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ABSTRACTBY introducing unknown Level-Sets fields on contact intexfthe Signorini-Moreau
dynamic contact conditions are written as equations. Frbis, &a new continuous hybrid weak-
strong formulation for dynamic contact between deformataids is derived. In the global
problem, the Level-Sets like fields are the intrinsic contatknown ones. This problem is
discretized by means of time, space and collocation sche®e®se humerical experimentations
are carried out, showing the effectiveness of our approddie paper is ended by showing a
promising application of the multiscale Arlequin methodthe multiscale impact problems.

RESUME En introduisant des champs de Signe intrinseques aux zenesnfact, le modele de
Signorini-Moreau est écrit sous forme d’équations. De celée une nouvelle formulation
hybride et continue (faible-forte) est dérivée pour le péole de contact dynamique entre des
solides déformables. La formulation obtenue est dicréfsé unf-schéma, la méthode des EF
et une méthode de collocation. Des exemples numériquesamiolatpertinence de I'approche.
Le papier est fermé par une application prometteuse de laodét Arlequin au traitement des
aspects multi-échelles des problémes dynamiques de tontac
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1. Introduction

Impact problems are nonlinear in essence but also irregadmultiscale in time
and space. Their numerical approximation needs specia¢ricahtools.

On the one hand, it is experienced that when consideringrdimeontact prob-
lems based on classical Signorini contact models, cldstina discretizations of
such problems lead to spurious oscillations of the diseretehanical fields (see e.g.
[CAR 91], [BEN 03]). Since the seventies Hughes et al. [HUG#&ve designed a
speciala posteriorinumerical treatment for this pathology. Later, by follogigimo
et al. [SIM 92] who advocate energy and momentum conservatiguments, the so-
called persistent contact condition has been forced byaksethors in the Signorini
contact displacement-based conditions (cf. e.g. [ARM R#J 02] among others).
In this paper we use the formalism introduced by J.J. Mor&& DR 88] to write dy-
namic unilateral contact conditions. The so-calignorini-Moreaudynamic contact
model which is based on a control of both the placement of timact surfaces and
their respective normal velocities is set here as a systeegaétions by using two
Level-Setdields [SET 96] to characterize dynamically the contact zone

On the other hand, the sudden occurence of impact loads aigtssible high
frequency generate complex dynamic responses of the ieghattuctures. In such
regimes, one needs numerical schemes in which very refisedetizations in space
and time are coupled to significantly coarser ones withooegating unphysical phe-
nomena such as reflexions of waves on fictive numerical baieslaTheArlequin
framework [BEN 98] is here tested and shown to be promisirtatedle such a com-
plexity.

An outline of the paper is the following. Section 2 is devotedhe formulation
of the Virtual Work Principle for two bodies coming dynanigainto contact in a
large transformation framework. To define contact loadsiadlyic contact laws are
developed in section 3. In section 4, the propdseckl-Setand velocity based weak-
strong Lagrangian formulation of the dynamic contact peabis given. Its global
solution strategy is detailed in section 5. The time diszagibn Finite Difference
scheme is precised in subsection 5.1 and an overview of #ebspatial disretization
methods is presented in subsection 5.2. The section is emitted brief description
of the numerical algorithm used to solve the discrete nealirand irregular systems.
Simple but significant impact tests are carried out in sadiidn the final section, the
promising character of thArlequin method to treat the multiscale aspect of impact
problems is shown by a numerical study of 1-D example.

2. TheVirtual Work Principle

We consider the problem of dynamic frictionless contacieen two elastic bod-
iesS' andS? contained ink? (refer to figure 1 for notations).
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Figure 1. Mechanical problem and notations

For clarity and without restriction, we consider here theecashere the solids are
clamped ol . Moreover, we assume that the applied surface loads aré tecgexo
on 7;' and neglect the body forces. With these assumptions, theaVWork Principle
(VWP) reads for each timee | =]0, T: (where the reference to time and to Lebesgue
measured)} anddl. are omitted)

Findu' € CA! : Yw' € CA},
2 2
poii’ w’ + TriIl (u')(Vy(w))"] = [ R[w]]=0 [1]

Insystem [1]C A’ (i = 1,2) are the admissible kinematical spacesandii’ are
the displacements and accelerations fieldg~= T'!) is the potential contact “slave”
surface,p} denotes the mass density of sofiél in the reference state add’ is the
first Piola-Kirchhoff stress tensor defined®j. The nominal density of contact force
is denoted byR(= R'). This density of forces is experienced by sditi from solid
S2. Moreover, the Action and Reaction Principle was used.dtise

R'(p,t) = —R*(p(t),t)  for (p,t)inT, x| [2]

In [2], R? is the nominal density of contact force experienced by s$fidrom solid
St, p(t) is (for eacht > 0) one of the classical definitions of the point belonging to
I'2, associates to the poiptof ', (= I'}) by coupling-like applications of proximity
type [KLA 95] or, more generally, by using given physicaladitions along which
the nearest point df? to p is found (see [BEN 95]). With the help of these pairing
applications, a jump-like field is defined @i as follows.

