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Robust Gaussian process-based

global optimization using a fully Bayesian

expected improvement criterion

Romain Benassi, Julien Bect, and Emmanuel Vazquez

SUPELEC
Gif-sur-Yvette, France

Abstract. We consider the problem of optimizing a real-valued con-
tinuous function f , which is supposed to be expensive to evaluate and,
consequently, can only be evaluated a limited number of times. This
article focuses on the Bayesian approach to this problem, which con-
sists in combining evaluation results and prior information about f in
order to efficiently select new evaluation points, as long as the budget
for evaluations is not exhausted.

The algorithm called efficient global optimization (EGO), proposed by
Jones, Schonlau and Welch (J. Global Optim., 13(4):455–492, 1998), is
one of the most popular Bayesian optimization algorithms. It is based
on a sampling criterion called the expected improvement (EI), which
assumes a Gaussian process prior about f . In the EGO algorithm, the
parameters of the covariance of the Gaussian process are estimated from
the evaluation results by maximum likelihood, and these parameters are
then plugged in the EI sampling criterion. However, it is well-known
that this plug-in strategy can lead to very disappointing results when the
evaluation results do not carry enough information about f to estimate
the parameters in a satisfactory manner.

We advocate a fully Bayesian approach to this problem, and derive an
analytical expression for the EI criterion in the case of Student predic-
tive distributions. Numerical experiments show that the fully Bayesian
approach makes EI-based optimization more robust while maintaining
an average loss similar to that of the EGO algorithm.

1 Introduction

Let f be a continuous real-valued function defined on some compact space
X ⊂ R

d. We consider the problem of finding the maximum of f , when f is
supposed to be expensive to evaluate because one evaluation takes a long time
or a large amount of resources. In this case, the optimization of f must be carried
out using a limited number of evaluations. More precisely, given a budget of N
evaluations of f , our objective is to choose sequentially N evaluation points
X1, . . . , XN ∈ X so that ε(XN , f) = M − MN is small, where XN stands for
(X1, . . . , XN ), M = maxx∈X f(x) and MN = f(X1) ∨ · · · ∨ f(XN ).

In this article, we adopt a Bayesian approach to this sequential decision
problem: the unknown function f is considered as a sample path of a real-valued



random process ξ defined on some probability space (Ω,B,P0) with parameter
x ∈ X, and a good strategy is a strategy that achieves, or gets close to, the
Bayes risk rB := infX

N
E0 (ε(XN , ξ)), where E0 denotes the expectation with

respect to P0 and the infinimum is taken over the set of all sequential strategies.
The reader is referred to the books [1–5] for a broader view on the field of global
optimization.

It is well-known [6–12] that an optimal Bayesian optimization strategy, i.e.
a strategy X⋆

N such that E0 (ε(X
⋆
N , ξ)) = rB, can be formally obtained by

dynamic programming. Let En, n = 1, 2, . . ., denote the conditional expec-
tation with respect to the σ-algebra Fn generated by the random variables
X1, ξ(X1), . . . , Xn, ξ(Xn). Denote by RN = EN (ε(XN , ξ)) the terminal risk
and define by backward induction

Rn = min
x∈X

En

(
Rn+1 | Xn+1 = x

)
, n = N − 1, . . . , 0. (1)

Then, we have R0 = rB, and the strategy X⋆
N defined by

X⋆
n+1 = argmin

x∈X

En

(
Rn+1 | Xn+1 = x

)
, n = 1, . . . , N − 1, (2)

is optimal. Unfortunately, solving (1)–(2) over an horizon N of more than a few
steps is not numerically tractable, for both the space of possible actions and the
space of possible outcomes at each step are continuous.

A natural way of dealing with this problem is to consider a suboptimal one-
step lookahead strategy; see, e.g., [13, chapter 6]. This leads to choosing each
new evaluation point according to

Xn+1 = argmin
x∈X

En (M −Mn+1 | Xn+1 = x)

= argmax
x∈X

En (Mn+1 | Xn+1 = x)

= argmax
x∈X

ρn(x) := En

(
(ξ(Xn+1)−Mn)+

∣∣ Xn+1 = x
)
, (3)

where (z)+ = 0∨ z. The sampling criterion ρn, introduced by J. Mockus [6] and
popularized through the EGO algorithm [14], is known as the expected improve-
ment (EI).

