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Abstract: This paper deals with avoidance constraints while following an optimal trajectory for
a group of agents operating in open space. The basic idea is to use the Model Predictive Control
(MPC) technique to solve a real time optimization problem over a finite time horizon. Following
a specified trajectory, the agents move in the same direction and eventually they end up in a
particular formation. Combining the optimization-based control study with the ability of MPC
to handle convex and non-convex constraints allows a thorough analysis of the motion control
of a group of agents with linear dynamics subject to state constraints. Avoidance constraints
are also added to the optimization problem when the agents are operating in an environment
with obstacles. A flat trajectory is planned in the physical open space allowing the agents to
maneuver successfully in such a dynamic environment and to reach a common objective.
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constrains

1. INTRODUCTION

Questions about achieving a formation of a group of agents
and how to ensure that all the agents avoid collision both
among the group and with the obstacles around them
arise when dealing with multi-agent systems [Richards and
How, 2005]. The goal of this paper is to control a set of
subsystems having independent dynamics while achieving
a common objective. The problem is relevant in many
applications involving the control of cooperative systems
[Mesbahi and Egerstedt, 2010], [Blondel et al., 2005],
[Olfati-Saber and Murray, 2002]. Among the applications,
can be cited the characterization of pedestrian behavior in
the crowd [Helbing et al., 2000], [Fang et al., 2010]. Such
a characterization is essential for evaluating the safety of
the social infrastructures. An important property of these
cooperating systems is that the group behavior is not im-
posed by one of the agents, this behavior results from the
local interaction between the agents and their neighbors.
For instance, every pedestrian in a crowd knows where the
other pedestrians in its neighborhood are heading, but it
does not know the average heading of all pedestrians in
the crowd.

This paper considers the Model Predictive Control (MPC),
a widely used technique in control community due to
its ability to handle control and state constraints, while
offering good performance specifications [Camacho and
Bordons, 2004], [Rossiter, 2003], [Mayne et al., 2000], [Ma-
ciejowski, 2002], [Bemporad and Morari, 1999]. This paper
deals with a group of agents in a predictive control context,

which enables the inclusion of state constraints, both for
collision avoidance between the agents and for the velocity
of each agent. The design of vehicle formation through
the use of MPC is detailed in [Dunbar and Murray, 2002].
Other approaches can be found in aerospace applications,
where MPC is applied to spacecraft formation keeping
[Manikonda et al., 1999], but no avoidance constraints are
considered. The collision avoidance between the agents is
known to be a difficult problem, since certain constraints
require the use of auxiliary binary variables. In particular,
in [Bemporad and Morari, 1999], the authors considered
such an approach based on the use of auxiliary binary vari-
ables together with MPC, with examples in hybrid control
systems. In [Richards and How, 2005], the collision and
obstacle avoidance are included in the trajectory planning
of spacecraft vehicles, but the velocity constraints are not
taken into account.

The present paper considers a two-dimensional environ-
ment for the group of agents, with supplementary non-
convex velocity constraints that can also be handled by
adding binary variables.

An important contribution to previous work is the decrease
of the complexity of the control design problem. This is
obtained by reducing the number of auxiliary binary vari-
ables used to reformulate the non-convex state constraints
in a linear form.

The path following problem formulated in a non-convex
constrained predictive control framework is described from
the standard centralized point of view as a receding hori-



zon mixed integer optimization problem. Using the pre-
dicted control laws, the agents move in the same direction
following a specified trajectory. The imposed state con-
straints will enforce a certain safety distance, eventually,
the agents ending up in a particular formation. The speci-
fied trajectory of the group of agents can be generated us-
ing the differential flatness formalism [Van Nieuwstadt and
Murray, 1998], [De Doná et al., 2009]. In [De Doná et al.,
2009], the use of MPC is combined with the differential
flatness formalism for trajectory generation of nonlinear
systems. In conclusion the goal of our paper is to achieve
an agent group formation only by imposing constraints
on the position and the velocity of the agents, while they
follow a specified path.

This remaining paper is organized as follows. Section 2
introduces the agent dynamics and the reference trajectory
generation mechanism. The constrained predictive control
problem is then summarized in. Section 3 deals with
the linear reformulation of the state constraints for the
real-time optimization problem. Section 4 presents the
MPC problem, where the generated trajectory is used
by the group of agents for prediction in a centralized
approach. Based on the information received from the
MPC formulation the avoidance and velocity constraints
are taken into account, leading the agents to follow the
reference trajectory in a formation which depends on
the geometry of the constraints. In Section 5, illustrative
simulation results are presented. Finally, some conclusions
are drawn in Section 6.

