
HAL Id: hal-00606018
https://centralesupelec.hal.science/hal-00606018v1

Submitted on 24 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Delegation of Obligations and Responsibility
Meriam Ben Ghorbel, Frédéric Cuppens, Nora Cuppens-Boulahia, Daniel Le

Métayer, Guillaume Piolle

To cite this version:
Meriam Ben Ghorbel, Frédéric Cuppens, Nora Cuppens-Boulahia, Daniel Le Métayer, Guillaume Pi-
olle. Delegation of Obligations and Responsibility. 26th International Information Security Conference
(SEC), Jun 2011, Lucerne, Switzerland. pp.197-209, �10.1007/978-3-642-21424-0_16�. �hal-00606018�

https://centralesupelec.hal.science/hal-00606018v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Delegation of Obligations and Responsibility

Meriam Ben Ghorbel-Talbi1, Frédéric Cuppens1, Nora Cuppens-Boulahia1,
Daniel Le Métayer2, and Guillaume Piolle3

1 Institut TELECOM/Télécom Bretagne
2, rue de la Châtaigneraie, 35576 Cesson-Sévigné Cedex - France

{meriam.benghorbel,frederic.cuppens,nora.cuppens}@telecom-bretagne.eu
2 INRIA Rhône-Alpes

Inovallée, 655 avenue de l’Europe, 38334 Saint-Ismier Cedex - France
daniel.le-metayer@inria.fr

3 Supélec
Avenue de la Boulaie, CS 47601, 35576 Cesson-Sévigné Cedex - France

guillaume.piolle@supelec.fr

Abstract. In this paper, we discuss the issue of responsibilities related
to the fulfillment and the violation of obligations. We propose to formally
define the different aspects of responsibility, namely causal responsibil-
ity, functional responsibility, liability as well as sanctions, and to examine
how delegation influences these concepts. Our main aim is to identify the
responsibility of each agent that is involved in the delegation of obliga-
tions. More precisely, we try to answer to the following questions: who is
responsible for the obligation fulfillment? When a violation occurs, which
agents are causally responsible for this violation? Who is liable for this
violation and to whom? And finally, who must be sanctioned?

Keywords: Responsibility, Obligations, Delegation

1 Introduction

Obligations are important means to specify security control, in particular us-
age control [14,15,3]. Obligations must usually be fulfilled by a fixed deadline,
otherwise violations occur and punitive sanctions are inflicted upon agents (for
instance through the activation of prohibitions or new obligations). Yet, agents
can violate their obligations due to various causes that can be related to agents
themselves (e.g. lack of time or competence), or to other agents who have per-
formed (or not) actions such that they have blocked out the fulfillment of the
obligation, or finally to system faults, such as a system dysfunctioning or in-
sufficient authorization/resource [10]. For these reasons, it is necessary to have
means to clearly identify the responsibility of agents that are involved in the
obligation violation, especially when obligations are delegated to one or more
other agents.

Indeed, identifying the responsibility of agents in the case of violations is a
fundamental part of security and is central to the determination of liability and
sanctions. For this purpose, we focus here on these two issues and we propose,

2 Ben Ghorbel et al.

in section 2, a formal model that defines different levels of responsibilities [4],
namely functional responsibility which is the operational aspect of an obligation,
causal responsibility which expresses the link of causality between an agent’s
actions and a given fact, and liability which is related to the notion of blame,
sanction or damage reparation. In section 3, we propose a model of the concept
of obligation delegation. We examine how to deal with the different kinds of
responsibilities, and we give a concrete example to illustrate our approach. We
give, in section 4, a discussion on related work and concluding remarks.

2 Logical model of obligation and responsibility

In the following, propositions will be noted by lower case italic letters (a, b, p
. . .), variables by roman strings starting with a capital letter (Var) and litterals
by strings in fixed width font (litt). Indifferent variables are noted with an
underscore (), using Prolog-like notation.

