32 θθ=  and [ ]Tmmmq 32 θθ=  are 

respectively the vectors of joints angular position 

and motors shaft angular position of the pivot and 
the C-arc. More exactly, the index ‘2’ is further used 
for the pivot elements, ‘3’ denotes the C-arc 
elements and the index ‘m’ is used for each motor. 

),diag( 32 mmm JJ=J , ),diag( 32 vvv ff=F ,

),diag( 32 kk=K  and ),diag( 32 dd=D  are diagonal 

matrices belonging to 22×ℜ  which contain the 
parameters of each axis: inertia ( mJ ), viscous 

friction ( vF ), joint stiffness (k) and respectively 

joint damping (d). The matrix 22)( ×ℜ∈qA  is the 

robot inertia matrix, the vector 12),( ×ℜ∈qq C  

represents the Coriolis and centrifugal torque/forces, 
12)( ×ℜ∈qQ  represents the gravitational forces 

vector and [ ] 12
32

×ℜ∈ΓΓ= T
mmmΓ  is the input 

torques vector (in fact the vector of control signals). 
The matrices from (1) can be detailed as: 
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with the following notations: 
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The notations 3333322 ,,,,,, ZZYZXZXYXXZZYZ  

2MX , 2MY , 3MX , 3MY  refer to the inertia moments of 

the pivot or the C-arc, expressed in the 
corresponding coordinate. 

Equation (1) can be rewritten as a nonlinear 
state-space representation: 
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where the state of the model is defined as 

[ ]TT
m

TT
m

T qqqqx = . 

3 CONTROL STRATEGIES 

This section presents the theoretical background of 
the LQG and MPC control techniques that will be 
applied on the nonlinear system (1). 

For control design purposes the nonlinear model 
(2) is linearized around an operating point 0x  leading 

to the following continuous time LTI (linear time 
invariant) state-space representation: 
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where nn
cA ×ℜ∈ , mn

cB ×ℜ∈ , 
np

y
yC
×ℜ∈ , 

np
z

zC ×ℜ∈ . [ ]Tmmtu 32)( ΓΓ=  represents the 

vector of the control signals, mqty =)(  represents 

the vector of the controlled signals and )(tz  is the 

vector of the measured signals. Usually, available 
sensors in robot arms can provide only the velocity 
and the position of the motor shaft. In order to 
increase the robustness of the control law, additional 
sensors will be considered to measure the joints 

accelerations. This leads to [ ]TTT
m qqtz =)(  and 
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, where qC   contains only the first two 

lines of the cA  matrix. 

3.1 State Feedback LQG Control 

A state feedback control scheme is considered as a 
first approach. Consider the LTI system (3). If the 
pair ( cc BA , ) is stabilizable and ( zc CA , ) is 
detectable then the control law that optimizes the 
cost function (4) is given by )()( 1 txLtu −= . 
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In order to cancel the static errors an integral 

action on the motor shaft position error 

 =− dtdtqq spm  )( ε  is added (with spq  the set-

point of the motors shaft angular position), leading 
to the following augmented state vector 
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=   ε . The new matrices 

of the augmented state representation are: 
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(5) 

 
Finally, since the sensors do not provide all the 

states, an observer (6) is incorporated into the 
control procedure: 
 

( ))(ˆ)()()(ˆ)(ˆ 1 txCtzKtuBtxAtx zcc −++=  (6) 

 
In order to minimise the influence of the 

observer on the control law robustness (Doyle and 
Stein, 1979), an asymptotic Kalman filter is 
proposed as observer: 
 

1
111
−Σ= WCK T

z  (7) 

 
where 1Σ  is the unique positive definite solution of 

the Riccati equation: 
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11   and ,,
11

WVRQ JJ  are symmetric positive 

definite weighting matrices that will be used as 
tuning parameters. 

3.2 Model Predictive Control (MPC) 

The second control technique applied on the two 
axis model (1) is an unconstrained MPC. The 
motivation of this choice consists in the MPC’s 
capacity of handling multivariables systems 
(Camacho and Bordons, 2004, Maciejowski, 2001). 
The model used by MPC is obtained from (3) after 
discretizing with a sample time sT : 
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with mn
d

nn
d BA ×× ∈ℜℜ∈  and . For the steady state 

errors cancellation, an integral action on the control 
signal )()1()( kukuku Δ+−=  is added leading to 
the extended state-space representation described by: 
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with [ ]TTT
I kukxkx )1()()( −= . 