Throughout the paper, the following notations are used.
An intersection of finitely many half-spaces, a polytope
denoted as P will be used to describe a safety region for
an agent.

(x, y) - position coordinates of an agent
(vx, vy) - velocity coordinates of an agent
ξ - agent state
Na - number of agents
i - the i-th agent
P (ξi) - polyhedral safety region of the i-th agent
P (ξi) - the complement of the polyhedral safety region P (ξi)
N - prediction horizon
VN - cost function
Q � 0 - Q is a strictly positive definite matrix
δc - binary variables {0, 1}

2. PROBLEM FORMULATION

In this section, based on the model of individual agents
the principles of a prediction based optimization problem
is stated such that the group converge to a fix formation.
Imposing the specified state constraints the agents will pre-
serve a safety distance in-between, thus allowing collision
avoidance both inside the group and with possible obsta-
cles. Non-convex velocity constraints can be considered in
the same formulation.

A. Model description

Let us consider a linear system (vehicle, pedestrian or
agent in a general form) whose dynamics is modeled by
the following equation:

 ẋ
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where (x, y) are the position coordinates and (vx, vy) the
velocity coordinates of the agent in a two-dimensional
representation. The agent mass is denoted by m, and µ
is the damping factor. By associating the index i to the
i-th agent the following model is obtained:

ξ̇i(t) = Acξ
i(t) +Bcu

i(t), i = 1 : Na, (2)
with the corresponding state and input vectors:
ξi = [x y vx yy]T , ui = [ux uy]T , and Na the number
of agents. A corresponding discrete-time model for the
equations (2) is constructed upon a chosen sampling period
Ts by considering the time instants tk = kTs:

ξik+1 = Aξik +Buik, k ∈ N, i = 1 : Na, (3)
where ξk = ξtk , uk = utk . The pair (A, B) is given by:

A = eAcTs , B =
∫ Ts

0

eAc(Ts−θ)Bcdθ

For the collision avoidance problem, let us consider a
convex set, a polytope (in the state space) that describes
a safety region around an agent i and also safety limits for
the velocity of an agent i:

P (ξi) = {ξ ∈ Rnξ : H(ξ − ξi) ≤ K} (4)
where H ∈ Rnc×nξ , K ∈ Rnc×1, and nc is the number of
hyperplanes. The position of the agent i represents the
center of the region defined by the projection of P (ξi)
on the position subspace of the state space. The feasible
region in the space of solutions is the complement of the
safety region, denoted by P (ξi), which can be described
as a union of regions that cover all the space except
the polytope P (ξi). The velocity constraints imposed to
the agent i represent for example safety limits, such as
a minimum maneuvering velocity near an obstacle or
another agent. Another example considers a spacecraft
formation flying, where each agent has to keep its velocity
grater than a specified value, even if the formation follows
a trajectory with a relative velocity inferior to some pre-
imposed bounds for each spacecraft.

For sake of completeness, the problem of generating a
reference trajectory for the linear system (1) is next sum-
marized, along the line in [Van Nieuwstadt and Murray,
1998].

B. Trajectory generation

The idea is to find a trajectory (ξ(t), u(t)) that steers the
model (1) from an initial state x0 to a final state xf ,
over a fixed time interval [t0, tf ]. Using the flatness theory
introduced by [Van Nieuwstadt and Murray, 1998] the
system is parameterized in terms of a finite set of variables
z(t) and a finite number of their derivatives:
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Fig. 1. A flat trajectory for obstacle avoidance

ξ(t) = ξ(z(t), ż(t), · · · , z(q)(t)), (5)

u(t) = u(z(t), ż(t), · · · , z(q)(t)),
where z(t) = Υ(ξ(t), u(t), u̇(t), · · · , u(q)(t)) is called the
flat output. In order to generate the reference trajectory
the class of polynomial functions is used. Based on the
parametrization (5) and imposing boundary constraints
for the evolution of the differentially flat systems [De Doná
et al., 2009] one can generate a reference trajectory zref (t)
by the resolution of a linear system of equalities. Therefore
the corresponding reference state and input for the system
(1) are obtained by replacing the reference flat output
zref (t) with t ∈ [t0, tf ] in (5):

ξref (t) = ξ(zref (t), żref (t)), (6)

uref (t) = u(żref (t), z̈ref (t)),
where t ∈ [t0, tf ].

The flat trajectory can also be generated to enforce ob-
stacle avoidance at the path planning stage. The idea is
illustrated in Figure 1. In this framework the obstacles can
be modeled in terms of a convex safety region around each
agent, as in (4). Even if the reference trajectory is gen-
erated over the entire interval [t0, tf ], intermediary points
can be added along the system trajectory in order to avoid
obstacles at a specific time subinterval by redesigning of
the flat trajectory.