Basic structure of the model Our framework is based on the notion of
organization. Organizations will be noted a, b, c . . . ∈ O. They do not have
any kind of property, but we will introduce a way to define arbitrary binary
relations between them. This allows to nest organizations, to define roles and
other high-level concepts. We choose to represent agents and organizations at
the same level, by considering that an agent is itself an organization. Another
core component is the notion of obligation. We consider that obligations always
come from a normative source (noted x ∈ X), which is an object shared by a set
of organizations. It can be a contract, an order, a law or any kind of normative
document. For instance, an organization can publish internal regulations, or
several organizations can agree on a contract. Normative sources will be used
as references for obligations and associated concepts. The logic does not make
any distinction between obligations to be and obligations to do, nor between
actions, events and states. These distinctions are abstracted away by the notion
of fact (noted p ∈ P). A fact is a proposition describing a situation or an action.
It can be an observation of the system or the object of an obligation. In the
remaining of section 2, we will consider a simple obligation (i.e. without any
delegation), between two agents (or organizations) a and b, coming from a
normative source x. We will present the various constructs related to obligations
and responsibility, before discussing the impact of obligation delegation in
section 3.

Obligations and organizations Obligation is represented by the modality
class O, differentiated in a four-parameter predicate. O(a, p, b, x) represents
the fact that a has the obligation, towards b, to ensure p, and that this
obligation comes from the normative source x. As our goal is to model
the various kind of underlying responsibilities in a fine-grained way, the
obligation modality has been emptied of most of its usual meaning, and is
best described as the representation of a speech act, the acknowledgment

Delegation of Obligations and Responsibility 3

that an obligation has been expressed. Formally, each tuple (O, a, b, x) is a
monadic obligation modality, applied to facts. They are defined like in SDL,
with a KD axiomatics [21]. The abstract relation structure is brought by a
relation predicate. relation(relationName, a, b) means that a is in relation
relationName with b. Binary relations on O × O can be introduced this way.
For instance, relation(playsRole, a, r, b) can mean that a plays a given role r in
the organization b.

Functional responsibility is the operational aspect of an obligation, the fact
that the obligated agent is actually expected to perform a task itself. We note
FR(a, p, b, x) the fact that a has the functional responsibility, for which it is ac-
countable to b, to ensure p, and that this responsibility comes from normative
source x. In simple cases, functional responsibility is directly derived from the
expressed obligation: if an agent is obliged to ensure p then it has the corre-
sponding functional responsibility. This is why, in this simple (delegation-free)
version of the framework, functional responsibility is formally equivalent to obli-
gation (eq. 1). The predicate is introduced to make a distinction between the
responsibility and the mere speech act.

FR(a, p, b, x)
def
= O(a, p, b, x) (1)

Causal responsibility is not necessarily derived from an obligation, but will
contribute to the definition of more complex notions. It expresses the link of
causality between an agent’s actions and a fact, without any assumption of any
kind of “fault”. We note CRa p the fact that agent a is causally responsible for
the fact p. It implies p itself. It means that a has contributed, in some way to
the fact that p is true: there is a causality link between a’s behaviour and p. It
does not mean that a is the sole responsible agent for p.

We choose to distinguish “material causal responsibility” (MCRa p) from
“causal responsibility by direct influence” (CRDIa p). The former means that p
occured, and that there is a causality link between a’s actions or inaction and
the fact p. The latter means that a made another agent or organization b do
something (by the means of an obligation) which made b causally responsible for
the fact p. In other words, a used its influence to cause p. Material causal respon-
sibility can be more precisely specified in many ways, by introducing complex
relations between the actions and their results. In the version of the formalism
presented here however, the notion remains abstract and the individual actions
are hidden, because our only need here is to decide wether the causal link exists
or not. In the context of this presentation, MCRa will therefore be considered a
primary operator. Yet, we should keep in mind that it is possible to distinguish
between various grades of material causal responsibility, which might lead to
various grades of other kinds of responsibility. Causal responsibility by direct
influence, on the other hand, is defined on the basis of an obligation and of the
material causal responsibility of another agent or organization (2). To conclude,
this first version of causal responsibility is simply the disjunction of material
causal responsibility and causal responsibility by direct influence (3).