In order to design the MPC gain the following 
criterion is minimised: 
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using as tuning parameters: the prediction horizons 

21  , NN , the control horizon uN  and the weightings 

22
, JJ RQ . Here spx  represents the set-point of the 

state vector. It is considered that 

uNiiku ≥∀=+Δ ,0)( . The states are calculated 

using the prediction model (9) as follows: 
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with the state estimation )(ˆ kxI  obtained from the 
optimal Kalman filter: 
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where 1
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the unique positive definite solution of the algebraic 
Riccati equation: 
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22  and WV  are symmetric positive definite weighting 

matrices used as tuning parameters for the observer. 
Next, applying the receding horizon principle, which 
is specific to predictive control, the following 
control law is obtained: 

)(ˆ)()( 2 kxLkxFku Ispsp −=Δ  (15)

with the set-point pre-filter rF  and the MPC gain 

2L (Fig. 3 and Fig. 4). 

4 ROBUSTIFIED MPC 

This subsection focuses on the procedure used to 
enhance robustness to the Model Predictive Control 
law developed in the Section 3.2. The basic idea is 
to add a stable Youla-Kučera parameter (Kučera, 
1974, Youla et al., 1976) to parameterize the class of 
all stabilizing controllers starting from an initial 
stabilizing state-feedback controller coupled with an 
observer. This approach is known in the literature as 
the modified controller paradigm (Boyd and Barratt, 
1991, Maciejowski, 1989) and consists into 
modifying the initial stabilizing controller by adding 
an auxiliary input u′  and an output y′  with a zero 
transfer in between Fig. 2). This procedure enables 
to find a controller belonging to the class of all 
stabilizing controllers that will improve the 
robustness of the initial control law, without 
changing the initial Input/Output behaviour (i.e. the 
transfer from w to z) of the initial closed-loop in the 
absence of disturbances. 
 

 

Figure 2: Class of all stabilizing controllers. 

The transfer zwT  can be represented using the 

LLFT (Lower Linear Fractional Transformation) 
form of the initial controlled system coupled with 
the Youla-Kučera parameter, denoted Q parameter, 
with 022 =

zw
T : 

zwzwzw
TQTTTzw 211211 +=  (16) 

Note that this structure is affine in the Q parameter, 
allowing convex specifications in closed-loop. 

The next step is to apply this strategy to the 
MPC law proposed in Section 3.2. Different 
scenarios can be considered depending on the choice 
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of the transfer zwT . For instance, if the aim is to 

improve stability robustness under additive 
unstructured uncertainties, then the following choice 
has to be done bzzw u

TT =  (Fig. 3). For robust 

stability under multiplicative uncertainties, the 
following transfer has to be considered bzzw y

TT =  

(Fig. 4), which is equivalent to the complementary 
sensitivity function. 

 
Figure 3: Robustification under additive unstructured 
uncertainties. 
 

 

Figure 4: Robustification under multiplicative 
unstructured uncertainties. 

In order to improve the robustness of the initial 
control the following optimization problem has to be 
solved: 
a. Find ∞ℜ∈ HQ  that improves the robust 
stability under additive unstructured uncertainties 
solving: 

∞ℜ∈∞ℜ∈ ∞∞

= ubu
HQ

zb
HQ

TWT minmin  (17)

b. Find ∞ℜ∈ HQ  that improves the robust 
stability to multiplicative unstructured uncertainties 
solving: 

∞ℜ∈∞ℜ∈ ∞∞

= byy
HQ

bz
HQ

TWT
y

minmin  (18)

Here uW  and yW  denote appropriate weighting 
terms chosen in order to accomplish the desired 

robustness specifications in a specified frequency 
range. 

As the robustification procedure is identical for 
both additive and multiplicative uncertainties, the 
notation zwT  will be further used for the general 
case. 