When ξ is a Gaussian process, or in other words, when a Gaussian process
prior is chosen for f , it is well-known that the EI can be written in closed form,
with the consequence that the maximization of ρn can be carried out with a
moderate computational effort. However, a Gaussian process prior carries a
high amount of information about f and it is often difficult to elicit such a prior
before any evaluation is made. As a result, the covariance function of ξ is usually
assumed to belong to some parametric class of positive definite functions, the
value of the parameters assumed to be unknown. In the EGO algorithm, the
parameters are estimated from the evaluation results by maximum likelihood,
and then plugged in the EI sampling criterion (computed for a Gaussian process
with known covariance function). It has been reported [15] that this plug-in



strategy can lead to very disappointing results when the evaluation results do
not carry enough information about f to estimate the parameters satisfactorily.
We advocate a fully Bayesian approach to this problem, following the steps of
Locatelli [9, 16] and, more recently, Osborne and co-authors [17–19].

The paper is organized as follows. Section 2 recalls the expression of the EI
criterion in the case of a Gaussian process prior with known covariance func-
tion, and describes the plug-in approach used in the EGO algorithm to handle
the parameters of the covariance function when it is only assumed to belong to
some parametric class. Section 3 explains how a fully Bayesian approach can
be adopted in this problem, in order to take into account the uncertainty on
the parameters of the covariance function. Section 4 presents a new closed-form
expression of the EI criterion for Student predictive densities, which arises nat-
urally when a conjugate inverse-gamma prior is used for the variance parameter
of the Gaussian process prior. Section 5 illustrates with numerical results the
benefits of the fully Bayesian approach, focusing more particularly on the tail of
the error distribution, i.e., on the occurrence of large errors.

Nota bene. The analytical expression of the expected improvement for Student
predictive distributions, presented in Section 4, has in fact already been obtained
by Williams, Santner and Notz [20] in the special case of an improper Jeffrey
prior on the variance. We warmly thank Frank Hutter for pointing out this paper
to us during the LION5 conference.

2 Efficient global optimization

2.1 The expected improvement sampling criterion for a

Gaussian process

Recall that the distribution of a Gaussian process ξ is uniquely determined
by its mean function m(x) := E0(ξ(x)), x ∈ X, and its covariance function
k(x, y) := E0 ((ξ(x)−m(x))(ξ(y)−m(y))), x, y ∈ X. Hereafter, we assume that
the mean function is constant on X and write ξ ∼ GP(m, k) to denote that ξ is a
Gaussian process with mean function m(x) = m ∈ R and covariance function k.

Proposition 1. Let k be a stationary covariance function written as k(x, y) =
σ2r(x − y), x, y ∈ X, where σ2 > 0 and r(0) = 1 (hence, r is a correlation
function). Assume that ξ | m ∼ GP(m, k) and m ∼ U(R), where U(R)
denotes the (improper) uniform distribution over R. Then, for all x ∈ X,

ξ(x) | Fn ∼ N
(
ξ̂n(x), s

2
n(x)

)
,

where

ξ̂n(x) = m̂n + rn(x)
TR−1

n (ξ
n
− m̂n1n) , (4)



with 



ξ
n
= (ξ(X1), . . . , ξ(Xn))

T ,

1n = (1, . . . , 1)T ∈ R
n,

Rn the correlation matrix of ξ
n
,

rn(x) the correlation vector between ξ(x) and ξ
n
,

m̂n =
1
T

n
R−1

n
ξ
n

1T
n
R−1

n 1n

, the weighted least squares estimate of m,

and
s2n(x) = σ2κ2

n(x) , (5)

with

κ2
n(x) = 1− rn(x)

TR−1
n rn(x) +

(1− rn(x)
TR−1

n 1n)
2

1T
nR

−1
n 1n

. (6)

Proposition 2. Under the assumptions of Proposition 1, the expected improve-
ment can be written as

ρn(x) =




sn(x)Φ

′

(
ξ̂n(x)−Mn

sn(x)

)
+ (ξ̂n(x)−Mn)Φ

(
ξ̂n(x)−Mn

sn(x)

)
if sn(x) > 0,(

ξ̂n(x)−Mn

)
+

if sn(x) = 0.

(7)
where Φ denotes the Gaussian cumulative distribution function.

Propositions 1 and 2 show that, given a set of evaluation points and a Gaus-
sian prior, the EI sampling criterion can be computed with a moderate amount of
resources (computing (4) at q different points in X involves O(qn2) operations).

However, it is rare that a user has enough information about f in order
to choose an adequate covariance function k before any evaluation is made.
The approach generally taken consists in choosing k in a parametrized class of
covariance functions and estimating the parameters of k from the evaluation
results.

2.2 Classical parametrized covariance functions

There are chiefly three classes of parametrized covariance functions in the
literature of Gaussian processes for modeling computer experiments. These are
the class of the so-called Gaussian covariances, the class of the exponential co-
variances, and that of the Matérn covariances. Using Matérn covariances makes
it possible to tune the mean square differentiability of ξ, which is not the case
with the exponential and Gaussian covariances.

