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Regularized generalized canonical correlation analysis 

 

Abstract 

 

 Regularized generalized canonical correlation analysis (RGCCA) is a generalization of 

regularized canonical correlation analysis to three or more sets of variables.  It constitutes a general 

framework for many multi-block data analysis methods.  It combines the power of multi-block data 

analysis methods (maximization of well identified criteria) and the flexibility of PLS path modeling 

(the researcher decides which blocks are connected and which are not).  Searching for a fixed point 

of the stationary equations related to RGCCA, a new monotonically convergent algorithm, very 

similar to the PLS algorithm proposed by Herman Wold, is obtained.  Finally, a practical example is 

discussed. 

 

Keywords: Generalized canonical correlation analysis, Multi-block data analysis, PLS path 

modeling, Regularized canonical correlation analysis. 
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I. Introduction 

 The main purpose of this paper is to combine the power of multi-block data analysis methods 

and the flexibility of the Partial Least Squares (PLS) path modeling algorithms proposed by Wold 

(1985), Lohmöller (1989) and Krämer (2007).  These methods deal with the same kind of data and 

share the same objectives: how to relate several blocks of variables observed on the same set of 

individuals.  The power of multi-block data analysis lies in the fact that it includes a great variety of 

methods with well identified criteria to be optimized.  The great flexibility of PLS path modeling lies 

in the possibility of taking into account certain hypotheses on connections between blocks: the 

researcher decides which blocks are connected and which are not.  Unfortunately, the criteria 

optimized by the various options of PLS path modeling algorithms are often unclear.  In this paper, 

we propose a new method called Regularized Generalized Canonical Correlation Analysis 

(RGCCA).  This is a generalization of regularized canonical correlation analysis (Vinod (1976), 

Leurgans, Moyeed and Silverman (1993)) to three or more sets of variables.  RGCCA combines the 

power of multi-block data analysis methods and the flexibility of PLS path modeling. 

 RGCCA is a framework for modeling linear relationships between several blocks of variables 

observed on the same set of individuals.  Considering a network of connections between these 

blocks, the objective of RGCCA is to find linear combinations of block variables (block 

components) such that (i) block components explain their own block well and/or (ii) block 

components that are assumed to be connected are highly correlated.  In the literature, many methods 

exist with the objective of finding block components having these properties.  Some of them are 

based on the maximization of a function of correlations: SUMCOR (sum of correlations method), 

SSQCOR (sum of squared correlations method), SABSCOR (sum of absolute values of the 

correlations method). Others are based on the maximization of a function of covariances: SUMCOV 

(sum of covariances method), SSQCOV (sum of squared covariances method), SABSCOV (sum of 

absolute values of the covariances method).  Others are based on the maximization of a function of 
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both correlations and covariances.  It appears that RGCCA constitutes a general framework for 

multi-block data analysis and includes all the previously listed methods as particular cases. 

Moreover, one of the important properties of RGCCA relies on the fact that blocks are not 

necessarily fully connected. This flexibility allows a large variety of hierarchical models such as 

Carroll’s (1968) generalized canonical correlation analysis, Chessel & Hanafi’s (1996) Multiple Co-

Inertia Analysis and those given in Westerhuis, Kourti & MacGregor (1998) and Vivien & Sabatier 

(2003) to be included in the RGCCA framework.  RGCCA also contains the PLS approach of Wold-

Lohmöller-Krämer as a special case, but only when the option “mode B for all blocks” is selected.  

The full comparison between PLS path modeling and RGCCA is, however, beyond the scope of this 

paper and will be discussed in a separate paper. 

Moreover, in a high-dimensional block setting or in the presence of multicollinearity within 

blocks (ill-conditioned data blocks), correlation-based methods lead to spurious relationships 

between blocks.  This gives an impression of links between blocks that are invalid when objectively 

examined.  RGCCA constitutes a regularized version of various correlation-based methods and 

makes a stable analysis of ill-conditioned data blocks possible.  It allows for the introduction of a 

continuum between correlation-based criteria and covariance-based criteria. 

 There is no analytical solution to RGCCA, so we propose a monotonically convergent 

algorithm based on a modification of Wold’s PLS algorithm (1985).  RGCCA is obtained by 

following several steps. Firstly, a new generalized canonical correlation analysis (GCCA) method, 

which takes into account the hypotheses on the connections between sets of variables, is defined at 

the population level.  Secondly, using shrinkage estimates for block covariance matrices, stationary 

equations related to population GCCA are written at the sample level.  Thirdly, these stationary 

equations are related to a new optimization problem called RGCCA.  We have obtained a new 

monotonically convergent algorithm when searching for a fixed point of these stationary equations. 
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 Finally, we will conclude this paper with a detailed analysis of a practical example where 

many of the RGCCA possibilities are explored.  We will also show how the PLS path modeling 

drawing conventions can be extended to multi-block data analysis and RGCCA. 

 This paper is organized as follows: 

(1) Definition of population generalized canonical correlation analysis.  Construction of 

the stationary equations at the population level.  Searching for a fixed point of the 

population level stationary equations: construction of a PLS algorithm for population 

GCCA.  Convergence properties of the PLS algorithm for population GCCA. 

(2) Construction of the stationary equations at the sample level, using shrinkage 

 estimates of the block covariance matrices. 

(3) Definition of the regularized generalized canonical correlation analysis (RGCCA). 

(4) Searching for a fixed point of the sample level stationary equations: construction of a 

PLS algorithm for RGCCA.  Convergence properties of the PLS algorithm for 

RGCCA. 

(5) The Russett example. 

II Population generalized canonical correlation analysis 

 Canonical correlation analysis of two sets of random variables can be extended to three or 

more sets of variables in many ways.  For instance, Kettenring (1971) studied five specific methods: 

(i) the sum of correlations method (SUMCOR), (ii) the maximum variance method (MAXVAR), 

(iii) the sum of squared correlations method (SSQCOR), (iv) the minimum variance method 

(MINVAR), (v) the generalized variance method (GENVAR).  A sixth method, the sum of absolute 

value correlations method (SABSCOR), is also considered in this paper.  This last criterion plays a 

central role in the PLS approach of Wold (1985). 

 We propose a modification of the SUMCOR, SSQCOR and SABSCOR methods which takes 

into account some hypotheses on the connections between the sets of variables.  Let’s consider J 
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random p j - dimensional zero mean column vectors 1( ,..., )
j

t
j j jpx x=x  defined on the same 

population and J non-random p j - dimensional column vectors 1( ,..., )
j

t
j j jp=α α α .  We also 

consider a network of connections between the random vectors by defining a design matrix 

{ }c jk=C : c 1jk =  if jx  and kx  are connected and 0 otherwise. 

 Consider two linear components α t
j jh jh j j

h

xη = =∑ α x  and α t
k kh kh k k

h

xη = =∑ α x .  The 

correlation between the two random variables ηj and ηk is 

(1)   1/ 2 1/ 2( , )
( ) ( )

t
j jk kt t

j j k k t t
j jj j k kk k

ρ =
α Σ α

α α
α Σ α α Σ α

x x  

where E( )t
jj j j=Σ x x , E( )t

kk k k=Σ x x  and E( )t
jk j k=Σ x x .  All Σ jj  are supposed to be of full rank. 

II.1 Definition of Population GCCA 

 We define “population generalized canonical correlation analysis” as the following 

optimization problem: 

(2)  1 ,..., , 1,
Maximize   c g( ( , ))

subject to the constraints  Var( ) 1,   1,...,

J

J
t t

jk j j k k
j k j k

t
j j j J

ρ
= ≠

= =

∑α α
α α

α

x x

x
 

where g is the identity, the absolute value or the square function.  As the algorithm proposed in this 

paper for solving optimization problem (2) is close to Wold’s PLS algorithm (1985), we feel that it 

would be useful and necessary to introduce the PLS terminology here.  The centroid scheme 

introduced by Wold (1985) is related to g being equal to the absolute value.  The factorial scheme 

proposed by Lohmöller (1989) is related to g being equal to the square.  The Horst scheme proposed 

by Krämer (2007) is related to g being equal to the identity.  We have limited the optimization 

problem (2) to these three schemes because they are the most used in the multi-block and PLS path 

modeling literature.  The centroid and factorial schemes usually give close results in practical 

applications (Noonan and Wold, 1982).  The Horst scheme can be very useful when the researcher is 
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looking for positively correlated components.  Due to this constraint, the Horst scheme can yield 

quite different solutions from the two other schemes. 