4 Ben Ghorbel et al.

CRDIa p
def
= O(b, p, a, x) ∧MCRb p (2)

CRa p
def
= MCRa p ∨ CRDIa p (3)

Liability We understand liability with respect to an undesirable fact as the
possibility, for an agent or an organization, to be blamed for the fact, to be
imposed a sanction. This notion is inspired from the legal concept of liability
as it appears in the French legal context, for instance, where a person is held
liable if its (faulty) behaviour is causally related to a damage (to another agent
or to society). In our model, the damage is represented by a fact p, the fault by
a violated interdiction on p and the causal relation by our dedicated operator. It
means that if an agent has not violated any norm, then it cannot be blamed or
sanctioned. Therefore it may be considered that the system contains very general
norms, such as the obligation not to cause a harm or loss to another agent. In
our language, L(a, p, b, x) means that a is liable for p towards b, because of
obligations coming from normative source x. In a first version its direct form
(DL’(a, p, b, x)), it is defined as the conjunction between a causal responsibility
and a violated obligation (4).

DL’(a, p, b, x)
def
= CRa p ∧O(a,¬p, b, x) (4)

This direct liability is personal in essence, but in some cases one may be liable
for somebody else’s actions. For instance, parents often bear civil liability in the
name of their children. We need to take this kind of relationship into account,
because it can also occur in many organizations, where employers, under certain
circumstances, may be liable instead of their employees. In order to model this,
we will use a relation accountableFor, which we need to be built-in. In short,
if a is accountable for b, then we consider that a is liable when b should be.
This allows us to define indirect liability IL(a, p, b, x) as in (5). Overall liability
(6) is therefore the disjunction between direct and indirect liability, where direct
liability DL is redefined as the conjunction between DL’ and the absence of a
relation accountableFor.

IL(a, p, b, x)
def
= CRc p ∧O(c,¬p, b, x) ∧ relation(accountableFor, a, c) (5)

L(a, p, b, x)
def
= DL(a, p, b, x) ∨ IL(a, p, b, x) (6)

If different levels of causal responsibility are defined, then different levels of
liability will arise. For instance, one can imagine a weaker causal responsibility
CR1 (denoting a partial responsibility) and a stronger one CR2 (denoting a full,
exclusive responsibility). CR1 and CR2 could give rise to two levels of liability L1

and L2. In some context, a L1 liability could be considered too weak to give rise
to a sanction, while an agent with L2 liability would be considered “blamable”.
For simplicity, we will work only with one kind of causal responsibility here.
However, several existing propositions could be useful in designing a gradation
of causal responsibility, like constructions based on Pörn’s D and D′ modalities

Delegation of Obligations and Responsibility 5

[16], and in particular the recent proposal by Marek Sergot [19].

Sanction As mentioned above, in the case of obligation violation an agent
or an organization has to make good for this violation. We use the predicate
sanction(s, c, p, x) to say that sanction s is associated to fact p by normative
source x and may be imposed by agent c. Note that we use this predicate to de-
fine sanctions in the sense of punishment (penal responsibility), but also to define
blame and the reparation of damage or loss (civil responsibility). We choose not
to formally differentiate the two notions. In our language, sanctions are asso-
ciated to the agent liable for the violation according to the normative source.
S(a, p, b, s, c) means that sanction s can be imposed by agent c to a following
fact p, for which a is liable towards b:

S(a, p, b, s, c)
def
= L(a, p, b, x) ∧ sanction(s, c, p, x) (7)

Some discussion remarks One question that remains to be answered, for
the sanction to be just: is the agent actually able to fulfill the obligation or to
avoid its violation? For this purpose, one has to define the concept of the agents’
ability [5,12] to fulfill a given obligation, as well as the parameters influencing
this ability. Thus, when a violation occurs we can tell whether a liable agent
was actually able to fulfill the obligation in that moment. Many concepts have
to be defined and considered to define agents’ ability. For instance, is the agent
considered able to do some task if it is able to delegate it to another agent?