Since the reference trajectory is available beforehand,
an optimization problem which minimizes the tracking
error for the system can be formulated in a predictive
control framework. Consequently the agents must follow
the reference trajectory from the initial position to the
desired position, using the available information over a
finite time horizon N in the presence of constraints.

C. Constrained Predictive Control

The aim is to find the N-move control sequence
u∗ =

{
uk|k, uk+1|k, · · · , uk+N−1|k

}
that minimizes the

finite horizon quadratic objective function VN (ξk, u∗):

VN = ξTk+N |kPξk+N |k +
N−1∑
l=1

ξTk+l|kQξk+l|k+

+
N−1∑
l=0

uTk+l|kRuk+l|k,

(7)

while respecting the constraints imposed by each agent
dynamics (3), and the physical limitations

ξi ∈ P (ξj), (i, j) ∈ N[1,Na] × N[1,Na], i 6= j. (8)

Here Q = QT � 0, R � 0 are the weighting matrices and
P = PT � 0 defines the terminal cost. A finite horizon
trajectory optimization is performed at each sample in-
stant, the first component of the resulting control sequence
is effectively applied and the optimization procedure is
reiterated using the available measurements based on the
receding horizon principle Mayne et al. [2000].

The constraints (8) describe a non-convex region in the
state-space and thus, the MPC problem (7) can not be
casted in the classical LP/QP parametric problem formu-
lation. In the following the constraints (8) are reformulated
in a linear form, by introducing a set of auxiliary binary
variables, which have to be considered as decision variables
in the new MPC formulation. It is worth mentioning that
the problem can be interpreted as a hybrid system control
problem [Bemporad and Morari, 1999].

3. LINEAR CONSTRAINTS REFORMULATION

The constraints for 2 agents are discussed here, the gener-
alization to Na agents following the same lines.

Let us consider the global model of any two different agents
(i, j) ∈ N[1,Na] × N[1,Na], i 6= j:[

ξik+1

ξjk+1

]
=
[
Ai 0
0 Aj

] [
ξik
ξjk

]
+
[
Bi 0
0 Bj

] [
uik
ujk

]
(9)

From the point of view of the MPC algorithm, the feasible
region P (ξi) is a non-convex region. In order to reformulate
the non-convex constraints in a convex form one has to
use mixed integer techniques. By introducing nc additional
binary variables δc ∈ {0, 1} one can write:

−H(ξ − ξi) ≤ −K +Mδc, c = 1 : nc (10)
This linear description gives a natural formulation for the
constrains verification. If δc = 1, the right-hand side of
the inequality is negative and elementwise inferior to the
left-hand side, for a sufficiently large user-defined scalar
M > 0. From the optimization point of view the inequality
is inactive in this case and trivially satisfied. If δc = 0, the
c-th inequality is activated. For collision avoidance, it is
required that at least one of the half-spaces defining the
constraints in (10) has to be active which is translated by
the additional constraint

nc∑
c=1

δc ≤ nc − 1

Remark: Introducing a large number of constraints in
(4) allows a better approximation of the safety region
while increasing complexity of the problem by the increase
of the number of binary variables. It is worthwhile to
consider simple candidates for the safety region of the
agents (hypercubes or simplices).

For simplicity reasons, in the rest of the paper a rectan-
gular shape for the region is considered to be a fair choice
in terms of precision and complexity (Fig.2):

Pd =
d

2
B∞(xi, yi), (11)

where B∞(xi, yi) is the ball with norm infinity centered in
(xi, yi) and d is a constant which defines the size of the
box.

Figure 2 illustrates that the avoidance constrains can be
written as:
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Fig. 2. Approximation of state constraints: the square
approximates the regions with linear constraints

xj ≥ xi + d or xj ≤ xi − d or

yj ≥ yi + d or yj ≤ yi − d. (12)
To translate the avoidance constraints as the complement
of the safety region (in order to avoid logical operands)
in terms of linear constraints one has to introduce in (12)
four binary variables δc, c = 1, . . . , 4, leading to:

xi − xj ≤ −d+Mδ1,−xi + xj ≤ −d+Mδ2,

yi − yj ≤ −d+Mδ3, −yi + yj ≤ −d+Mδ4,

δ1 + δ2 + δ3 + δ4 ≤ 3. (13)
Thus a binary variable is associated to each inequality
(12). Consequently, a large number of inequalities in the
description of the safety region will enforce the use of a
exceeding number of binary variables, which exponentially
affects the complexity of the MPC problem.