Since the Q parameter initially varies in the 
infinite-dimensional space of stable transfers 
( ∞ℜH ), it is suitable to restrict the search. A sub-

optimal solution (Scherer 2000) is to consider a FIR 
(Finite Impulse Response) filter. The state-space 
form ( )QQQQ ,D,C,BA  of this multivariable Q 

parameter will be further used, with a known (a 

priori fixed) pair ( ) yQyQyQy pnpnpnp
QQ,BA

×× ℜ×ℜ∈  

and an unknown pair ( ) yQy pmnpm
QQ,DC

×× ℜ×ℜ∈  

that will result from the optimization procedure (see 
(Stoica et al., 2007) for more details). Here Qn  

denotes the degree of the Q polynomial. The 
optimization problems (17) and (18) can be 
reformulated as a matrix inequality using the 
following theorem. 

Bounded real lemma (Boyd et al., 1994, 
Scherer, 2000, Clement and Duc, 2000). A linear 
discrete time invariant system with the state-space 
representation ( )clclclcl ,D,C,BA  is stable and has a 

∞H  norm lower than γ  if and only if: 
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with “ 0 ” (“ 0 ”) denoting a strictly positive 
(negative) definite matrix. 

Using a change of variables and two congruence 
transformations (Scherer, 2000, Clement and Duc, 
2000), the expression (19) can be further 
transformed into a LMI (Linear Matrix Inequality) 
with the decision variables: 1X , γ  and the Q 
parameter hidden in the closed-loop matrices. An 
exact form of this LMI and also the entire procedure 
(which is outside the aim of this paper) leading to 
this LMI can be found in (Stoica et al., 2007). 

Hence, depending on the considered transfer 
minimisation, the resulting optimization problem is 
the following: 
a. only robust stability under additive 
unstructured uncertainties: minimize γ  subject to 

the Linear Matrix Inequality 0LMI  using the state-



 

space representation ( )clclclcl ,D,C,BA  of the transfer 

bzzw u
TT = : 

γ
0

min
LMI

 (20) 

b. only robust stability under multiplicative 
unstructured uncertainties: minimize γ  subject to 

the Linear Matrix Inequality CSLMI  using the state-

space representation ( )clclclcl ,D,C,BA  of the transfer 

bzzw y
TT = : 

γ
CSLMI

min  (21) 

c. robust stability under both additive and 
multiplicative unstructured uncertainties: minimize a 
given cost function subject to the two LMIs defined 
before: 

)(min 00
,0

CSCS
LMILMI

cc
CS

γγ +  (22) 

where ℜ∈CScc ,0  are weighting terms and 0γγ =  

in 0LMI  and CSγγ =  in CSLMI . 
Note that this robustification procedure can be 

applied to every state-feedback controller coupled 
with an observer. The particular case of MPC is used 
here due to its good performance and simplicity of 
implementation when dealing with multivariable 
systems. 

5 SIMULATION RESULTS 

The control strategies proposed in this paper (LQG 
control, MPC and robustified MPC) are now applied 
to the nonlinear model (1). The LQG and MPC 
control laws are designed to achieve the same 
performances and to respect the admissible motors 
torques. 

The LQG controller is designed in continuous-
time in accordance to an existing LQ controller 
(Stoica et al., 2009) which is already implemented 
on the real robot. 

The linearized continuous-time model (3) used 
to design the LQG control law was obtained via the 
Matlab® function ‘linmod’. A sample time 

005.0=sT s and a zero-order hold on the inputs 

discretization method were used to determine the 
prediction model (9) used by MPC. 

5.1 Tuning parameters 

First of all, based only on the information of the 
angular position sensors from the Pivot and C-arc a 
LQG controller is designed (denoted LQGp), using 

the weighting matrices )10,10diag( 97
1

−−=JR  and 

)4000,5000,80,50,80,20,1,1,1,1diag(
1

=JQ . The 

observer weightings are chosen as 

)1.0,1.0,10,10diag( 66
1

−−=W  and T
cc BBV α=1 , 

with 510=α . 
Another LQG controller (denoted LQGa) which 

uses additional information from the accelerometers 
is next developed. This increases the initial 
robustness of the controller. The poles of the closed-
loop obtained with LQGa are presented in Fig. 5. 