 Problem (2) is equivalent to the following optimization problem: 

(3)  1 ,..., , 1,
Maximize   c g( )

subject to the constraints  1,   1,...,

J

J
t

jk j jk k
j k j k

t
j jj j j J

= ≠

= =

∑α α
α Σ α

α Σ α
 

The following Lagrangian function of optimization problem (3) is then considered: 

(4)  1 1
, 1, 1

F( ,..., , ,..., ) c g( ) ( 1)
2

J J
jt t

J J jk j jk k j jj j
j k j k j

λ
λ λ ϕ

= ≠ =

= − −∑ ∑α α α Σ α α Σ α  

where ϕ = 1 when g is the identity or the absolute value and 2 when g is the square function.  We 

may suppose that t
j jk kα Σ α  is different from 0, because if it were not the case, we would just set the 

design coefficient cjk to zero.  Therefore, we may also consider the derivative g '  when g is the 

absolute value.  Cancelling the derivatives of the Lagrangian function with respect to jα  and jλ  

yields the following stationary equations for population GCCA: 

(5)  1

1,

1 c g '( )   ,    1,...,Σ α Σ α Σ α α−

= ≠

= =∑
J

t
jj jk j jk k jk k j j

k k j

j Jλ
ϕ

 

with the normalization constraints 

(6)  1,   1,...,   t
j jj j j J= =α Σ α  

These stationary equations have no analytical solution, but they can be used to build a monotonically 

convergent algorithm for optimization problem (3).  This new algorithm, to be described in the next 

section, appears to be very similar to the Wold’s PLS algorithm (1985). 

II.2 A PLS algorithm for population GCCA 

In the sequel to this paper, we use the expression Cov( , )t t
j j k kα αx x  instead of t

j jk kα Σ α  for 

easier mathematical treatments and the function 1w(x) g'(x)
ϕ

=  for easier readability.  The function 

w(x) is equal to 1 for the Horst scheme, to x for the factorial scheme and to sign(x) for the centroid 
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scheme.  In PLS terminology, jα  is a vector of outer weights, t
j j jη = α x  is called an outer 

component and an inner component jν  is defined as follows: 

(7)  
1,

c w(Cov( , ))
J

t t t
j jk j j k k k k

k k j= ≠

= ∑ α α αν x x x  

For the various schemes, we get the following inner components: 

- Horst (g = identity):   
1,

c
J

t
j jk k k

k k j= ≠

= ∑ αν x  

- Factorial (g = square):  
1,

c Cov( , )
J

t t t
j jk j j k k k k

k k j= ≠

= ∑ α α αν x x x  

- Centroid (g = absolute value): 
1,

c sign Cov( , )
J

t t t
j jk j j k k k k

k k j= ≠

⎡ ⎤= ⎣ ⎦∑ α α αν x x x  

The inner components jν  are useful to simplify the stationary equation for population GCCA (5).  

Using the following expression 

(8)  1,

1, 1,

Cov( , ) E( ) E( c w(Cov( , )) )

1c w(Cov( , ) c g'(Cov( , )

J
t t t

j j j j j jk j j k k k k
k k j

J J
t t t t

jk j j k k jk k jk j j k k jk k
k k j k k j

= ≠

= ≠ = ≠

= =

= =

∑

∑ ∑

α α α

α α Σ α α α Σ α

ν ν

ϕ

x x x x x x

x x x x
 

and the normalization constraints (6), the stationary equations (5) become 

(9)  
1/ 21 1Cov( , ) Cov( , ) Cov( , )  ,    1,...,t

j j j jj j j jj j j j J
−− −⎡ ⎤= =⎣ ⎦α Σ Σν ν νx x x  

It is worth noting that the stationary equations (9) are also obtained by considering the minimum of 

2E ( )t
j j j⎡ ⎤−⎣ ⎦βν x  with respect to jβ , subject to the normalization constraint 1t

j jj j =β Σ β  (or 

equivalently, the maximum of Cov( , )t
j j jβ νx , subject to the same normalisation constraint).  This 

result is central to the proof of Proposition 2 below. 

While the notion of inner component is not usually found in the multi-block literature, it 

plays a central role in the PLS approach and allows us to design a very efficient algorithm for 
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population GCCA.  The following proposition specifies the role of the inner components in the 

criterion to be maximized. 

Proposition 1 

For g equal to the identity, equal to the square or equal to the absolute value, we obtain the following 

result: 

(10)  
, 1, 1

c g Cov( , ) Cov( , )
J J

t t t
jk j j k k j j j

j k k j j= ≠ =

⎡ ⎤ =⎣ ⎦∑ ∑α α α νx x x  

Proof 

Equality (10) is obtained from the identity w(x)x g(x)=  for g equal to the identity, to the square or 

to the absolute value: 

1 1 1,

, 1, , 1,

Cov( , ) Cov( , c w(Cov( , )) )

 c w(Cov( , ))Cov( , )  c g(Cov( , ))

J J J
t t t t t
j j j j j jk j j k k k k

j j k k j

J J
t t t t t t

jk j j k k j j k k jk j j k k
j k k j j k k j

= = = ≠

= ≠ = ≠

=

= =

∑ ∑ ∑

∑ ∑

α α α α α

α α α α α α

νx x x x x

x x x x x x
 

 

 It is possible to construct a monotonically convergent algorithm related to optimization 

problem (3).  That is to say, that the bounded criterion to be maximized in (3) is increasing at each 

step of the proposed iterative procedure.  Stationary equations (9) and proposition 1 suggest an 

iterative algorithm for optimization problem (3): 

- Begin with arbitrary normalized outer weights , 1,...,j j J=α  

- Compute the inner components , 1,...,j j Jν = , according to formula (7) 

- Compute new normalized outer weights using formula (9) 

- Iterate this procedure 

 To obtain a monotonically convergent algorithm, it is necessary to use a sequence of 

operations similar to the ones used by Wold (1985) and Hanafi (2007) for PLS path modeling.  This 

PLS algorithm for population GCCA is described in Figure 1. 
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Insert Figure 1 approximately here 

The procedure begins by an arbitrary choice of initial normalized outer weight vectors 0 0 0
1 2, ,..., Jα α α  

(step A in Figure 1).  Suppose outer weight vectors 1 1 1
1 2 1, ,...,s s s

j
+ + +

−α α α  have been constructed. The 

outer weight vector 1s
j
+α  is computed by considering the inner component s

jν  given in step B in 

Figure 1, and the formula given in step C in Figure 1.  The procedure is iterated until convergence of 

the bounded criterion, which is due to the following proposition: 

Proposition 2:  Let s
jα , 1,...,j J= , 0,1, 2,...=s , be a sequence of outer weight vectors generated by 

the PLS algorithm for population GCCA.  The following function is defined for outer weight vectors 

1 2, ,..., Jα α α : 

(11)  1 2
, 1,

f ( , ,..., ) c g ( , )   
J

t t
J jk j j k k

j k j k= ≠

⎡ ⎤= ⎣ ⎦∑α α α α αρ x x  

The following inequalities hold: 

(12)  1 1 1
1 2 1 2    f ( , ,..., ) f ( , ,..., )s s s s s s

J Js + + +∀ ≤α α α α α α  

Proof:  See Appendix 1. 

 The essential feature of this algorithm is that each replacement is optimal, and sequential, that 

is to say that s
jα  must be replaced by 1s

j
+α  before replacing 1

s
j+α .  This is the essence of the Gauss-

Seidel algorithm for solving a system of linear equations and of several other iterative algorithms 

such as the Wold and Hanafi PLS algorithms, the MAXDIFF algorithm (Ten Berge, 1988) and the 

multivariate eigenvalue problem (Chu & Watterson, 1993).  This sequential approach leads to the 

monotonic convergence of these algorithms. 

 Because the main objective is to estimate the outer weights 1,..., Jα α  from a finite sample, it 

is now necessary to write the population stationary equations at the sample level. 
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III. Stationary equations at the sample level using shrinkage estimates of the covariance 

matrices jjΣ  

 Let’s consider J blocks 1,..., JX X  of centered variables measured on a set of n individuals.  A 

row of jX  represents a realization of the row-random vector t
jx , a column jhx  of jX  is considered 

as a variable observed on n individuals, jhix  is the value of variable jhx  for individual i.  Now, 

{ }c jk=C  is a design matrix describing a network of relationships between blocks: c 1jk =  for two 

connected blocks, and 0 otherwise. 

 The sample covariance matrices are 1
n

t
jj j j=S X X  and 1

n
t

jk j k=S X X .  In case of high 

multicollinearity or when the number of individuals is smaller than the number of variables, the 

sample covariance matrix jjS  is a poor estimate of the true covariance matrix jjΣ  for a very simple 

reason pointed out by Schäfer and Strimmer (2005): the number of eigenvalues close or equal to zero 

is much higher in the sample covariance matrix than in the true covariance matrix.  One suggestion 

of Ledoit and Wolf (2004) for finding a better estimate of the true covariance matrix jjΣ  is to 

consider the class of linear combinations { }ˆ (1 ) ,   0 1jj j j jj jτ τ τ= + − ≤ ≤S I S  of the identity matrix I 

and the sample covariance matrix jjS .  The matrix ˆ
jjS  is called a shrinkage estimate of jjΣ  and jτ  

is the shrinkage constant.  Furthermore, Schäfer and Strimmer, using the unbiased estimate 

' n
n 1jj jj=

−
S S  of jjΣ  instead of jjS , give a formula for finding an optimal shrinkage constant, i.e., 

minimizing the mean square error 
2ˆMSE E jj jj

⎡ ⎤= −⎢ ⎥⎣ ⎦
S Σ , where ⋅  is the Frobenius norm (formula 

6, p. 8 of Schäfer and Strimmer (2005)).  In the same reference, they also give a formula for 

estimating this optimal shrinkage constant from the data (formula for Target A, p.11 and appendix 

A): 
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' '
, ,

* 1 1

' 2 ' 2
, ,

1 1

Var(s ) Var(s )
ˆ

(s ) (s -1)

j j

j j

p p

j kl j kk
k l k

j p p

j kl j kl
k l k

τ ≠ = =

≠ = =

+
=

+

∑ ∑

∑ ∑
 

where '
,s j kl  is an entry of '

jjS  and, setting w (x - x )(x - x )jkli jki jk jli jl= , 

( )
n 2'

, 3
1

nVar(s ) w - w
(n -1)j kl jkli jkl

i=

= ∑  is the empirical unbiased variance of '
,s j kl . 