For eachw = (w', w?) € CA, x CAZ,

[[w]](p) = w'(p) —w?*(p) forpinT, 3]

This field is used in [1].
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Using classical decomposition of the contact denBlitywe set:
R(p,t) = A(p,t)n(p,t) + R-(p.t)  for(p,t)inTc x| [4]

where R refers to the tangential contact loads (supposed here tojimd & zero)
and to the (scalar-field) normal contact pressure, with:

n(p,t) = —n*(* (P, 1),1) for (p,t) inT, x| [5]

being the unit inward normal vector & andy’ (i = 1, 2) the deformation mapping
of solid 5.

System [1] has to be completed by material behaviour lavitialiconditions and
contact laws. We focus here only on the last aspect.

3. Dynamic contact laws

In this section, we state the Signorini dynamic contact @t by using the
formalism of Moreau. The obtaine®ignorini-Moreaumodel is then written in terms
of multi-valued equalitiesia the introduction of twd_evel-Setdike fields.

3.1. The Signorini-Moreau model

Let us assume that at a given tirhe= ¢, € |, the Signorini displacement-based
contact conditions are satisfied. That is,

dn(p,to) <0, Ap,to) <0 and d,(p,to)A(p,to) =0 forpinT. [6]

whered,, is the normal gap defined by:
dn(p,t) = (¢' (P, 1) — (B, 1)) m(p, 1)  for (p,t)inTe x| [7]

The “viability lemma” of J.J. Moreau ([MOR 88],[MOR 00]) a=mgs that with [6],
the Signorini contact conditions are satisfied at all futtess as far as the following
conditions are fulfilled:

if d,<0 then A=0 onl. x| [8]
otherwis€[[v,]] <0, A <0 and [w,]]JA=0 onT, x| [9]

where][v,,]] stands for the normal velocity jump field in the sense of tHend®n [3].
The last equation of [9] is known in the literature under taene of persistent contact
condition (e.g. [ARM 98], [LAU 02]).

The localSignorini-Moreaucontact model, defined by [8]-[9] controls both the
relative placements and velocities of the contact surfadesever, the local inequal-
ities involved by [8]-[9] lead to variational inequalitied his model is transformed
here to a set of “equalities”.
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3.2. Level-Setsbased Signorini-Moreau model

By using twoSignlike functions (as introduced in [BEN 88] for a penalized-un
lateral contact model) one standing for a location of thetjwoss of contact surfaces
with respect to each other and the other for the sign of thenabvelocity jump field
on the contact interface, ti&ignorini-Moreaucontact model is converted to “multi-
valued” equalities as follows.

A= S,Su\ onT, x | [10]
Sy = 1p-(—dy) onl, x| [11]
Sy =1p-(N) onT, x | [12]

whereX = X — p,[[v.]], pn iS @ NON zero positive parameter ahgl- is the indicator
function of the set of the negative redlsg- (z) = 1 if z € R~ and0 otherwise.
Theiso-1values of thd_evel-Sefield S, S, characterize the effective (dynamic) con-
tact zone.

A lagrangian formulation of the dynamic contact problemasily derived from this
new setting of th&ignorini-Moreawcontact conditions in the following section.

4. A velocity and Level-Sets based weak-strong formulation

By using the VWP [1] and writing [10] in a weak sense whilst fxieg equations
[11] and [12] as local strong ones, the following new weakisy Lagrange formu-
lation of the dynamic frictionless contact problem is ob&al: assuming that the dis-
placement and velocity fields’ andv’ are known and the conditions [6] satisfied at
a given instant, € |, then for allt > tq,t € |, the problem to be solved is the
following:

Find (v, \;u, Sy, Sy) € CA,x HXxC A, x(L>®(T;10,1]))%;V(w, \*) € CA,xH

60" w’ r ‘(v T - Wn|] =
;/%”0” v +;/6T [T (") (Vp(w))"] /FCSUSUA[[ =0 [13]

1

Lo ss =0 [14]
Pn JT.
. . t . .
wi(t) = wi(to) + / vi(s)ds  in Qi [15]
to
Sy —1p-(—dy) =0 onl, x| [16]

Sy —1p-(A) =0 onl, x| [17]
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whereC A, is the space of kinematically admissible velocity fielHsis the space of
contact Lagrange multiplier add (v?) = IT*(u?).

REMARK. — Friction phenomena can be treated similarly.

REMARK. — One can observe that a stabilization penalty term can decatb [13]
leading to a stabilized-lagrangian formulation genenadjzhe lagrangian and the aug-
mented ones. The practical relevance of this generalizatibbe detailed elsewhere.