 

Figure 5: Closed-loop LQGa poles 

Secondly, the initial MPC (denoted MPC0) is 
designed with the following tuning parameters: 

),,,diag( ,14N,58N,8 00u21 2 JJJ RRRN ====

( )87
0 10,10diag −−=JR , ( )00 ,,diag

2 JJJ QQQ = , 

( )30,30,30,80,1,1,1,1diag0 =JQ . The MPC 

controller uses the information of both angular 
positions and accelerations of the Pivot and C-arc. 

Thirdly, two robustified controllers are further 
developed: 
a. RMPC0 that considers only robust stability 

under additive unstructured uncertainties, 
obtained from MPC0 with the Q parameter 
which is the solution of (20); 

b. RMPC1 that takes into account robust stability 
under both additive and multiplicative 
unstructured uncertainties. This robustified 
controller is obtained from MPC0 coupled with 
the Q parameter from (22). The coefficients 



 

50 and 10 == CScc  are used in the optimization 

problem (22). 
In both cases the degree of the Q polynomial is 
chosen equal to 10=Qn . The weighting uW  (Fig. 3) 

on the control increment is chosen as a high-pass 

filter 05.0/)95.01( 1−−= zWu  and the weighting 

yW  (Fig. 4) is chosen as 1.0/)9.01( 1−−= zWy , in 

order to favor the high frequency range. The total 
number of scalar decision variables associated with 
the LMI problem (20) is 948 and with the LMI 
optimisation problem (22) is 1387. 

5.2 Frequency analysis 

In the case of a multivariable system, the classical 
criteria for the analysis of stability margins such as 
the Nyquist criterion are no longer valid. This is the 
main reason why an analysis of the maximal 
singular values, which can give a meaningful 
assessment of the robustness of the controlled 
system, is further proposed. 

In a first stage, the maximal singular values of 
the transfer from b  to u  obtained with the LQG 
controller that uses only the motor shaft positions 
(LQGp) and for the LQG with additional 
measurements of the joints accelerations (LQGa) are 
illustrated in Fig. 6. A significant improvement of 
the controlled system behavior with the LQGa 
controller can be noticed at the high frequency 
range. Thus the LQGa controller is kept for further 
comparisons with MPC0, RMPC0 and RMPC1. For 
simplicity reason the LQGa controller is further 
denoted LQG. 

 

Figure 6: Maximal singular values for the transfer from b 
to u. 

 

Figure 7: Maximal singular values for the transfer from b 
to u. 

In a second stage, a comparative analysis of the 
maximal singular values from b to u is offered in 
Fig. 7. The ∞H  norm of transfer ubT  (which is the 

maximum of the maximal singular values) is 
progressively decreased from LQG to MPC0 and 
then to RMPC0. The MPC and the robustified MPC 
controllers have better frequency responses in the 
high frequency range than the LQG controller. The 
robustified controller RMPC1 offers a good trade-
off in terms of ∞H  norm between MPC0 and 

RMPC0. 
From the analysis of the maximal singular values 

of the complementary sensitivity function depicted 
in Fig. 8, the LQG controller has the largest 
bandwidth leading to a better behavior in the time 
domain. The ∞H  norm of the transfer byT  is very 

similar for all the considered controllers. 

 

Figure 8: Maximal singular values of the complementary 
sensitivity function. 

5.3 Time domain comparison 

The time domain responses are obtained using a step 
set-point of magnitude 1.02 =

sp
θ rad for the pivot 



 

and 15.03 −=
sp

θ rad for the C-arc. A step 

disturbance of magnitude 200Nm at time 2s on both 
axes was also considered. 

Figure 9 presents the outputs mq  of the 

nonlinear model of the 2 axes of the robot. All the 
controllers offer good tracking, a time response 
without overshoot (which is imposed by the demand 
specifications) and an admissible disturbance 
rejection. The time responses are very similar for all 
the controllers ( s72.0=rPivott  and s62.0=rCarct ). 

The LQG controller offers the fastest disturbances 
rejection. The disturbances rejection is slower after 
robustification, which was expected due to the 
frequency domain behavior. In fact the Youla-
Kučera parameter will improve the robust stability 
under additive uncertainties and will slow down the 
disturbances rejection. The controller RMPC1 offers 
a good trade-off between the considered controllers 
(see the corresponding zoom of Fig. 9). 