 We also introduce for each block an outer weight vector ja , an outer component j j j=y X a  

and an inner component zj defined as 

(13)  
1,

c w Cov( , )
= ≠

⎡ ⎤= ⎣ ⎦∑
J

j jk j k k
k k j

z y y y
 

These vectors , ,j j ja y z  are the sample versions of the previously defined , ,j j jη να .  For the Horst 

scheme, the inner component 
1,

c
J

j jk k
k k j= ≠

= ∑z y , for the factorial one 
1,

c Cov( , )
J

j jk j k k
k k j= ≠

⎡ ⎤= ⎣ ⎦∑z y y y  

and for the centroid one 
1,

c sign Cov( , )
J

j jk j k k
k k j= ≠

⎡ ⎤= ⎣ ⎦∑z y y y .  For easier readability, we prefer to 

keep the same notation for the population covariance and the sample covariance. 

 In this section, we consider a sample version of the stationary equations (9) where jjΣ  is 

replaced by ˆ (1 )jj j j jjτ τ= + −S I S .  This leads to the following sample stationary equations 

(14) 
1/ 21 11 1(1 ) (1 ) ,   1,...,

n n
t t t t t

j j j j j j j j j j j j j j j j Jτ τ τ τ
−− −⎡ ⎤⎡ ⎤ ⎡ ⎤= + − + − =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

a z X I X X X z I X X X z  

and to normalization constraints on the outer weight vectors ja  which depend upon the values of the 

shrinkage constants jτ : 

(15)  1(1 ) 1,  1,...,
n

t t
j j j j j j j Jτ τ⎡ ⎤+ − = =⎢ ⎥⎣ ⎦

a I X X a  
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Let’s introduce some useful terminology inspired by the PLS approach: the situation 

corresponding to j 0τ =  is called “mode B”, the one corresponding to j 1τ =  is called “new mode A” 

and the case 0 1< <jτ  is called “mode Ridge”.  Let’s have a closer look at these three modes. 

Mode B ( j 0τ = ) 

 For j 0τ = , the normalization constraint is Var( ) 1j j =X a  and the stationary equation (14) 

becomes 

(16)  ( ) ( )
1/ 21 11/ 2na z X X X X z X X X z

−− −⎡ ⎤= ⎢ ⎥⎣ ⎦
t t t t t

j j j j j j j j j j j  

This vector of outer weights ja  is proportional to the vector of the regression coefficients in the 

multiple regression of jz  on jX .  It is worth pointing out that due to the inversion of the intra-block 

covariance matrices, this way of computing the outer weight vector cannot be applied to an ill-

conditioned block.  This way of computing the outer weights is the usual mode B of the PLS 

approach. 

New mode A ( j 1τ = ) 

 For j 1τ = , the normalization constraint becomes 1j =a  and the stationary equation (14) is 

written as 

(17)  /t t
j j j j j=a X z X z  

We may note that the outer component j j j=y X a  is the first PLS component in the PLS regression 

(Wold, Martens & Wold, 1983) of the inner component jz  on block jX .  In this paper, this way of 

computing the outer weights is called “new mode A”.  In the original mode A of the PLS approach, 

the outer weights are computed in the same way as formula (17), but normalized so that the outer 

component j j j=y X a  is standardized.  This “new mode A” shrinks the intra-block covariance 
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matrix to the identity.  This shrinkage is probably too strong, but is useful for very high dimensional 

data because it avoids the inversion of the intra-block covariance matrix. 

Mode Ridge ( 0 1< <jτ ) 

 For 0 1< <jτ , (14) may also be written as: 

(18) 
1/ 2 11 nn 1(1 ) ( )

1 n 1
jt t t t t

j j j j j j j j j j j j j
j j

τ
τ τ

τ τ

− −−⎡ ⎤ ⎡ ⎤⎡ ⎤= + − +⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
a z X I X X X z X X I X z  

The vector of outer weights ja  is proportional to the vector of the regression coefficients in the ridge 

regression of jz  on jX  with a ridge constant equal to n /(1 )j jτ τ− .  We call this new way of 

computing the outer weights “mode Ridge”.  This “mode Ridge” allows a gradual shrinkage of the 

intra-block covariance matrix towards the identity. 

 Three interesting properties of the outer component j j j=y X a  are established in Qannari & 

Hanafi (2005): 

 a) Var( / )j j jX a a  is an increasing function of jτ . 

 b) Cov( / , )j j j jX a a z  is an increasing function of jτ . 

 c) Cor( , )j j jX a z  is a decreasing function of jτ . 

These properties serve as a useful guide to choosing the shrinkage constant jτ .  They show that, for 

outer weights ja  defined in (14), an increase of Cor( , )j j jX a z  is balanced by a decrease of 

Var( / )j j jX a a .  Furthermore, property (b) shows that the variance term dominates over the 

correlation term.  Therefore, if the user is favoring stability (high variance) compared to correlation, 

1jτ =  is the natural choice.  If the user wants to give priority to the correlation between j j j=y X a  

and its neighboring components, property (c) shows that 0jτ =  is the best choice.  For a 

compromise between variance and correlation, the shrinkage constant jτ  can be determined by using 

the Schäfer & Strimmer’s formula.  This automatic estimation of the shrinkage constant allows one 
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to come closer to the correlation criterion, even in the case of high multicollinearity or when the 

number of individuals is smaller than the number of variables.  In PLS path modeling, Fornell and 

Bookstein (1982) propose to favor the variance when a block is reflective (block variables reflect 

some underlying unobservable variable) and to favor the correlation when a block is formative 

(block variables are used to produce a score). 

IV Regularized generalized canonical correlation analysis (RGCCA) 

 By considering the J data blocks 1,..., JX X , the design matrix { }c jk=C , the function g and 

the shrinkage constants 1,..., Jτ τ  described in section III,  we define regularized generalized 

canonical correlation analysis (RGCCA) as the following optimization problem: 

(19)  1 ,..., , 1,

2

Maximize   c g(Cov( , ))

subject to the constraints  (1 )Var( ) 1,   1,...,

J

J

jk j j k k
j k j k

j j j j j j Jτ τ

= ≠

+ − = =

∑a a
X a X a

a X a
 

The stationary equations obtained by cancelling the derivatives of the Lagrangian function related to 

optimization problem (19) are exactly the stationary equations (14). 

The PLS algorithm for RGCCA 

 There is no known analytical solution to optimization problem (19).  However, writing the 

PLS algorithm for population GCCA at the sample level straightforwardly yields a monotonically 

convergent algorithm.  This algorithm is described in Figure 2. 

Insert Figure 2 approximately here 

The procedure begins by an arbitrary choice of initial values 0 0 0
1 2, ,..., Ja a a  (step A in Figure 2).  

Suppose outer weight vectors 1 1 1
1 2 1, ,...,s s s

j
+ + +

−a a a  are constructed for blocks 1 2 1, ,..., j−X X X . The outer 

weight vector 1s
j
+a  is computed by considering the inner component s

jz  for block jX  given in step B 

in Figure 2, and the formula given in step C in Figure 2.  The procedure is iterated until convergence 

of the bounded criterion, which is due to proposition 3 given below. 
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Proposition 3:  Let s
ja , 1,...,j J= , 0,1, 2,...=s , be a sequence of outer weight vectors generated by 

the PLS algorithm for RGCCA.  The following function is defined: 

(20)  1 2
, 1,

h( , ,..., ) c g Cov( , )   
= ≠

⎡ ⎤= ⎣ ⎦∑
J

J jk j j k k
j k j k

a a a X a X a  

for vectors 1 2, ,..., Ja a a  verifying normalization constraints (15).  The following inequalities hold: 

(21)  1 1 1
1 2 1 2    h( , ,..., ) h( , ,..., )+ + +∀ ≤s s s s s s

J Js a a a a a a  

Proof:  The proof is similar to that of proposition 2. 

 The proposed algorithm has two limitations: 

1) There is no proof that the algorithm converges towards a fixed point of the stationary 

equations, although it has always been the case in our simulations. 

2) There is no guarantee that the algorithm converges towards a global optimum of the 

criterion.  Krämer (2007) has given an example of convergence to a local optimum. 

V Special cases of RGCCA 

 The great power and flexibility of RGCCA allow a large spectrum of methods to be 

recovered as special cases.  In the following, we list the main ones. 

V.1. Multi-block data analysis 

 In multi-block data analysis, all blocks , 1,...,j j J=X  are connected and many criteria exist 

with the objective of finding components j j j=y X a  with useful properties.  Many of them are listed 

in Hanafi & Kiers (2006) and Tenenhaus & Hanafi (2010).  In this section, we only consider 

methods related to optimization problem (19) with all c 1  for  jk j k= ≠ .  In Table 1 various methods 

which are all special cases of RGCCA are listed. 