Another issue is the possibility of sanctions for agents which are causally
responsible for the violation, but which bear no liability with respect to the
current source of norms. For instance, organization b may deem agent a liable
for a given violation with respect to a source of norms x, but agent c, belonging
to a foreign organization on which b has no influence, may have a greater causal
responsibility because it prevented a from doing its job properly. No liability
of c towards b can apparently be derived, because c is not concerned by x and
therefore it has not violated any norm of x. Yet, it would seem just that c could
be blamed. No liability can be built upon x, but there may be other applicable
normative sources. On the first hand, if a and c share a source forbidding an
agent to harm another in the way c did, then a liability can be derived from
that, and the corresponding sanction will be considered independently from x.
It can also be the case that c broke one of its own norms and is sanctionned for
that [10], but that its liability is not towards b. On the other hand, if c has not
violated any norm applying to it, then it is not faulty in any way and has neither
to be sanctionned nor to provide a reparation. In other words, an agent with no
functional responsibility for a given fact cannot be judged liable and therefore
cannot be blamed. It matches real world situations, in which a fault must be
exhibited for a sanction to be applied. For instance, two shops operating in the
same street may have a negative impact on each other’s income, thus generating
a damage, but as long as none of them breaks the general rules of commerce, no
civil reparation or penal sanction can be sought.

6 Ben Ghorbel et al.

3 Modelling obligation delegation

Now that the notions of obligation, causal responsibility, functional respon-
sibility and liability are available, we will propose a model of the concept of
obligation delegation and examine its influence on the former notions. We say
that an obligated agent b delegates its obligation to another agent a when b
obliges a to what b was initially obliged. Depending on the options of this
delegation, this may or may not influence the functional responsibility and the
liability of both a and b with respect to the obligated fact.

The delegation predicate The delegation of an obligation is represented by
an instance of the delOb predicate. delOb(a, p, b, c, x, FRoption, Loption) means
that b delegates to a the obligation on p that it had towards c, coming from the
normative source x. The last two parameters are the options of the delegation
related to functional responsibility and liability. Functional responsibility can
be either shared (FRoption = fr share) or forwarded (fr forward). In the
first case, both a and b have functional responsibility: they are both in charge of
ensuring p. This is for instance the case if the obligation delegation is a request for
help on a complex task. In the second case, a alone gets functional responsibility.
b does not have to take actions anymore, it is a’s role to actually ensure p. It
is not possible that b keeps functional responsibility for itself alone, as the key
idea about delegation is giving someone else something to do.

Liability can be kept (Loption = l keep), shared (l share) or forwarded
(l forward). If liability is kept, then the delegatee will accept no other liability
than towards the delegator. It means that if b is liable towards c and delegates
to a with l keep, then a will not be liable to c, only b will. On the other hand,
a will still be locally liable to b: it is a way to acknowledge that the speech act
of delegation itself generates its own liability. If liability is shared, then both a
and b will be liable to c (and a will still be “locally” liable to b). If liability is
forwarded, then only b will be liable to c (and to a, locally).

For instance, in a conference program committee a reviewer a can delegate
the obligation to review a given paper to an external reviewer b, using options
fr forward and l keep. In this case, b has the functional responsibility to review
the paper, a is liable to the PC chair if the review deadline is not met, and
b is liable to a. We can also imagine the opposite situation: a PhD student
delegates the obligation to review a paper to his/her advisor (obviously with
his/her consent) using options fr share and l forward. In this case, the student
transfers the obligation, i.e. he/she is no more liable to the PC chair, but will help
his/her professor to review the paper. Note that there is a hierarchical authority
between the professor and the student, therefore the student must request the
consent of the professor before delegating the obligation (see [2] for more details
about consent negotiation).

Formally, to be valid a delegation from a delegator b to a delegatee a on p
necessitates the existence of a prior obligation O(b, p, c, x) (i.e. an obligation to
b towards another agent c), and it creates a new obligation for the delegatee
a towards b. Note that this obligation is also coming from the same normative

Delegation of Obligations and Responsibility 7

source x. Equation (8) illustrates this derivation mechanism. The prior formula
says that B delegates to A its obligation on P, coming from source X, with
options LRoption and Loption. The derived formula is the new obligation of A,
towards B, to ensure P according to normative source X.

delOb(A, P, B, , X, FRoption, Loption)

O(A, P, B, X)
(8)

Rights system Depending on the context of an obligation, it is not always
possible or desirable to delegate it. The initial obligator may demand that the
initial obligee keeps either liability or full functional responsibility, for instance.
It is therefore necessary to install a rights system over obligation delegation: each
normative source will also enacts a number of rights formulae, and depending
on the active rules, a specific delegation will be authorized or not. More details
about how to set up such contextual rights about delegation are given in [1]. It
is currently assumed that normative sources properly define these rights, in that
rights enacted by a given source should not interfer with the obligations coming
from another one (see [8] for more details about conflict management).