5. Solution strategy

In this section, the dynamic frictionless contact probleiefined by [13]-[17] is
discretized by #-time scheme and a mixed Galerkin and collocation methods.

5.1. Timediscretization

We approximate the first order derivative with respect tet{imertial virtual work
in [13]) by a first order Finite Differencg-scheme. We consider the intervat [0, T']
to be a collection of subintervalga | = Uffzo[tk, tr+1] and we denote bt =
tre1 — t the time step and b.)* the time discrete approximation of the figld at
timet¢ = ;. This way, the problem [13]-[17] is semi-discretized.

5.2. Spatial discretization

The spatial discretization of the semi-discretized prohléerived from [13]-[17],
is described here. The velocity, displacement and Lagremggplier A (at each time
stepty) are approximated by means of the Finite Element Methodgwhe (irregu-
lar) Level-Set$ields S, andS, are discretized by a collocation method which consists
in evaluating these fields in a finite collection of pointdpf the most “appropriate”
choice being a collection of numerical integration poirgedito approximate humer-
ically the irregular integrals involving contact actions.

5.2.1. FE Approximation

Letfori = 1,2, 7',} denote a classical mesh @f,, and letM,, denote a mesh of
.. LetthenC A}, andH}, be related classical finite element subspaces 4f, and
H, and(wiLl)lngN,i' (¥m)1<m<n., their finite element basis, with:

1=1,....d
= wiel [18]

i
le
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wheree; (I = 1,...,d) is an orthonormal basis of the spaBé and whereN} and
N, are the dimensions of the spad@4,, andH},, respectively.

Nonlinear finite element semi-discretized systems aremdday replacing (in the
semi-discretized problem derived above) the infinite disi@mal functional spaces
CAf) (i = 1,2) and H by CAf)h and Hj,, respectively. These systems still have
a continuous character which is related to the unknown oaotisLevel-Sets The
latter being irregular fields in general, they are approt@d#y a collocation method.

5.2.2. Collocation method
Now by defining(p;):1<;<n,. as afinite collection of points it and by denot-

ing (S3)511 x , (SI)EE! y  the values ofS, andS, at the pointgp;);—1 ,. and

attimety 1, the following discrete systems are obtained.

Find (v ™, AF Ll (S2)L (S9)FH1) € C Ay x Hy x C Ay, x {0,1}2Nre;
v(lea¢m)

Npe
(Gayn)p "+ (Gane)y T = Y wi (S SD N () [[wr, ] (py) = 0 [19]

j=1
Npc
—pi S s N () — (SR SDF N (o) dm(ps) =0 [20]

(ui)ffl = (ul)z + Aty [(1 - 9)(02)2 + 0(’06’,2“] fori =1,2 [21]

(SIF = 1p-[— (dn); ™' (p))] =0 Vj=1,...,Np [22]
(SR 1 N ()] =0 Vi=1,..., Ny (23]

where:

— m is an element of the basis éf, andw, is an element of the basis 6fA,,
constructed from the ones 6t A, , defined by [18].

— wj is a weight associated to the collocation pgiptfor j = 1,... , Np..
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— 6@ is a real parameter in [0,1]. In this work we have choosen ifmpEcity a
constant time stepXt; = At) andd = 1. The influence of) on temporal
integration is studied for example in [VOL 98].

REMARK. — In practice, one has to take care about compatible chofabe finite el-
ement space@AﬁL andH}, and also about the choices of the set of collocation points.
These two points have been discussed in a quasistatic frarkéw[BEN 02]. The
reader is referred to this reference since the choices dmme aire those done in the
dynamic framework considered herein.

5.3. Solution algorithm

A numerical algorithm is needed to solve the nonlinear digccontact problem
[19]-[23]. The strategy we use here is based on fixed pointN@gdton methods.
More precisely, at each time step, nested loops are coesidemwnhich:

— the pairing discrete mapping and the local frames at cation points are fixed.
— the values of theevel-Setsit the collocation points are fixed.

This leads to a problem where only regular nonlinearitietabe solved. For this
purpose the Newton-Raphson method is used.

6. Numerical examples

To show the performance of the proposed formulation, weidenswo frictionless
contact-impact examples.