Insert Table 1 approximately here 

The SUMCOR criterion has been proposed by Horst (1961) and the SSQCOR criterion by 

Kettenring (1971).  The SUMCOV criterion is in fact a special case of the MAXDIFF criterion 
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proposed by Van de Geer (1984) and the SSQCOV criterion is a special case of the MAXDIFF B 

criterion proposed by Hanafi and Kiers (2006).  The SABSCOR and SABSCOV criteria are not 

common in the multi-block data analysis literature and are simply a special case of RGCCA.  From 

the point of view of optimization problem (19), the first three criteria correspond to shrinkage 

constants jτ  equal to 0 for all blocks and the last three criteria correspond to shrinkage constants 

equal to 1 for all blocks. 

We may also consider the situation where the shrinkage constants are 0 for some blocks and 

1 for others.  Therefore, optimization problem (19), with all c 1  for  jk j k= ≠ , becomes 

(22)  1

/ 2 / 2

,..., , 1,

2

Maximize   g Cor( , )(Var( )) (Var( ))

subject to the constraints  (1 )Var( ) 1 with 0 or 1,   1,...,

j k

J

J

j j k k j j k k
j k j k

j j j j j j j J

τ τ

τ τ τ

= ≠

⎡ ⎤
⎣ ⎦

+ − = = =

∑a a
X a X a X a X a

a X a
 

If 0jτ =  (mode B), the main objective in the construction of the outer component j j j=y X a  is to 

maximize its correlation with its neighboring components.  Conversely, if 1jτ =  (new mode A), the 

objective is to construct a component j j j=y X a  which well explains its own block jX  (first 

priority), and at the same time, is well correlated to its neighboring components (second priority). 

V.2 Regularized Canonical Correlation Analysis 

 For the two block situation, optimization problem (19) becomes: 

(23)  1 2
1 1 2 2,

2

Maximize  Cov( , ))

subject to the constraints  (1 )Var( ) 1,   1,2

a a
X a X a

a X a+ − = =j j j j j jτ τ
 

This problem has been introduced under the name of “Regularized Canonical Correlation Analysis” 

for handling high dimensional data or highly correlated data in order to stabilize the solution (see 

Vinod, 1976, Leurgans, Moyeed and Silverman, 1993; Shawe-Taylor and Cristianini, 2004).  When 

one block is reduced to only one variable, optimization problem (23) is equivalent to the simple 

continuum regression approach proposed by Qannari and Hanafi (2005).  Using the stationary 

equations (14) we get: 



 17

- 1a  is the eigenvector of the matrix 1 1
1 1 11 12 2 2 22 21[ (1 ) ] [ (1 ) ]τ τ τ τ− −+ − + −I S S I S S  related to the 

 largest eigenvalue 2
1λ , 

- 2a  is the eigenvector of the matrix 1 1
2 2 22 21 1 1 11 12[ (1 ) ] [ (1 ) ]τ τ τ τ− −+ − + −I S S I S S  related to the 

 largest eigenvalue 2
1λ . 

This problem covers a situation which goes from inter-battery factor analysis (or equivalently PLS 

regression with one component) to canonical correlation analysis while passing through redundancy 

analysis.  The special case 10 1τ≤ ≤  and 2 1τ =  which corresponds to a regularized version of 

redundancy analysis has been studied by Takane and Hwang (2007) and by Bougeard, Hanafi and 

Qannari (2008) under the name “Continuum redundancy-PLS regression”.  For various extreme 

cases 1 0 or 1τ =  and 2 0 or 1τ = , we get the methods detailed in Table 2, which corresponds exactly 

to the framework proposed by Burnham, Viveros & MacGregor (1996). 

Insert Table 2 approximately here 

V.3 Hierarchical models 

 The models described in Figure 3 have been called hierarchical models by Wold (1982) and 

are very common in the chemometric literature.  In this paper, the left blocks are called first order 

blocks and are often considered as predictor blocks.  The right blocks are called second order blocks 

and are often considered as response blocks.  We consider J1 first order blocks 
11 J,...,X X  and 1J J−  

second order block 
1J 1 J,...,+X X .  We will discuss two cases: the one response block case (Figure 3a) 

and the several response blocks case (Figure 3b). 

Insert Figure 3 approximately here 

  



 18

V.3.1 Hierarchical model with one second order block 

 The following optimization problem 

(24)  1 1
1 1,..., 1

2

Maximize   g(Cov( , ))

subject to the constraints:  (1 )Var( ) 1,  1,..., 1

J

J

j j J J
j

j j j j j j Jτ τ

+
+ +

=

+ − = = +

∑a a
X a X a

a X a
 

includes many useful methods that are described in Table 3. 

Insert Table 3 approximately here 

To the best of our knowledge, the methods corresponding to g being equal to the identity (Horst 

scheme) or to the absolute value (Centroid scheme) are new.  When g is equal to the square function 

(factorial scheme), optimization problem (24) is similar to “concordance analysis” proposed by 

Hanafi & Lafosse (2001).  An application of concordance analysis using the shrinkage constants 

0=jτ  for 1,...,=j J  and 1 1+ =Jτ  (line 4 of Table 3 with g being equal to the square function) has 

been proposed by Bougeard, Hanafi and Qannari (2007).  These authors note that, due to the choice 

of the shrinkage constants, this method is oriented towards the construction of predictor block 

components correlated as much as possible with a stable (large variance) response block component.  

If the objective is to build good prediction of the response block with stable predictor block 

components, then the methods corresponding to line 3 of Table 3 would be more adapted.  An 

illustration of the latter method is shown in the application section. 

 When the second order block 1J +X  is equal to the concatenation of the first order blocks 

1,..., JX X  ( [ ]1 1,...,J J+ =X X X  and is called the super-block) this hierarchical model leads to the 

Horst’s and Carroll’s GCCA (see Table 4). 

Insert Table 4 approximately here 

The proofs that the optimization problems given in the second column of Table 4 yield the same 

optimal solutions Jaa ,...,1  (and, for Carroll’s GCCA, the same global component 11 ++ JJ aX ) as the 

methods given in the first column of Table 4 are given in Appendix 2.  The interest of these methods 
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compared to the previous multi-block data analysis methods, lies in the computation of a global 

component related to the super-block.  Furthermore, one might notice that “Multiple Co-inertia 

Analysis” proposed by Chessel & Hanafi (1996) is in fact a special case of Carroll’s GCCA with 

only the covariance criterion being used (J1 = 0 in Table 4).  At last, it’s worth mentioning that Dahl 

& Naes (2006) and Takane, Hwang & Abdi (2008) incorporated other ridge type regularization into 

Carroll’s GCCA. 

V.3.2 Hierarchical model with several second order blocks 

 All second order blocks are not necessarily connected to all first order blocks.  Therefore, in 

this section, we need to introduce the design coefficient jkc  equal to 1 if the second order block kX  

is related to the first order block jX  and 0 otherwise.  The following optimization problem 

(25)  

1

1
1

,..., 1 1

2

Maximize   c g(Cov( , ))

subject to the constraints:  (1 )Var( ) 1,  1,...,τ τ

= = +

+ − = =

∑ ∑
J

J J

jk j j k k
j k J

j j j j j j J

a a
X a X a

a X a

 

corresponds to this kind of design.  It contains “generalized orthogonal multiple co-inertia analysis” 

proposed by Vivien & Sabatier (2003) as a particular case.  The first step of this method consists in 

the following optimization problem 

(26)  

1

1
1

,..., 1 1

Maximize   Cov( , )

subject to the constraints:  1,   1,...,
= = +

= =

∑ ∑
J

J J

j j k k
j k J

j j J

a a
X a X a

a
 

Therefore, this method is a special case of RGCCA applied to hierarchical data, using the Horst 

scheme and new mode A for all blocks.  The other steps of this method consist in applying (26) to 

deflated blocks obtained through various strategies described in Vivien & Sabatier (2003). 

V.3.3 PLS path modeling 

 Wold (1982) proposed the PLS approach to structural equation modeling (SEM) as a 

component-based alternative to the covariance-based SEM proposed by Jöreskog (1970).  The final 

version of the PLS approach (also called PLS path modeling) is described in detail in Wold (1985).  
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This algorithm has been modified and extended by Lohmöller (1989) and by Krämer (2007).  The 

most recent review of the PLS approach can be found in Tenenhaus, Esposito Vinzi, Chatelin, Lauro 

(2005).  In PLS path modeling, we consider that each block Xj is the expression of an unobservable 

latent variable (LV) and that structural relations (i.e. multiple regression equations) exist between the 

latent variables.  We consider that two blocks jX  and kX  are connected if the associated latent 

variables are related: LV( jX ) explains LV( kX ) or vice-versa.  Let’s define the design matrix C: cjk 

= 1 if blocks jX  and kX  are connected in the structural equation model and = 0 otherwise.  The 

PLS algorithm relies on two modes for the latent variable outer estimations (A or B) and four 

schemes for the latent variable inner estimations (Horst, centroid, factorial and structural).  When 

mode B and the Horst, centroid or factorial schemes are selected, the inner and outer latent variable 

estimations of PLS path modeling are identical to the inner and outer components of RGCCA.  