Rights enacted by a normative sources are represented by allow and
deny predicates. allow(a, b, p, c, x, FRoption, Loption, Recursivity) means that
an obligation O(a, p, c, x) can be delegated to b with the options FRoption
and Loption. If Recursivity = recursive, then this permission propagates
to any delegated obligation. It does not if Recursivity = nonrecursive
deny(a, b, p, c, x, FRoption, Loption, Recursive) means that this same initial obli-
gation cannot be delegated with these options. If deny is recursive, it means that
any delegated obligation is also subject to it. It can be relevant, for instance, if
another set of options is authorized for the delegation. Recursivity in the rights
system is defined by (9).

deny(a, b, p, c, x, FRoption, Loption, recursive)
→ deny(b, , p, a, x, FRoption, Loption, recursive)

allow(a, b, p, c, x, FRoption, Loption, recursive)
→ allow(b, , p, a, x, FRoption, Loption, recursive)

(9)

When an agent delegates an obligation, it does not directly instantiate delOb,
but rather creates an instance of a delObAttempt predicate, which generates the
corresponding delOb only if the delegation is valid according to the existing
rights. It should be noted that allows and denys are terms which can be more or
less instantiated (parameters can be ground litterals or uninstantiated variables),
and thus more or less specific. By default, any delegation that is not allowed is
forbidden, and deny has priority over allow. The overall rule for deriving an
obligation delegation from a delegation attempt is described by (10).

delObAttempt(A, P, B, C, X, FRoption, Loption),
O(B, P, C, X), allow(B, A, P, C, X, FRoption, Loption,),

¬deny(B, A, P, C, X, FRoption, Loption,)

delOb(A, P, B, C, X, FRoption, Loption)
(10)

8 Ben Ghorbel et al.

Obligation chains We have seen that an obligation can be delegated with or
without delegating (or sharing) liability towards the original obligator. In or-
der to decide whether an agent is liable towards another for a given obligation,
one must know whether there is a chain of obligations (including both the ini-
tial one and the delegated ones) between them, and whether liability has been
shared or forwarded at each step. This is what the obChain predicate does.
obChain(a, p, b, x, L chain) means that there is a chain of obligations between b
(obligator) and a (obligatee) about p, coming from the normative source x. The
last parameter can be l propagated, if liability has been kept (so that a may
be liable to b), or l lost if liability has been lost somewhere between a and b.
This predicate is a convenience abbreviation defined as (11).

obChain(a, p, b, x, l propagated)
def
=8<:

O(a, p, b, x)

∨
„

obChain(c, p, b, x, l propagated)
∧
`
delOb(a, p, c, , x, , l share) ∨ delOb(a, p, c, , x, , l forward)

´«
obChain(a, p, b, x, l lost)

def
=„

obChain(c, p, b, x, l lost)
∧ delOb(a, p, c, , x, ,)

«
∨
„

obChain(c, p, b, x, l propagated)
∧ delOb(a, p, c, , x, , l keep)

«
(11)

Functional responsibility (with delegation) Functional responsibility must
be redefined in order to take obligation delegation into account. Now an agent
or organization has functional responsibility for p if it is obliged to ensure p, but
only if that it has not delegated this obligation with the fr forward option (12).