 

 

Figure 9: Output mq  – Motor shaft positions comparison. 

Figure 10 shows the control signals applied on 
the nonlinear model. All the controllers offer 
admissible control signals that can be implemented 
on the real robot. A small oscillation (which could 
come from numerical problems) can be seen on the 
LQG controller. 

 

 

 

Figure 10: Control signals – Motor torques comparison. 

The robust synthesis algorithms, usually offer 
large controllers. In this case the Youla-Kučera 
parameter increases the dimension of the RMPC1 
controller with 20 states. In order to reduce the 
controller states a balanced reduction of the Youla-
Kučera parameter based on the Hankel singular 
values is considered. The final controller (denoted 
RMPC1r) uses a reduced Youla-Kučera parameter 
that has only 4 states. Figure 11 illustrates the 
singular values of the Youla-Kučera parameter 
before and after the order reduction. 

 

 
Figure 11 Singular values of Youla parameter before and 
after order reduction. 



 

The influence of an unstable transmission zero 
(determining the behavior at the beginning of the 
simulation) over the pivot axis can be easily noticed 
in Fig. 9 and Fig. 10. The existence of this unstable 
zero explains the choice of the prediction horizons 

114N,18 u1 >=>=N . 
A robust analysis of the results is also proposed. 

The aim is to verify the stability of the controllers 
with the nonlinear model, considering structured 
uncertainties on the joint stiffness K  and motor 
inertia mJ . Only RMPC1 and RMPC1r remain 
stable for all the considered parameters variations as 
synthesised in Table 1, where the following 
notations have been used: 

- Case 1: KK %20− ; 
- Case 2: KK %20+ ; 
- Case 3: mm JJ %20− ; 
- Case 4: mm JJ %20+ . 

Table 1: Structured uncertainties robustness. 

 LQG MPC RMPC0 RMPC1 RMPC1r 

Case 1      

Case 2      

Case 3      

Case 4      

 
Figure 12 illustrates the case where an 

uncertainty of %20−  is considered on the motors 
inertia: mm JJ %20− . Despite this uncertainty and 
the nonlinearities of the system, the robustified 
controller RMPC1 still stabilises the system. 
Moreover, it can be observed that this property is 
conserved even after the order reduction. 

 

 

Figure 12: Output mq . Nonlinear model with 
uncertainties of mm JJ %20− . 
 

6 CONCLUSIONS 

This paper proposes a comparison between 
advanced control techniques for the control of the 
angular position of a two axes model of a 
cardiovascular robot, which is a strongly nonlinear 
multivariable system. In order to improve the 
controllers’ robustness, several layers of 
robustification are further considered. 

A linear quadratic controller (LQG) and a Model 
Predictiv Control (MPC) law are first designed to 
achieve similar level of performance for the time-
domain response. In a first step, additional 
measurements of the joints accelerations are used in 
order to increase the initial level of robustness of the 
two controllers. Robust stability under unstructured 
uncertainties is explicitly considered in the synthesis 
of the robustified MPC controllers, while, for the 
LQG controller, the robust stability under 
unstructured uncertainties is verified a posteriori. 
Simulation results show a trade-off between robust 
stability and disturbances rejection. 

The robustness towards the variation of some 
parameters (i.e. structured uncertainties) is verified a 
posteriori for all the considered controllers. An 
interesting perspective is to take into account these 
structured uncertainties during the synthesis of the 
robustified MPC. A possibility is to consider a 
polytopic uncertain domain around the nominal 
model as in (Stoica et al., 2009) and to guarantee the 
stability over the specified uncertain polytopic 
domain solving a BMI (Biliniar Matrix Inequality) 
optimisation problem. 

REFERENCES 

Al Assad, O., Godoy, E., Croulard, V., 2008. Macroscopic 
drive chain efficiency modeling using state machines. 
17th IFAC World Congress, Seoul, pp. 2294-2299. 

Al Assad, O., Godoy, E., Croulard, V., 2007. 
Irreversibility modeling applied to the control of 
complex robotic drive chains. 4th ICINCO, Angers, 
pp. 217-222. 