Mode A of PLS path modeling and new mode A of RGCCA leads, however, to different outer 

components.  Both approaches will be compared in further studies. 

VI. The Russett example 

 RGCCA is somewhere between multi-block data analysis and component-based structural 

equation modelling (Tenenhaus, 2008, Tenenhaus and Hanafi, 2010), and therefore uses ingredients 

of both approaches.  This double filiation is illustrated on the Russet data (Russett, 1964) previously 

studied in Gifi (1990).   

VI.1 Data description 

Three blocks of variables have been defined for 47 countries. The first block 1X  = {GINI, 

FARM, RENT} is related to “Agricultural Inequality”: GINI = Inequality of land distribution, 

FARM = % farmers that own half of the land (> 50), RENT = % farmers that rent all their land.  The 

second block 2X  = {GNPR, LABO} describes “Industrial Development”: GNPR = Gross national 

product per capita ($ 1955), LABO = % of labor force employed in agriculture.  The third one 3X  = 
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{INST, ECKS, DEAT} measures “Political Instability”: INST = Instability of Executive (45-61), 

ECKS = Number of violent internal war incidents (46-61), DEAT = Number of people killed as a 

result of civic group violence (50-62).  An additional variable DEMO describes the political regime: 

stable democracy, unstable democracy, dictatorship.  These data have been used in Gifi (1990) to 

illustrate nonlinear canonical correlation analysis.  This method has been applied on the two blocks 

{GINI, FARM, RENT, GNPR, LABO} and {INST, ECKS, DEAT, DEMO}.  Optimal 

transformations of these variables are given in Gifi, page 230.  We have approximated these optimal 

transformations.  GINI and FARM have not been transformed.  The following parametric 

transformations have been used for the other variables: Ln(RENT+1), Ln(GNPR), Ln(LABO), 

Exp(INST–16.3), Ln(ECKS+1) and Ln(DEAT+1).  The missing data of variable Ln(RENT+1) have 

been estimated (using multiple regression) for Australia, Nicaragua and Peru by the values 3.27, 2.39 

and 2.61.  Gifi had some regrets about his analysis.  Here is what he wrote on page 226: “We have 

chosen to use canonical correlation analysis for the two sets of variables GINI, FARM, RENT, 

GNPR, LABO versus INST, ECKS, DEAT, DEMO.  This is not necessarily the most rational choice.  

Both Russett’s discussion and the definition of the variables suggest that it may be preferable to use 

three-set canonical correlation analysis.”  Therefore, we have the opportunity in this paper to both 

repair Gifi’s regrets and illustrate RGCCA. 

VI.2 Drawing conventions 

 In RGCCA, we use drawing conventions similar to the PLS path modeling ones.  Each block 

jX  is represented by an ellipse, each variable jhx  by a rectangle.  In the ellipses, we put the block 

names and in the rectangles the variable names.  Each variable is connected to its block by an arrow.  

For new mode A (τ = 1), the arrow goes from the ellipse to the rectangle in order to symbolize that 

each outer weight is computed by a simple regression of the manifest variable on the block inner 

component.  For mode B (τ = 0), the arrow goes from the rectangle to the ellipse in order to 

symbolize that the vector of outer weights for a block is computed by multiple regression of the 
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block inner component on the block manifest variables.  Finally, for mode ridge, we use double 

headed arrows in order to symbolize the continuum between new mode A and mode B.  Two 

connected blocks are linked with a line.  The resulting figure is called a model.  Two sub-models are 

also considered: the outer model is concerned with the relations between the block variables and 

their block component and the inner model is concerned with the relations between the block 

components.  The model studied for the Russett data is shown in Figure 4 where the transformed 

variables are labeled using their original names.  In this example, we have decided to connect 

Agricultural Inequality to Political Instability (c13 = 1), Industrial Develoment to Political Instability 

(c23 = 1) and to not connect Agricultural Inequality to Industrial Development (c12 = 0).  The dummy 

variable “unstable democracy” has been left out because of redundancy.  All the manifest variables 

have been standardized. 

Insert Figure 4 approximately here 

 In section VI.3, both centroid and factorial schemes are compared using mode B for all 

blocks (full correlation criterion) or new mode A for all blocks (full covariance criterion).  We 

conclude that there is very little difference between these two schemes.  In section VI.4, the various 

modes new A, B and Ridge are compared.  Some useful recommendations in selecting the most 

adequate mode will emerge from these comparisons.  Finally in section VI.5, we present a 

hierarchical version of Barker and Rayens PLS discriminant analysis in order to show the ability of 

RGCCA to straightforwardly produce a new method. 

VI.3 Comparison between centroid and factorial schemes 

In this section, we want to compare the centroid and factorial schemes when all blocks are fixed to 

mode B or to new mode A. 

Using mode B 

 An R-code (R Development Core Team, 2009), available upon request, has been written for 

the PLS algorithm for RGCCA described in Figure 2.  It has been used for analyzing the model 
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shown in Figure 4 using the factorial scheme.  The mode B option is shown by building arrows 

going from the rectangles to the ellipses.  For this model and this scheme, the outer components 

1 1 1 2 2 2,  = =y X a y X a  and 3 3 3=y X a  maximize the criterion 

(27)   2 2
1 3 2 3Cor ( , ) Cor ( , )+y y y y  

To ensure that the global optimum was reached, we tried 50 000 different random initial weights. 

They all led to the same maximum.  If the centroid scheme is used instead of the factorial scheme, 

then the following criterion is maximized:  

(28)   1 3 2 3Cor( , ) Cor( , )+y y y y  

Here too, to check for global optimality, we tried 50 000 different random initial weights and they all 

led to the same maximum.  The Russett model analyzed with the centroid scheme and Mode B is not 

shown.  In Table 5, the factorial and centroid schemes with mode B are compared. 

Insert Table 5 approximately here 

Practice supports theory: the square value criterion is larger for “Mode B + Factorial scheme” than 

for “Mode B + Centroid scheme” as it should be, and we see the opposite case for the absolute value 

criterion.  The very small difference between the criterion values in both situations confirms a well 

known result (Noonan & Wold, 1982): the values of the outer components are not very sensitive to 

the choice of the factorial or centroid schemes. 

Using mode A 

In Figures 5, we report new mode A results for the factorial scheme.  The new mode A option 

is shown by building arrows going from the ellipses to the rectangles. 

Insert Figure 5 approximately here 

Factorial and centroid schemes are compared in Table 6.  We also checked that the maximum was 

reached for both criteria by trying 50 000 different random initial weights.  Here too, practice 

supports theory and the values of the outer components are not very sensitive to the choice of the 

factorial or centroid schemes. 
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Insert Table 6 approximately here 

VI.4 Comparison between modes 

 In this section, we choose to compare the various modes when the factorial scheme is used.  

Using the idea of average variance explained (AVE), the following indicators of model quality are 

defined: 

- For one block jX : 2

1

AVE( ) (1/ p ) Cor ( , )
=

= ∑
jp

j j jh j
h

X x y  

- For all blocks:  AVE(outer model) (1/ p ) p AVE( )j j j
j j

= ∑ ∑ X  

- For the inner model: 2AVE(inner model) (1/ c ) c Cor ( , )jk jk j k
j k j k< <

= ∑ ∑ y y  

Using these AVEs, new mode A, mode B and mode Ridge associated with the factorial scheme are 

compared in Table 7. 

Insert Table 7 approximately here 

As, in the Russett example, all the manifest variables are standardized, the block AVEs and the 

AVE(outer model) are maximum when the block outer components jy  are the first principal 

components of each block jX .  These maximal AVEs are given in Table 7 in the column labeled 

“mode PCA”. 

New mode A 

For new mode A + factorial scheme, the maximized criterion is here written as 

 2 2
1 1 3 3 1 1 3 3 2 2 3 3 2 2 3 3Cor ( , )Var( )Var( ) Cor ( , )Var( )Var( )+X a X a X a X a X a X a X a X a  

with the constraints 1 2 3 1= = =a a a .  Therefore, this optimization problem leads to a situation 

between mode PCA and mode B.  However, as we note in Table 7, column new mode A is very 

close to column mode PCA.  In fact the block outer components computed using the new mode A 

are very close to the block first principal components.  This is generally the result when the blocks 

are fairly unidimensional.  The reason for this result has been mentioned in section III: when new 
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mode A is used, the variance terms dominate over the correlation terms. This result is also true for 

the usual mode A of PLS path modelling (see Tenenhaus, 2008). 

 Mode B 

The AVE(inner model) is maximum for mode B as this is exactly the criterion maximized by 

mode B + factorial scheme.  However, when mode B is used, the value of AVE(Agricultural 

Inequality) is small: the block component fails to explain its block.   

Mode Ridge 

For mode Ridge, using the Schäfer & Strimmer’s formula, we have computed the optimal shrinkage 

constants 1 0.1355τ = , 2 0.0739τ =  and 3 0.1242τ = .  Results for “Mode Ridge + Factorial scheme” 

are shown in Figure 6 and Table 7. To figure out the mode Ridge, double-headed arrows are used for 

connecting rectangles and ellipses. 