FR(a, p, b, x)
def
= obChain(a, p, b, x,) ∧ ¬delOb(, p, a, x, fr forward,) (12)

Causal responsibility by indirect influence (with delegation) Causal
responsibility by influence is the only component of causal responsibility which
is related to obligations, so it is the only one we need to reconsider in the light
of obligation delegation. So far, we have only defined causal responsibility by
direct influence, when the agent we have ordered to ensure p is itself materially
responsible for it. We introduce causal responsibility by indirect influence, which
captures the fact that this obligation can be further delegated. CRIIa p (reading
“a is causally responsible, by indirect influence, for p”) means that there is
a chain of delegated obligations on p between a and some agent b, that b is
materially responsible for p, and that this is not a causal responsibility by direct
influence (13). Causal responsibility by direct influence and by indirect influence
are then grouped in a same “causal responsibility by influence” CRIa p (14).

CRIIa p
def
= ¬CRDIa p ∧ obChain(b, p, a, , ,) ∧MCRb p (13)

CRIa p
def
= CRDIa p ∨ CRIIa p (14)

It can be interesting to introduce a variant operator: causal responsibility by
primitive influence CRPIa p, meaning that the issued obligation has not been
inherited by delegation (15). Overall causal responsibility is then redefined as

Delegation of Obligations and Responsibility 9

the disjunction between material causal responsibility and causal responsibility
by influence (16).

CRPIa p
def
= CRIa p ∧ ¬delOb(a, p, , , ,) (15)

CRa p
def
= RCMa p ∨ CRIa p (16)

Liability (with delegation) The last notion to be redefined is liability, for
which the obChain predicate has been specially tailored. An agent or organiza-
tion a is directly liable for p towards b if and only if a is causally responsible for
p, there is an obligation chain propagating liability from b to a, this liability has
not been lost by delegation and no other agent is accountable for a (17). Indirect
liability (18) can be defined in the same way, with overall liability remaining the
disjunction of direct and indirect liability.

DL(a, p, b, x)
def
= CRa p ∧ PDL(a, p, b, x) (17)

IL(a, p, b, x)
def
= CRc p ∧ PIL(a, p, b, x) (18)

Concrete Example 4 Let us assume that agent a has the obligation, towards
b, to fulfill p, and a is allowed to delegate this obligation with recursive option
(figure 1). If the obligation to ensure p is violated then we have to identify
agents that are responsible of this violation, namely, functional responsibility
and liability (which is derived from causal responsibility). As shown in figure 1,
agent a delegates the obligation to c and shares both the functional responsibility
and the liability towards b, so we can derive that FR(a, p, b, x) and L(a, p, b, x).
Agent c delegates the obligation to d with fr share option and keeps the liability,
so d has the functional responsibility towards b. Then, c delegates the obligation
to e and forwards both the functional responsibility and the liability. Therefore,
c is no more responsible towards b. Finally, agent e forwards the functional
responsibility to f . Thus, e is liable for p and f has the functional responsibility
towards b. To summarize, if the obligation O(a, p, b, x) is violated then we have
FR(act, p, b, x), for act in {a, d, f}, and L(act′, p, b, x) for act′ in {a, e}. Moreover,
as mentioned above, agents are also “locally” responsible towards the agent who
delegated to them the obligation (directly or indirectly), but only if they have
not forwarded this responsibility to another agent. This is why, agent d has the
functional responsibility towards agents c and a, and is liable towards c. Agent
e is also liable towards agents c and a. Finally, agent f is liable towards e and
has functional responsibility towards e, c and a. Note that if the obligation is
fulfilled by an agent belonging to the obligation chain, then we consider that all
the other agents have fulfilled their obligations [1]. In addition, we consider that
only agents having functional responsibility are obliged to perform the obligation.
Otherwise, the obligation is inactivated, i.e. the obligations of agents c and e.
After identifying agents that are liable towards b, namely a and e, sanctions

4 We give here a basic example to illustrate our approach. Real life situations will be
given in the next section 4 to help to understand the issues of our work.