It is pointed here that a more compact representation can
be obtained using only two binary variables δc, c = 1, 2:

xi − xj ≤−d+M(δ1 + δ2),

−xi + xj ≤−d+M(1− δ1 + δ2),

yi − yj ≤−d+M(1 + δ1 − δ2),

−yi + yj ≤−d+M(2− δ1 − δ2). (14)
For any combination of the two binary variables a con-
straint from (12) will be activated. With respect to the
original system (9) a compact form is the following: 1 0 0 0 −1 0 0 0

−1 0 0 0 1 0 0 0
0 1 0 0 0 −1 0 0
0 −1 0 0 0 1 0 0


︸ ︷︷ ︸

Cp
ij

[
ξik
ξj
k

]
+

+

 M M
−M M
M −M
−M −M


︸ ︷︷ ︸

D
p
ij

[
δ1

δ2

]
≤

 −d
−d+M
−d+M
−d+ 2M


︸ ︷︷ ︸

γ
p
ij

(15)

These constraints have to be used in the classical MPC
framework with the values of (Cpij , D

p
ij , γ

p
ij) as in (15).

The auxiliary binary variables δc = [δ1, δ2] have to be
considered in the optimization problem.

The rectangular region (11) is also considered to define the
velocity constraints for an agent i:

vix ≤ −vm, or−vix ≤ −vm, or (16)

viy ≤ −vm, or−viy ≤ −vm,
where the constant vm > 0.

Similarly, the non-convex velocity constraints (16) can
be rewritten using binary variables δc, c = 1, 2, which
correspond in general terms to fixed-obstacle avoidance
constraints:

vix ≤−vm +M(δ1 + δ2),

−vix ≤−vm +M(1− δ1 + δ2),

viy ≤−vm +M(1 + δ1 − δ2),

−viy ≤−vm +M(2− δ1 − δ2), (17)

For each agent velocity constraints can be added in the
classical MPC framework with the values of (Cvij , D

v
ij , γ

v
ij),

defined similar with(15).

Globally, the non-convex state constraints (12), (16) are
transposed in a compact form:[

Cpij
Cvij

]
ξij +

[
Dp
ij 0

0 Dv
ij

] [
δp

δv

]
≤
[
γpij
γvij

]
, (18)

with δp and δv the auxiliary binary variables introduced
for position and velocity constraints reformulation and
ξij = [ξiT ξj

T ]T , the global state of any two different
agents (i, j) ∈ N[1,Na] × N[1,Na], i 6= j.

4. OPTIMIZATION-BASED CONTROL & PATH
FOLLOWING

This section presents the centralized MPC problem, where
an optimization is performed to compute the control laws
for each agent. Based on the global model, a flat trajectory
is planned and, based on the information received from the
real-time predictive control law, the avoidance constraints
are taken into account. This leads the agents to achieve a
formation while following the trajectory.

To define the MPC centralized problem, let us consider in
a first step the global system defined as:

˙̃
ξ(t) = Agcξ̃(t) +Bgcũ(t), (19)

with the corresponding state and input vectors:
ξ̃ = [x1 y1 v1

x v
1
y| · · · |xNa yNa vNax vNay ]T ,

ũ = [u1
x u

1
y| · · · |uNax uNay ]T ,

and the matrices which describe the global model:
Agc = diag(A1, · · · , ANa), Bgc = diag(B1, · · · , BNa).

The next step is to compare the measured state and input
variables with the reference trajectory (ξref (t), uref (t))
which satisfies the nominal dynamics:

˙̃
ξref (t) = Acξ̃

ref (t) +Bcũ
ref (t), (20)

ξ̃ref = [ξref1 | · · · |ξrefNa ]T , ũref = [uref1 | · · · |urefNa ]T .
Then from (19) and (20) the global system becomes:

˙̂
ξ(t) = Agcξ̂(t) +Bgcû(t), (21)

with û(t) = ũ(t)− ũref (t), ξ̂(t) = ξ̃(t)− ξ̃ref (t). The cor-
responding discrete time prediction model is the following:

ξ̂k+1 = Ag ξ̂k +Bgûk, (22)
with Ag, Bg the discrete form of Agc , Bgc as described in
Section 2. Taking into account the constraints (18) and



the fact that all the agents must follow the given reference
trajectory, the centralized MPC problem is formulated as:

VN (ξ̂k, ûk) = min
uk,δpk ,δvk

VN (ξ̂k, ûk, δpk , δvk), (23)

subject to

ξ̂k+l+1|k = Ag ξ̂k+l|k +Bgûk+l|k, l = 0 : N − 1[
Cp

Cv

]
ξ̂k+l|k +

[
Dp 0
0 Dv

] [
δpk+l|k
δvk+i|k

]
≤
[
γp

γv

]
(24)

where Ag, Bg, C
p, Cv, Dp, Dv, γp, γv contain the central-

ized structural information of the multi-agent system.
Therefore the centralized MPC controller is acting on the
global system (22) while offering the control inputs for
each agent.