Insert Figure 6 approximately here 

In mode Ridge, the AVEs are located between those of new mode A and mode B.  New mode A is 

favoring the outer model and mode B is favoring the inner model.  Mode Ridge appears to be a 

useful compromise between new mode A and mode B.  As compared to mode B, mode Ridge yields 

components with higher block AVEs, specifically for Agricultural Inequality, and comparable 

AVE(inner model). 

Recommendations 

New mode A is recommended when the user wants a stable component (large variance) while 

taking into account the correlations with connected blocks.  The user must, however, be aware that 

variance dominates over correlation.  Mode B is recommended when the user wants to maximize 

correlations between connected components.  This option can yield unstable solutions in case of 

multicollinearity and cannot be used when a data block is not of full rank.  Mode Ridge is a good 

compromise between new mode A and mode B: the block component is simultaneously stable and as 

well correlated as possible with its connected components.  Mode Ridge can be used when the data 
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block is not of full rank.  The shrinkage constants can be determined by using the Schäfer & 

Strimmer’s formula. 

VI.5 Hierarchical Barker & Rayens PLS-DA 

 It is possible to mix the modes of the various blocks.  A special case of this problem is the 

PLS method for discrimination proposed by Barker & Rayens (2003).  They consider a block X of 

explanatory variables and a block Y of dummy variables describing a categorical variable.  They are 

looking for a component Xa (with a normalized) and a standardized component Yb maximizing the 

criterion 

(29)   1/ 2Cov( ) Cor( ) Var( )= ×Xa,Yb Xa,Yb Xa  

The solution of the Barker & Rayens PLS-DA is therefore obtained by running a redundancy 

analysis of block X with respect to block Y.  Thus, Barker & Rayens PLS-DA is an intermediate 

solution between discriminant analysis ( Maximize Cor( , )Xa Yb  subject to Xa and Yb standardized) 

and PLS-DA ( 1/ 2 1/ 2Maximize Cov( , ) Cor( , ) Var( ) Var( )= × ×Xa Yb Xa Yb Xa Yb  subject to a and b 

normalized).  Suppose now that several blocks 1,..., JX X  of explanatory variables are used to predict 

the block Y of dummy variables describing the categorical variable.  It is then rather natural to 

extend the Barker & Rayens PLS-DA to a new method called hierarchical Barker & Rayens PLS-

DA.  Therefore, we look for components 1 1,..., J JX a X a  (with 1,  1,...,j j J= =a ) and for a 

standardized component Yb maximizing the criterion 

(30)   1/ 2

1 1
g[Cov( , )] g[Cor( , )Var( ) ]

J J

j j j j j j
j j= =

=∑ ∑X a Yb X a Yb X a  

where g is the identity (Horst scheme), the square (factorial scheme)  or the absolute value (centroid 

scheme).  In this problem, new mode A is used for the explanatory blocks 1,..., JX X  and mode B is 

used for the response block Y. 
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 We may illustrate the hierarchical Barker & Rayens PLS discriminant analysis by relating the 

block formed by the Agricultural Inequality ( 1X ) and the block formed by Industrial Development (

2X ) to the Y block formed by the political regimes “stable democracy” and “dictatorship”.  Here 

too, the dummy variable “unstable democracy” is left out because of redundancy.  RGCCA is 

applied to the three blocks with 1X , 2X  as first order blocks and Y as the second order block.  When 

the new mode A is used for all blocks, hierarchical PLS-DA is obtained.  When mode B is used for 

all blocks, hierarchical factorial discriminant analysis is obtained.  At last, when the new mode A is 

used for the X blocks and mode B for Y, we obtain hierarchical redundancy analysis of 1X , 2X  with 

respect to Y (i.e. hierarchical Barker & Rayens PLS-DA).  Using the factorial scheme, this last 

method leads to maximizing the criterion 

(31)   2 2
1 1 2 2Cov ( , ) Cov ( , )+X a Yb X a Yb  

subject to the constraints: 

(32)   1 2 Var( ) 1= = =a a Yb  

This is equivalent to maximizing the criterion 

(33)   2 2
1 1 1 1 2 2 2 2Cor ( , )Var( ) Cor ( , )Var( )+X a Yb X a X a Yb X a  

subject to the constraints: 

(34)   1 2 1= =a a  

 We get the components from Figure 7 (* signifies standardized ) 

   * * *
1 1  = .62Gini  + .75Farm  - .22RentX a  

   * *
2 2  = .67GNPR  - .74LaboX a  

   * * = -.72(Stable Democracy)  + .39(Dictatorship)Yb  

Insert Figure 7 approximately here 
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 The graphical display of the countries obtained by crossing 1 1X a  = Agricultural Inequality 

and 2 2X a  = Industrial Development and marked with their political regime in 1960 is shown in 

Figure 8.  It may be noted that the upper left quadrant concentrates on dictatorships.  It is difficult for 

a country to escape dictatorship when its industrial development is below-average and its 

agricultural inequality is above-average.  It is worth pointing out that some unstable democracies 

located in this quadrant (or close to it) became dictatorships for a period of time after 1960: Greece 

(1967-1974), Brazil (1964-1985), Chili (1973-1990), Argentina (1966-1973). 

Insert Figure 8 approximately here 

VII. Conclusion 

Regularized Generalized Canonical Correlation Analysis is a very attractive and general 

framework for multi-block data analysis with good generalization in the case where each block is 

connected to only a subset of blocks.  By defining the design matrix, the shrinkage constants and the 

function g, RGGCA includes a remarkably large spectrum of methods as particular cases.  In this 

paper, we have also tried to define a guideline for the choice of the shrinkage constants by providing 

interpretations on the properties of the resulting block components.  If one wants to give priority to 

the correlation between a component and its neighboring components, mode B ( 0jτ = ) is the 

natural choice.  Conversely, if one wants a component which explains its own block well, and 

remains, however, correlated to its neighboring components, new mode A ( 1jτ = ) is the natural 

choice.  For a better compromise between variance and correlation, mode Ridge is proposed in this 

paper.  For each block, the determination of the shrinkage constant can be made fully automatic by 

using the analytical formula proposed by Schäfer and Strimmer.  In contrast to other common 

approaches that are based on cross-validation or bootstrap strategies, the computational effort of this 

technique is very attractive.  Moreover, the regularization aspect of RGCCA allows one to come 

closer to mode B even in case of high multicollinearity within blocks or when the number of 

individuals is smaller than the number of variables.  
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Several points have been eluded in this paper but will be investigated in future research. (i) 

Computing several components for each block: In this paper, we suppose that each block is 

summarized by one block component only. Using a deflation strategy, it is possible to compute 

additional components for each block which are orthogonal to the previous ones.  (ii) Model 

assessment by bootstrap strategy: RGCCA can be viewed as an estimation procedure for population 

GCCA.  Therefore, using a bootstrap strategy, it is possible to compute confidence intervals for all 

the elements computed in RGCCA.  (iii) Comparison with PLS path modeling: Wold (1982) 

mentions a drawback of the outer model estimation step of PLS path modeling: “Most nonlinear 

iterative techniques of estimation are lacking an analytic proof of convergence.  The proof of the 

pudding is in the eating”.  This outer model estimation step can be replaced by RGCCA, a 

monotonically convergent algorithm.  Simulations will be carried out in further studies to compare 

PLS path modeling (mode A) and RGCCA (new mode A) from a practical point of view.  

Nevertheless, this paper already suggests that the PLS approach of Herman Wold is much more 

powerful and founded on much more solid theoretical bases than it seemed to be at first. (iv) 

Nonlinear relationships between blocks: Finally, RGCCA captures only linear relations between 

blocks. To assess nonlinear relations, a kernel extension of RGCCA is currently under investigation. 
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APPENDIX 1 

Monotonic convergence of the PLS algorithm for population GCCA 

 Hanafi (2007) has proven the monotonic convergence of the PLS algorithm of Wold (1985) 

when the options mode B for all blocks and the centroid or factorial schemes are used.  In this 

appendix, we adapt the proof of Hanafi to the PLS algorithm for population GCCA described in 

Figure 1.  The proof of Proposition 2 relies on the following lemma, where the outer weight vectors 

s
jα  and the inner components s

jν  are defined in Figure 1: 

Lemma 1:  For 1,...,j J= , 0,1, 2,...s = , let f s
j  be the function defined by 

  1f ( ) c g Cov(( ) , ( ) ) c g Cov(( ) , ( ) )+

< >

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦∑ ∑s t s t t s t
j j jk j j k k jk j j k k

k j k j

α α α α αx x x x  

Then the following property holds 

(35)   1   f ( ) f ( )s s s s
j j j js +∀ ≤α α  

Proof of Lemma 1: 

The function f ( )s s
j jα  may be written as: 

(36) 

1

1 1

f ( ) c g Cov(( ) , ( ) ) c g Cov(( ) , ( ) )

          c w Cov(( ) , ( ) ) Cov(( ) , ( ) )