10 Ben Ghorbel et al.

a

b

c

d

e

f

O(a, p, b, x)
Regular obligation

O(c, p, a, x)

O(d, p, c, x) O(e, p, c, x) O(f, p, e, x)

delOb(c, p, a, b, x, fr-share, l-share)

delOb(d, p, c, a, x, fr-share, l-keep)
delOb(e, p, c, a, x,
fr-forward, l-forward) delOb(f, p, e, c, x, fr-forward, l-keep)

FR(a, p, b, x)
L(a, p, b, x)

FR(d, p, {c, a, b}, x)
L(d, p, c, x)

L(e, p, {c, a, b}, x)

FR(f, p, {e, c, a, b}, x)
L(f, p, e, x)

Fig. 1. The obligation chain

are derived. According to the sanction defined by norm x and according to the
liability level (i.e. blameworthiness) and kind (i.e. penal or civil liability), a and e
will be (or not) sanctioned, asked to repair a damage or a loss. “Local” sanctions
can also be defined by norm x for agents who did not fulfill the delegation
contract. Thus, agent d, which is “locally” liable to c, can be sanctioned by c
if the obligation is violated. Obviously, this liability is inactivated if there is
a hierarchical authority relation between the obligatee and the obligator (i.e.
relation(bossOf, d, c)). In the same way for agents e and f .

4 Related work and Discussion

In the literature, some works [13,18,6] have studied the issue of the delegation
of obligations, such as the share, the transfer or the split of obligations, oth-
ers [5,17,20,12] have focused on the definition of responsibilities, such as direct,
causal or task-based responsibility, and in [7] authors have addressed the issue
of accountability within delegation protocols. But, none of them has explored
the delegation of responsibility as we have done in this paper. These works have
only considered the basic levels of delegation, namely the delegation of the obli-
gation without responsibility or the transfer of the obligation together with the
responsibility. In our work, we have proposed a distinction between functional
responsibility and liability, in order to give agents the means to delegate their
obligations according to their requirements and abilities. Moreover, this distinc-
tion allows us to identify, in the case of delegation, agents that are responsible
for the violation, agents that are liable (or indirectly liable) for this violation
and finally agents who are to be sanctioned.

Even though the word delegation has been used (and defined) in a technical
sense in this paper, our notion of delegation can be applied in real life situations
in which a proper distinction between functional, causal and legal responsibil-
ities could help clarifying the issues and drawing appropriate conclusions. As
an illustration, existing privacy protection regulations (such as the European

Delegation of Obligations and Responsibility 11

Directive) impose strong obligations on any entity which collects personal data
(the “data controllers”). In particular, data controllers are responsible for the
security of the data and must ensure that the data subject can effectively exer-
cise their rights, for example their rights to get access to their data or to have
them corrected in case of error, or deleted if they are no longer necessary for
the purpose. If the data controller subcontracts some or all the treatment of the
personal data, certain responsibilities are transferred when others are shared or
kept by the data controller. For example the functional responsibility to ensure
the security of the data is shared (the data controller must implement appro-
priate security measures for the collection of the data and their transfer to the
subcontractor and the subcontractor must ensure the protection of the data stor-
age and access) but the legal responsibility for security (w.r.t. the data subject)
may remain with the data controller, so that the data subject could potentially
sue the data controller for security breaches actually due to the subcontractor.
On the other hand, the functional responsibility on the exercise of the rights
of the subject may be completely transferred (if the data controller does not
store any data by himself) and both the data controller and the subcontractor
must address any request from the subjects concerning their personal data, thus
sharing legal responsibility.

Another illustration of the generality of our framework is the application
to software contracts and responsibilities for defective software. As stated in
section 2, different notions of causal responsibility can be defined, which may
correspond to different levels of severity. The notion of causality has also been
studied for a long time in computer science, but it is usually seen essentially as
a temporal property. In [9], we have defined several variants of logical causality
allowing us to express the fact that an event e2 (e.g. a damage) would not have
occurred if another event e1 had not occurred (“necessary causality”) or the fact
that e2 could not be avoided as soon as e1 had occurred (“sufficient causality”).
These causality properties are expressed in terms of execution traces of the
software components. We have shown that they are decidable and proposed trace
analysis procedures to establish them. These notions of causality are examples of
causal responsibilities relations CR which can be used to apply the framework
presented here to software liability. This would make it possible to formalize
legal aspects of the liability framework proposed in [11] and to distinguish, for
example, the technical commitments of a subcontractor (e.g. providing a software
component with a given functionality) and the cases of misbehaviour giving rise
to a legal liability on his part (e.g. if the output of the component exceeds a
given threshold, which might put the system or its environment at risk). An
interesting avenue for further work to this respect is the introduction of group
liability allowing us to make a distinction between “joint liability” (when each
party is considered fully responsible for the obligation) and “several liability”
(when the parties are responsible for their respective part of the obligation).