The simulation results show that the agents eventually
form a certain structure while they follow the given ref-
erence trajectory.

5. SIMULATION RESULTS

This section proposes three simulation examples in order
to better illustrate the proposed techniques. The system
dynamics of each agent is given by (1) with the parameters
m = 60kg, and µ = 20Ns/m.
Example 1: Based on the model proposed in Section II, this
example considers the tracking problem for a single agent.
The generated trajectory is plotted in blue in Fig.3. The
behavior of the agent over a time period of 400s, starting
from an initial position ξ = [15 − 1 1 − 5]T is depicted in
red in the same figure.
Example 2: This example considers three agents following
the same trajectory (in magenta, Fig.4 ) generated for
the first example. The initial states for the agents are:
ξ1 = [15 − 1 1 − 5]T , ξ2 = [−7 7 5 10], ξ3 = [8 8 − 5 2].
The parameters for the collision avoidance constraints (14)
are: d = 1, M = 100. In Fig.4, the evolution of the agent
formation is represented at three different time instants,
all the agents are represented as filled circles and the
safety region for each agent is represented as a square with
d = 1. Each square points in the direction of each agent
velocity vector. Good tracking performances for the given
reference trajectory is obtained with a prediction horizon
N = 2. In order to avoid the collision and according to the
optimization result, the agents are self-organized (and can
be assimilated with a flocking behavior) into the formation
depicted in Fig.4.
Example 3: This example considers the case of three
agents both with collision avoidance (14) and velocity (17)
constraints (Fig.6) with d = 1, vmin = 8, M > 0. Fig.5
presents the simulation results for the initial states are:
ξ1 = [15 − 1 1 − 5]T , ξ2 = [−7 7 5 10], ξ3 = [8 8 − 5 2].
The agents are self-organizing in a triangle formation and
the trajectory of its center of gravity is plotted in Fig.6 in
magenta. Fig.5.c illustrates good tracking performances of
the center of gravity (in blue), for a prediction horizon as
low as N = 2. Increasing the prediction horizon leads to a
better tracking of the reference trajectory. This impose a
trade-off between complexity (increasing N) and precision
of tracking the given path.

For different initial conditions and tunning parameters of
the optimization problem, most simulations show that the
agents have a regular motion while following the path

(a) (b)

(c)

Fig. 3. The reference trajectory and the time evolution of
one agent, along the path: (a) X-axis, (b) Y-axis, (c)
X,Y-axes

in a specific formation. The state constraints are always
satisfied. Although for some initial position of the agents,
simulations have shown that appears a lack of synchro-
nization while following the path in a line formation.
Therefore the agents formation proves to be sensitive to
the alignment and this indicates from simulations that the
triangle formation is more stable. This deserves a detailed
analysis when disturbances and noises affect the agents
dynamic and represents one of the current research topics.

Fig. 4. Behavior of three agents in a triangle formation,
with position constraints, at different time instances

6. CONCLUSIONS

A centralized constrained MPC formulation for multiple
agents that follow a given path, while satisfying collision
avoidance and velocity constraints has been proposed in
this paper. In the path following of multi-agents systems
problems about collision avoidance, both within the group
or with any obstacles always appear. The collision avoid-
ance constraints describe a non-convex region, therefore a
set of auxiliary binary variables are introduced in order
to translate the non-convex state constraints into linear



(a) (b)

(c)

Fig. 5. The reference trajectory and the time evolution
of the center of gravity of the triangle formation of
3 agents, along the path: (a) X-axis, (b) Y-axis, (c)
X,Y-axes

inequalities. In a similar way, constraints on velocity are
also imposed and treated by adding other binary variables.
The properties of differentially flat systems were used
in order to obtain a reference trajectory for the group
of agents. Therefore, based on the results provided by
the constrained optimization problem, the agents organize
themselves in a specific formation while they follow the
given path. The results were presented through some il-
lustrative simulations of several examples.

Depending on the size of the global system, a centralized
MPC problem may be too large or may require a large
computational effort. Therefore, future work will focus
on investigating the case where the global system is
decomposed in subsystems, leading to a distributed MPC
formulation problem.

Fig. 6. Behavior of three agents in a triangle formation,
with position and velocity constraints, at different
time instances.
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