                            c w Cov(( ) , (

+

< >

+ +

<

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦

⎡ ⎤= ⎣ ⎦

+

∑ ∑

∑

s s s t s t s t s t
j j jk j j k k jk j j k k

k j k j

s t s t s t s t
jk j j k k j j k k

k j

s t
jk j j k

α α α α α

α α α α

α α

x x x x

x x x x

x

1 1

) ) Cov(( ) , ( ) )

          Cov ( ) , c w Cov(( ) , ( ) ) ( )

                        c w Cov(( ) , ( ) ) ( )  

          Cov(( )

>

+ +

<

>

⎡ ⎤⎣ ⎦

⎧
⎡ ⎤= ⎨ ⎣ ⎦

⎩
⎫

⎡ ⎤+ ⎬⎣ ⎦
⎭

=

∑

∑

∑

s t s t s t
k j j k k

k j

s t s t s t s t
j j jk j j k k k k

k j

s t s t s t
jk j j k k k k

k j

s t
j

α α

α α α α

α α α

α

x x x

x x x x

x x x

, )ν s
j jx

 

Using the definitions of s
jν  and 1s

j
+α , the following inequality holds 

(37)   1f ( ) Cov(( ) , ) Cov(( ) , )ν ν+= ≤s s s t s s t s
j j j j j j j jα α αx x  

and we get the equality 
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(38) 

1 1 1 1

1

Cov(( ) , ) c w Cov(( ) , ( ) ) Cov(( ) , ( ) )

                                               c w Cov(( ) , ( ) ) Cov(( ) , ( ) )

ν+ + + +

<

+

>

⎡ ⎤= ⎣ ⎦

⎡ ⎤+ ⎣ ⎦

∑

∑

s t s s t s t s t s t
j j j jk j j k k j j k k

k j

s t s t s t s t
jk j j k k j j k k

k j

α α α α α

α α α α

x x x x x

x x x x
 

Then, we have to consider the three schemes separately. 

Horst scheme (g = identity and w(x) = 1) 

For the Horst scheme, equality (38) becomes 

(39) 1 1 1 1 1Cov(( ) , ) c Cov(( ) , ( ) ) c Cov(( ) , ( ) ) f ( )ν+ + + + +

< >

= + =∑ ∑s t s s t s t s t s t s s
j j j jk j j k k jk j j k k j j

k j k j
α α α α α αx x x x x  

and therefore 1f ( ) f ( )+≤s s s s
j j j jα α . 

Centroid scheme (g = absolute value and w(x) = sign(x)) 

For the centroid scheme 

(40)  1f ( ) c Cov(( ) , ( ) ) c Cov(( ) , ( ) )+

< >

= +∑ ∑s s s t s t s t s t
j j jk j j k k jk j j k k

k j k j

α α α α αx x x x  

and 

(41) 

1 1 1 1

1

Cov(( ) , ) c sign( Cov(( ) , ( ) ) )Cov(( ) , ( ) )

                                               c sign( Cov(( ) , ( ) ) )Cov(( ) , ( ) )

ν+ + + +

<

+

>

⎡ ⎤= ⎣ ⎦

⎡ ⎤+ ⎣ ⎦

∑

∑

s t s s t s t s t s t
j j j jk j j k k j j k k

k j

s t s t s t s t
jk j j k k j j k k

k j

α α α α α

α α α α

x x x x x

x x x x
 

Therefore, we get 

(42)  

1 1

1 1 1 1

f ( ) f ( ) Cov(( ) , ) Cov(( ) , )  

c Cov(( ) , ( ) )  c Cov(( ) , ( ) ) f ( )

ν ν+ +

+ + + +

< >

= ≤ =

≤ + =∑ ∑

s s s s s t s s t s
j j j j j j j j j j

s t s t s t s t s s
jk j j k k jk j j k k j j

k j k j

α α α α

α α α α α

x x

x x x x
 

Factorial scheme (g = square and w(x) = x) 

For the factorial scheme 

(43)  2 1 2f ( ) c Cov (( ) , ( ) ) c Cov (( ) , ( ) )+

< >

= +∑ ∑s s s t s t s t s t
j j jk j j k k jk j j k k

k j k j
α α α α αx x x x  

and 

(44) 

1 1 1 1

1

Cov(( ) , ) c Cov(( ) , ( ) ) Cov(( ) , ( ) )
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ν+ + + +

<

+

>

⎡ ⎤= ⎣ ⎦

⎡ ⎤+ ⎣ ⎦
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∑

s t s s t s t s t s t
j j j jk j j k k j j k k

k j

s t s t s t s t
jk j j k k j j k k

k j

α α α α α

α α α α

x x x x x

x x x x
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The right term of (44) is the scalar product between two vectors.  Using the Cauchy-Schwartz 

inequality and the fact that 2c cjk jk= , we get 

(45) 

1 2 1 2 1/ 2

2 1 1 2 1 1/ 2

Cov(( ) , ) [ c Cov (( ) , ( ) ) c Cov (( ) , ( ) )]

                               [ c Cov (( ) , ( ) ) c Cov (( ) , ( ) )]
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< >

+ + +

< >

≤ +

× +

∑ ∑

∑ ∑

s t s s t s t s t s t
j j j jk j j k k jk j j k k

k j k j

s t s t s t s t
jk j j k k jk j j k k

k j k j

α α α α α

α α α α

x x x x x

x x x x
 

From that we deduce 

(46)  1/ 2 1 1/ 2f ( ) [f ( )] [f ( )]+≤s s s s s s
j j j j j jα α α  

and therefore 

(47)  1f ( ) f ( )+≤s s s s
j j j jα α  

Proof of Proposition 2 

Proposition 2 is deduced from lemma 1 and the following equality: 
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APPENDIX 2 

Proof of the equivalences mentioned in Table 4 

1) SUMCOR 

  The stationary equations for the SUMCOR method (see first line of Table 1) are 

obtained by using equation (13) with all 1jkc =  for j k≠ , with the Horst scheme and equation (14) 

with all 0jτ = .  Pre-multiplying these equations by jX , they become 

(48)   ( )j j j j k
k j≠

= ∝ ∑y X a P y  

where ∝  means that the left side is the standardized version of the right side and where 

1( )t t
j j j j j

−=P X X X X  is the orthogonal projection operator onto the spacej −X .  We now consider 

the stationary equations of the following optimization problem (mode B for all blocks and Horst 

scheme) 

(49)   1 1
1 1,..., 1

Maximize   Cor( , )

subject to the constraints:  Var( ) 1,   1,..., 1
J

J

j j J J
j

j j j J
+

+ +
=

= = +

∑a a
X a X a

X a
 

where [ ]1 1,...,J J+ =X X X  is the super-block. In this situation , 1c 1 for 1,...,j J j J+ = =  and 

c 0 otherwise.jk =   The stationary equations for this optimization problem are 

(50)   1 1( )j j j j J J+ += ∝y X a P X a  

(51)   1 1 1 1
1

( )
J

J J J J j j
j

+ + + +
=

= ∝ ∑y X a P X a  

However, as 
1

J

j j
j=
∑X a  belongs to the space generated by the super-block 1J +X , we get 

(52)   1
1

J

J j
j

+
=

∝ ∑y y  

Therefore, (50) becomes 
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(53)   
1

( ) ( )
J

j j k j j k
k k j= ≠

∝ = +∑ ∑y P y y P y  

and equation (48) is found again.  The equivalence mentioned in Table 4 is also valid if the centroid 

scheme is used because the sign of 1 1Cor( , )j j J J+ +X a X a  is equal to the sign of 1 1
t
J j J+ +y P y  and 

therefore always positive. 

2) Carroll’s Generalized CCA 

 In his 1968b paper, Carroll considers the “Mixed” correlation and covariance criterion which 

consists in the following optimization problem 

(54) 

1

1
1

2 2

,..., , 1 1

1 1

Maximize   Cor ( , ) Cov ( , )

subject to the constraints:  Var( ) Var( ) 1,   1,...,  and 1, 1,...,
= = +

+

= = = = = +

∑ ∑
J

J J

j j j j
j j J

j j jj J a j J J

a a z
X a z X a z

X a z
 

The solution of this optimization problem is obtained for the eigenvector z associated with the 

largest eigenvalue of the matrix ( )
1

1

1

1 1

J J
t t t

j j j j j j
j j J

−

= = +

= +∑ ∑Q X X X X X X .  As the eigenvector z belongs 

to the space generated by the columns of 1J +X , optimization problem (54) is equivalent to the 

following optimization problem 

(55) 

1

1 1
1

2 2
1 1 1 1,..., 1 1

1 1

Maximize   Cor ( , ) Cov ( , )

subject to the constraints:  Var( ) 1,   1,..., , 1 and 1, 1,...,

J

J J

j j J J j j J J
j j J

j j jj J J a j J J

+
+ + + +

= = +

+

= = + = = +

∑ ∑a a
X a X a X a X a

X a
 

And this shows the equivalence announced in Table 4. 
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Figure 1: A PLS algorithm for population GCCA 
 

A. Initialisation 

 A1. Choose J arbitrary vectors 0 0 0
1 2, ,..., Jα α α  

 A2. Compute normalized outer weight vectors 0 0 0
1 2, ,..., Jα α α  as: 

  0 0 1 0 1/ 2 1 0[( ) ]t
j j jj jj jj j

− − −=α α Σ α Σ α  

For s = 0,1,… (until convergence) 

For j = 1,2,…,J 

B. Computing the inner component s
jν  

 Compute the inner component according to the selected scheme: 

 1 1c w (( ) , ( ) ) ( ) c w (( ) , ( ) ) ( )ν + +

< >

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦∑ ∑s s t s t s t s t s t s t
j jk j j k k k k jk j j k k k k

k j k j

Cov Covα α α α α αx x x x x x  

 where w(x)  = 1 for the Horst scheme, x for the factorial scheme and sign(x) for the 

 centroid scheme. 