Acknowledgments. This research has been supported by the ANR 07 SESUR
FLUOR project.

12 Ben Ghorbel et al.

References

1. Ben-Ghorbel-Talbi, M., Cuppens, F., Cuppens-Boulahia, N.: An extended role-
based access control model for delegating obligations. In: Trust, Privacy and Se-
curity in Digital Business. LNCS, Springer (2009)

2. Ben-Ghorbel-Talbi, M., Cuppens, F., Cuppens-Boulahia, N.: Negotiating and dele-
gating obligations. In: International Conference on Management of Emergent Dig-
ital Eco-Systems (MEDES) (2010)

3. Bettini, C., Jajodia, S., Wang, X.S., Wijesekera, D.: Provisions and obligations in
policy rule management. Network and Systems Management 11(3) (2003)

4. Cholvy, L., Cuppens, F., Saurel, C.: Towards a logical formalization of responsibil-
ity. In: 6th international conference on Artificial intelligence and law. ACM Press,
Australia (1997)

5. Cholvy, L., Garion, C., Saurel, C.: Ability in a multi-agent context: A model in
the situation calculus. In: Computational Logic in Multi-Agent Systems. Springer
(2005)

6. Cole, J., Derrick, J., Milosevic, Z., Raymond, K.: Author obliged to submit paper
before 4 july: Policies in an enterprise specification. In: Policies for Distributed
Systems and Networks (2001)

7. Crispo, B., Ruffo, G.: Reasoning about Accountability within Delegation. In: In-
formation and Communications Security. LNCS, Springer (2001)

8. Cuppens, F., Cuppens-Boulahia, N., Ghorbel, M.B.: High level conflict manage-
ment strategies in advanced access control models. Electronic Notes in Theoretical
Computer Science 186 (2007)

9. Gössler, G., Le Métayer, D., Raclet, J.B.: Causality analysis in contract violation.
In: Runtime Verification (2010)

10. Irwin, K., Yu, T., Winsborough, W.H.: Assigning responsibility for failed obliga-
tions. In: IFIP Trust Management Conference (2008)

11. Le Métayer, D., Maarek, M., Mazza, E., Potet, M.L., Frénot, S., Viet Triem Tong,
V., Craipeau, N., Hardouin, R.: Liability in software engineering - overview of the
lise approach and illustration on a case study. In: 3rd International Conference on
Software Engineering (2010)

12. Mastop, R.: Characterising responsibility in organisational structures: The problem
of many hands. In: Deontic Logic in Computer Science. LNCS, Springer (2010)

13. Pacheco, O., Santos, F.: Delegation in a role-based organization. In: DEON. LNCS,
Springer (2004)

14. Park, J., Sandhu, R.: The UCONABC Usage Control Model. ACM Transactions
on Information and System Security 7(1), 128–174 (2004)

15. Pretschner, A., Hilty, M., Basin, D.: Distributed usage control. Communications
of the ACM 49(9), 39–44 (2006)

16. Pörn, I.: Action theory and social science: Some formal models. Synthese Library
120 (1977)

17. Royakkers, L., Grossi, D., Dignum, F.: Responsibilities in organizations. In: Com-
puter Supported Activity Coordination (2006)

18. Schaad, A., Moffett, J.D.: Delegation of obligations. In: Policies for Distributed
Systems and Networks. USA (2002)

19. Sergot, M.: Norms, action and agency in multi-agent systems. In: Deontic Logic in
Computer Science. LNCS, Springer (2010)

20. Strens, R., Dobson, J.: How responsibility modelling leads to security requirements.
In: Workshop on New Security Paradigms. United States (1993)

21. Wright, G.H.v.: Deontic Logic. Mind 60, 1–15 (1951)