Book, W.J., 1989. Modelling, design, and control of 
flexible manipulators arms: status and trends. NASA 
Conference on Space Telerobotics, vol. 3, pp. 11-24. 

Boyd, S., Barratt, C., 1991. Linear controller design. 
Limits of performance, Prentice Hall. 

Boyd, S., Ghaoui, L.El., Feron, E., Balakrishnan, V., 1994. 
Linear matrix inequalities in system and control 
theory, SIAM Publications, Philadelphia. 

Camacho, E.F., Bordons, C., 2004. Model predictive 
control, Springer-Verlag. London, 2nd edition. 

Clement, B., Duc, G., 2000. A multiobjective control via 
Youla parameterization and LMI optimization: 



 

application to a flexible arm, IFAC Symposium on 
Robust Control and Design, Prague. 

Doyle, J.C., Stein, G., 1979. Robustness with observers. In 
IEEE Trans. Automatic Control, vol. AC 24, pp. 607-
611. 

Halalchi, H., Bara, G.I., Laroche E., 2010. LPV controller 
design for robot manipulators based on augmented 
LMI conditions with structural constraints, IFAC 
Symposium on System, Structure and Control, Ancona, 
Italy. 

Hedjar R., Toumi, R., Boucher, P., Dumur, D., 2002. 
Feedback nonlinear predictive control of rigid link 
robot manipulators, IEEE ACC, Anchorage, AK, 
USA, pp. 3594-3599. 

Kučera, V., 1974. Closed loop stability of discrete linear 
single variable systems, Kybernetika, vol. 10(2), 
pp. 146-171. 

Maalouf, A.I., 2006. Improving the robustness of a 
parallel robot using Predictive Functional Control 
(PFC) tools, 45th IEEE CDC, San Diego, CA, USA 
pp. 6468-6473. 

Maciejowski, J.M., 2001. Predictive control with 
constrains, Prentice Hall. 

Maciejowski, J.M., 1989. Multivariable feedback design, 
Addison-Wesley Publishing Company, Wokingham.  

Merabet, A, Gu, J., 2009. Generalized predictive control 
for single-link flexible joint robot, International 
Journal on Sciences and Techniques of Automatic 
Control, vol. 3, no. 1, pp. 890-899. 

Moreno-Valenzuela, J., Santibáñez, V., Campa, R., 2008. 
On output feedback tracking control of robot 
manipulators with bounded torque input, International 
Journal of Control, Automation, and Systems, vol. 6, 
no. 1, pp. 76-85. 

Sciavicco, L., Siciliano, B., 1996. Modelling and control 
of robot. McGraw-Hill Company, Inc., New York. 

Scherer, C.W., 2000. An efficient solution to multi-
objective control problem with LMI objectives. 
Systems and Control Letters, 40, pp 43-57. 

Spong, M.W., Hutchinson, S., Vidyasagar, M., 2005. 
Robot modeling and control, John Wiley Sons Inc., 
2005. 

Spong, M.W., 1992. On the robust control of robot 
manipulators, IEEE Transactions on Automatic 
Control, vol. 37, pp. 1782-1786. 

Stoica, C., Rodríguez-Ayerbe, P., Dumur, D. 2007. 
Improved robustness of multivariable Model 
Predictive Control under model uncertainties, 4th 
ICINCO, Angers, France, pp. 283-288. 

Stoica, C., Al Assad, O., Rodriguez-Ayerbe, P., Godoy, E. 
Dumur, D., 2009. Control of a flexible arm by means 
of robustified MPC, European Control Conference, 
Budapest, Hungary, pp. 2229-2234. 

Tomei, P., 1994. Tracking control of flexible joint robots 
with uncertain parameters and disturbances, IEEE 
Transactions on Automatic Control, vol. 39, no. 5, pp. 
1067-1072. 

Youla, D.C., Jabr, H. A., Bongiorno Jr., J.J., 1976. 
Modern Wiener-Hopf design of optimal controllers – 

part II : the multivariable case, IEEE Transactions on 
Automatic Control, vol. 21(3), pp. 319-338. 