C. Computing the outer weight vector 1s
j
+α  

 Compute the outer weight vector 

 1 1 1/ 2 1[ ( , ) ( , )] ( , )s s t s s
j j j jj j j jj j jCov Cov Covν ν ν+ − − −=α Σ Σx x x  

End 

End 
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Figure 2: A PLS algorithm for RGCCA 
 

A. Initialisation 

 A1. Choose J arbitrary vectors 0 0 0
1 2, ,..., Ja a a  

 A2. Compute normalized outer weight vectors 0 0 0
1 2, ,..., Ja a a  as: 

  0 0 1 0 1/ 2 1 01 1[( ) [ (1 ) ] ] [ (1 ) ]
n n

t t t
j j j j j j j j j j j jτ τ τ τ− − −= + − + −a a I X X a I X X a  

For s = 0,1,…(until convergence) 

For j = 1,2,…,J 

B. Computing the inner component for block jX  

 Compute the inner component according to the selected scheme: 

  1 1c w Cov( , ) c w Cov( , )+ +

< >

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦∑ ∑s s s s s s s
j jk j j k k k k jk j j k k k k

k j k j

z X a X a X a X a X a X a  

 where w(x)  = 1 for the Horst scheme, x for the factorial scheme and sign(x) for the 
 centroid scheme. 
 
C. Computing the outer weight vector for block jX  

 Compute the outer weight vector 

  1 1 1/ 2 11 1[( ) [ (1 ) ] ] [ (1 ) ]
n n

s s t t t s t t s
j j j j j j j j j j j j j j jτ τ τ τ+ − − −= + − + −a z X I X X X z I X X X z  

End 

End 
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(a) One second order block 

 

 

(b) Several second order blocks 
 

 

 
Figure 3: Hierarchical models 

 

 

 

Figure 4: Russett data: Factorial scheme + Mode B 
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Figure 5: Russett data: Factorial scheme + New mode A  

 
 

 

Figure 6: Russett data: Factorial scheme + Mode Ridge (Optimal shrinkage) 
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Figure 7: Hierarchical Barker & Rayens PLS Discriminant Analysis  
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Figure 8: Hierarchical Barker & Rayens PLS Discriminant Analysis 
Graphical display of countries marked with their political regime in 1960 

(1 = stable democracy, 2 = unstable democracy, 3 = dictatorship) 
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Table 1: Special cases of RGCCA for multi-block data analysis 

Method Criterion to be 
maximized Scheme Normalization Shrinkage 

constants 

SUMCOR 
, ,

Cor( , )j j k k
j k j k≠
∑ X a X a  Horst Var( ) 1,    1,...,j j j J= =X a  0, 1,...,j j J= =τ

SSQCOR 
2

, ,
Cor ( , )j j k k

j k j k≠
∑ X a X a  Factorial Var( ) 1,    1,...,j j j J= =X a  0, 1,...,j j J= =τ

SABSCOR 
, ,

Cor( , )j j k k
j k j k≠
∑ X a X a  Centroid Var( ) 1,    1,...,j j j J= =X a  0, 1,...,j j J= =τ

SUMCOV 
, ,

Cov( , )j j k k
j k j k≠
∑ X a X a  Horst 1,    1,...,j j J= =a  1, 1,...,j j J= =τ  

SSQCOV 
2

, ,
Cov ( , )j j k k

j k j k≠
∑ X a X a  Factorial 1,    1,...,j j J= =a  1, 1,...,j j J= =τ  

SABSCOV 
, ,

Cov( , )j j k k
j k j k≠
∑ X a X a  Centroid 1,    1,...,j j J= =a  1, 1,...,j j J= =τ  

 
 
 

Table 2: Special cases of RGCCA for the two block situation 
 

Method Criterion Constraints 
Values of 

1τ  and 2τ  

Inter-Battery Factor Analysis 
(≈ PLS regression) 1 1 2 2Maximize Cov( , )X a X a  1

2

1

1

=

=

a

a
 1

2

1
1

τ
τ

=
=

 

Canonical Correlation 
Analysis 1 1 2 2Maximize Cor( , )X a X a  1 1

2 2

Var( ) 1
Var( ) 1

=
=

X a
X a

 1

2

0
0

τ
τ

=
=

 

Redundancy analysis of 1X  
with respect to 2X  

1/ 2
1 1 2 2 1 1Maximize Cor( , )Var( )X a X a X a  1

2 2

1
Var( ) 1

=

=

a
X a

 1

2

1
0

τ
τ

=
=

 

Redundancy analysis of 2X  
with respect to 1X  

1/ 2
1 1 2 2 2 2Maximize Cor( , )Var( )X a X a X a  1 1

2

Var( ) 1
1

=

=

X a
a

 1

2

0
1

τ
τ

=
=
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Table 3: Special cases of RGCCA for the hierarchical model with one second order block 
 

Method Criterion Constraints 
Hierarchical inter-
battery factor analysis 
(≈ Hierarchical PLS 
regression ) 

1 1
1 1,..., 1

Maximize   g(Cov( , ))

                                        
J

J

j j J J
j+

+ +
=

∑a a
X a X a

 1,  1,..., 1j j J= = +a  

Hierarchical 
Canonical 
Correlation Analysis 

1 1
1 1,..., 1

Maximize   g(Cor( , ))

                                        
J

J

j j J J
j+

+ +
=

∑a a
X a X a

 Var( ) 1,  1,..., 1j j j J= = +X a

Hierarchical 
Redundancy analysis 
of the jX ’s with 

respect to 1J +X  

1 1,...,

1/ 2
1 1

1

Maximize

 g(Cor( , )Var( ) )

                                          

J

J

j j J J j j
j

+

+ +
=

∑

a a

X a X a X a  
1 1

1,  1,...,

Var( ) 1
j

J J

j J

+ +

= =

=

a

X a
 

Hierarchical 
Redundancy analysis 
of 1J +X  with respect 
to the jX ’s 

1 1,...,

1/ 2
1 1 1 1

1

Maximize   

  g(Cor( , )Var( ) )

                                          

J

J

j j J J J J
j

+

+ + + +
=

∑

a a

X a X a X a  
1

Var( ) 1,   1,...,

1
j j

J

j J

+

= =

=

X a

a
 

 

Table 4: Special cases of RGCCA for hierarchical multi-block data analysis 
 

Method Criterion Constraints 

SUMCOR 
(Horst, 1961) 

1 1
1 1,..., 1

Maximize   Cor( , )
J

J

j j J J
j+

+ +
=

∑a a
X a X a  

or 

1 1
1 1,..., 1

Maximize   Cor( , )
J

J

j j J J
j+

+ +
=

∑a a
X a X a  

Var( ) 1,   1,..., 1j j j J= = +X a  

Generalized CCA 
(Carroll, 1968a,b) 

1

1 1

1

2
1 1,..., 1

2
1 1

1

Maximize   Cor ( , )

                 Cov ( , )

J

J

j j J J
j

J

j j J J
j J

+
+ +

=

+ +
= +

+

∑

∑

a a
X a X a

X a X a
 

1

1

Var( ) 1,  1,..., , 1

1, 1,...,
j j

j

j J J

j J J

= = +

= = +

X a

a

 

 
Table 5: Comparison of factorial and centroid schemes for mode B 

Criterion to be maximized Mode B + 
Factorial scheme 

Mode B + 
Centroid scheme 

2 2
1 3 2 3Cor ( , ) Cor ( , )+y y y y  0.967 0.966 

1 3 2 3Cor( , ) Cor( , )+y y y y  1.384 1.386 
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Table 6: Comparison of factorial and centroid schemes for new mode A 
 

Criterion to be maximized New mode A + 
Factorial scheme 

New mode A + 
Centroid scheme 

2 2 *
1 1 3 3 2 2 3 3Cov( , ) Cov( , )  +X a X a X a X a 3.8711 3.8676 

*
1 1 3 3 2 2 3 3Cov( , ) Cov( , )  +X a X a X a X a 2.6952 2.6964 

(*)  with 1 2 3 1= = =a a a    

 

 
Table 7: Russett data: Results summary for the factorial scheme 

 

 Mode 
PCA New Mode A Mode Ridge 

(optimal shrinkage) Mode B 

AVE (Agricultural Inequality) .7432 .7225 .4954 .2696 
AVE (Industrial Development) .9075 .9074 .9017 .8956 
AVE (Political Instability) .5423 .5412 .5056 .4387 
AVE (outer model) .6756 .6688 .5818 .4793 
AVE (inner model)  .3603 .3851 .4507 .4834 

 