Define υν : R+ → R
+ such that, ∀h ≥ 0,

υν(h) =
1

2ν−1Γ (ν)

(
2ν1/2h

)ν

Kν

(
2ν1/2h

)
, (8)



where Γ is the Gamma function and Kν is the modified Bessel function of the
second kind of order ν. The parameter ν > 0 controls regularity at the origin
of υν .

The anisotropic form of the Matérn covariance on R
d may be written as

kθ(x, y) = σ2rθ(x, y), with

rθ(x, y) = υν




√√√√
d∑

i=1

(x[i] − y[i])2

β2
i


 , x, y ∈ R

d , (9)

where the positive scalar σ2 is a variance parameter (we have kθ(x, x) = σ2),
x[i], y[i] denote the ith coordinate of x and y, the positive scalars βi represent
scale or range parameters of the covariance, or in other words, characteristic
correlation lengths, and finally θ = (ν, β1, . . . , βd) ∈ R

d+1
+ denotes the parameter

vector of the Matérn covariance. Note that an isotropic form of the Matérn
covariance is obtained by setting β1 = . . . = βd = β. Then, the parameter
vector of the Matérn covariance is θ = (ν, β) ∈ R

2
+.

2.3 The EGO algorithm

The approach taken in the EGO (efficient global optimization) algorithm [14,
21–23] consists in estimating the unknown parameters of the covariance function
by maximum likelihood, after each new evaluation. Then, the EI sampling
criterion is computed using the current value of the parameters of the covariance.
EGO can therefore be viewed as a plug-in approach.

Remark 1 (about maximum likelihood estimation of the parameters of a covari-
ance function of a Gaussian process). Recall that, for ξ ∼ GP(m, kθ) with
kθ(x, y) = σ2rθ(x, y), the likelihood of the evaluation results can be written
as

ℓn(ξn;m,σ2, θ) =
1

(2πσ2)n/2|Rn(θ)|1/2
e−

1

σ2 (ξn−m1n)
T
Rn(θ)

−1(ξ
n
−m1n), (10)

where Rn(θ) stands for the correlation matrix of ξ
n
, parametrized by θ. Note

that setting to zero the partial derivatives of ℓn with respect to m and σ2 yields
the following maximum likelihood estimates for m and σ2:

m̂(θ) =
1
T

nRn(θ)
−1ξ

n

1T
nRn(θ)−11n

, (11)

σ̂2(θ) =
1

n

(
ξ
n
− m̂1n

)T

Rn(θ)
−1

(
ξ
n
− m̂1n

)
. (12)

Thus the maximum likelihood estimate of θ can be obtained by maximizing the
profile likelihood θ 7→ ℓn(ξn; m̂(θ), σ̂2(θ), θ).



2.4 The case of deceptive functions

Deceptive functions is a term coined by D. Jones (see [15, 25]) to describe
functions that appear to be “flat” based on evaluation results. In fact, any
function can potentially appear to be flat depending on how it is sampled.

When the available evaluation results do not bring enough information on
the objective function f to estimate the parameters of the covariance function
with a reasonnable precision, the variance of the error of prediction can be
severely under-estimated as depicted in Figure 1. As will be shown in Section 5.1,
this can lead to very unsatisfactory behaviors of the EGO algorithm, which
tends to waste lots of evalutions in local search around the current maxima
(exploitation), very early in the optimization procedure, to the detriment of
global search (exploration).

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Fig. 1. Example of a deceptive sampling of a function (dashdot line). Evaluation
points (black dots) are chosen such that the value of the function is around zero at
these points. After having estimated the parameters of the covariance function by
maximum likelihood, the prediction is very flat (solid line) and confidence intervals
derived from the standard deviation of the error of prediction (gray area) are severely
underestimated.

3 Fully Bayesian one-step lookahead optimization

It has been emphasized in Section 1 that the rationale behind the EI criterion
is of a Bayesian decision-theoretic nature. Indeed, maximizing the EI criterion
at iteration n is equivalent to minimizing the expected loss En (max(ξ)−Mn+1),
where the expectation is taken with respect to the value of the next evaluation,
which is unknown and therefore modeled as a random variable.