6.1. Impact of two elastic and similar rods

We consider the classical test of impact of two elastic paistrrods moving with
equal speedi; = 10 m.s~!) in opposite directions (figure 2). The mechanical prop-
erties of the two rods are: densjiy= 7800 kg.m 3, area of cross sectioh 10~* m?,
length1. m, Young’s modulu. 10! Pa and poisson’s ratie = 0.3. We mesh the
two rods similarly with Hexa 3D-elements. The contact loatsapproximated by a
bilinear finite element space, defined at the contact interfdwo 3D-finite element
solutions are plotted in figure 2 (namely the displaceméntise velocitiew and the
contact pressurg at the impacting ends of the bars). The first solution is oleihi
with a classical displacement-based formulation dispeetby a dissipative Newmark
scheme § = 0.3025, v = 0.6 andAt = 10~° s). The second one is obtained with
the proposed approach.
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Newmar k(3=0.3025,y=0.6) Proposed method

x10° x10°
2

v(m/s)
o o
!
!
v(m/s)
o B

lambda(N/m2)
|
o
lambda(N/m2)

L
=)
L
=)

t(s) x10™ t(s) x10™

Figure2. Impact of two 3D elastic and similar rods; time historiesipfdisplacement,
velocity and contact multiplier- 3D mesh of the rods

6.2. Impact of a cylinder on a wall

The second example concerns the impact of an elastic cylonea quasi-rigid
wall under plane strain condition. The geometric and theenmgtproperties are:

— Cylinder:E = 2. 10" Pa, p = 7800 kg.m™3,v =0, R = 3. 10~2 m.
—Wall: E = 2.10'% Pa, p = 7800 kg.m =2, v = 0.
— Initial gap:2. 10~2 m and the initial velocity of cylinder500 m.s!.

The velocity and contact fields are approximated by bilirfigste 2D and 1D el-
ements, respectively and the nodes of the potential slasfacgu(belonging to the
cylinder) have been taken as the collocation points fottheel-Setsields.

In figure 3, we show the time histories of the displacemerigoity and contact
pression of the bottom contacting point of the cylinder ot®d by both the dissipative
Newmark scheme¥ = 0.4,y = 0.7 andAt = 10~%s) used for a displacement-based
formulation and the proposed method. The computed defogeechetries and the
principal major stress field spread in the cylinder are atguicted in figure 3.

The results plotted in figures 2 and 3 show the effectivenétiseoproposed for-
mulation in killing the undesirable oscillations of veltes and impacting forces.
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———— Newmark(B=0.4,y=0.7) Proposed method

lambda(N/m2)

Figure 3. Impact of a cylinder on a wall; time histories of the cylindsttom point
displacement, velocity and contact multiplier - Stres®agrin the cylinder

As may be guessed through the previous results and as itverkinom the simple
case of the dynamic response of an oscillator under imgaelynamic response of
impacted structures is very complex (multiscale in essenéée end this paper by
showing first results obtained by using the multiscallequinframework [BEN 98].

7. Impact simulation in the Arlequin framework

We briefly describe tha&rlequinframework. Then, by considering a representative
impact loading on a bar, it is shown that this framework iswiging for the treatment
of the multiscale character of impact problems.

The Arlequin method consists in superimposing a local refined model t@bad|
coarse one. The coexistence of the two different modelsalto use:

— different formulations,

— different time integration schemes,

— different refinements in space and time.

To test the relevance of the method to treat impact problems;onsider a bar
subjected to an initial signal assumed to be representativepact excitations. The
signal contains both low and high frequencies and is lodatagortion of the bar (cf.

figure (4-a)). In this portion of the bar, we use a refined mésboarse mesh is used
elsewhere. The two models are coupled in a classical waja¢icoupling) and in
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theArlequinframework (volumic coupling), the resulting models aret{@d in (figure
(4-b)). By computing the propagation of the initial sigmatie bar, we notice that the
Node to Node coupling model trap the high frequencies in ¢fieed model. Whilst,
by using a dissipative scheme in the superposition regilmvatl by theArlequin
framework, high frequencies contained in the refined dyoassponse are no more
reflected back in the refined zone, without affecting sigaifity the coarse (averaged)
response of the coarse model (cf. figures (4-c) and (4-d)).

5 1 15 2 25 3 35 4 45 E 5 3 35 4 45 s O 05 1 15 2
(a) Initial displacenent s (c) Node to Node coupling nodel
1 " :

refinded del
nodel coarse nodel

Node to Node
coupl i ng nmodel

refinded
model coarse nodel
I T o

Arl'equin
met hod

(b) Coupling nodel s

5 s 0 05 1 15 2
(d) Coupling with Arlequin

Figure4. A model impact problem in the Arlequin framework

8. Conclusion

A new velocity and_evel-Setdased continuous Lagrange weak-strong formula-
tion of dynamic frictionless contact has been developedhis paper. The continu-
ous formulation is derived from an equivalent setting of Signorini-Moreaucon-
ditions by using unknowihevel-Setdields. The problem is discretized by means of
time, space and collocation methods and solved by fixedtgtiategies mixed with
the Newton-Raphson method. Numerical examples show tkete#ness of our ap-
proach particularly for the treatment of spurious huméisaillations. First promis-
ing results using the multiscale Arlequin framework areegivA mixing of time inte-
gration schemes (explicit/implicit and/or dissipativ@iservative) in this framework
is now in progress.
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