In a fully Bayesian setting, all the unknown parameters of the model have
to be given prior distributions. This has already been done for the unknown



mean m in Proposition 1. Let π0 denote the prior distribution of the vector
of covariance parameters θ′ = (σ2, θ), and let πn, n = 1, . . . , N , denote the
corresponding posterior distributions. According to Bayes’ rule, the posterior
distribution of ξ(x) is a mixture of Gaussian distributions N

(
ξ̂n(x; θ

′), s2n(x; θ
′)
)

weighted by πn(dθ
′). The expected improvement criterion for this model can

thus be written, using the tower property of conditional expectations, as

En

(
(ξ(x)−Mn)+

)
= En

(
En

(
(ξ(x)−Mn)+

∣∣∣ θ′
))

=

∫
ρn(x; θ

′)πn (dθ
′) . (13)

Note that the plug-in EI criterion of Section 2.3 can be seen as an approximation
of the fully Bayesian criterion (13):

∫
ρn(x; θ

′)πn (dθ
′) ≈ ρn(x; θ̂

′

n) ,

which is justified only if the posterior distribution is concentrated enough around
the MLE estimate θ̂′n. In the general case, we claim that it is safer to use the
fully Bayesian criterion (13), since the corresponding expected loss integrates
the uncertainty related to the fact that θ′ is not exactly known. This claim will
be supported by the numerical results of Section 5.

When π0 is a finitely supported discrete distribution, the posterior distribu-
tion πn—and therefore the integral (13)—can be computed exactly using Bayes’
rule. For more general prior distribution, the integral can be approximated
by stochastic techniques like MCMC sampling or SMC sampling (see [26–28]
and the references therein). An alternative approach using Bayesian quadrature
rules [29] has been proposed in [17–19]. In all cases, the EI criterion is approx-
imated by an expression of the form

∑
i wiρn(x; θ

′

i), which amounts to saying
that πn is approximated by the discrete distribution

∑
i wiδθ′

i
.

Remark 2. Although fully Bayesian approaches for Gaussian process models
have been proposed in the literature for more than two decades (see [30, 31]
and the references therein), surprisingly little has been written from this per-
spective in the context of Bayesian global optimization. An early attempt in this
direction can be found in [9, 16], where the variance parameter of a Brownian
motion is given an inverse-gamma prior and then integrated out as in (13). More
recently, the fully Bayesian approach has been developed in a more general way
by [17–19], but the important connection of (13) with the usual (Gaussian) EI
criterion was not clearly established.

Remark 3. Discrete mixtures of Gaussian distributions and the corresponding EI
criterion have also been introduced in [32] to allow for the use of several para-
metric classes of covariance functions, in order to provide increased robustness
with respect to the choice of a particular class. The approach is not Bayesian,
however, since the weights in the mixture are not posterior probabilities.



4 Student EI

Let us consider the case of a Gaussian process ξ with unknown mean m
and covariance function of the form k(x, y) = σ2r(x, y). We assume that m
and σ2 are independent, with m uniformly distributed on R (as in Proposition 1)
and σ2 following an inverse-gamma distribution with shape parameter a0 and
scale parameter b0, hereafter denoted by IG (a0, b0). We shall prove that, in this
setting, the EI criterion still has an explicit analytical expression, which is a
generalization of the usual EI criterion given in Proposition 2.

First, recall that the prior chosen for σ2 is conjugate [33]:

Proposition 3. The conditional distribution of σ2 given Fn is IG (an, bn), with

an = a0 +
n− 1

2
,

bn = b0 +
1

2

(
ξ
n
− m̂n1n

)T

R−1
n

(
ξ
n
− m̂n1n

)
.

Using this result and the fact that ξ(x) | σ2, ξ
n
∼ N

(
0, σ2κ2

n(x)
)
, it is easy to

show that the predictive distribution of ξ(x) is a Student distribution. More
precisely:

Proposition 4. Let tη denote the Student distribution with η > 0 degrees of
freedom. Then, for all x ∈ X,

ξ(x)− ξ̂n(x)

γn(x)
| Fn ∼ tηn

,

with ηn = 2an, and γ2
n(x) = bn/an κ

2
n(x).

In other words, the predictive distribution at x is a location-scale Student dis-
tribution with ηn degrees of freedom, location parameter ξ̂n(x) and scale pa-
rameter γn(x). The following result is the key to our EI criterion for Student
predictive distributions:

Lemma 1. Let T ∼ tη with η > 0. Then

E
(
(T + u)+

)
=

{
+∞ if η ≤ 1,
η+u2

η−1 F ′

η(u) + uFη(u) otherwise,

where Fη is the cumulative distribution function of tη.

Combining Lemma 1 and Proposition 4 finally yields an explicit expression of
the EI criterion:

Theorem 1. Under the assumptions of this section, for all x ∈ X,

En

(
(ξ(x)−Mn)+

)
= γn(x)

(
ηn + u2

ηn − 1
F ′

ηn
(u) + uFηn

(u)

)
, (14)

with u =
(
ξ̂n(x)−Mn

)
/γn(x).



It has been assumed, up to this point, that the only unknown parameter in the
covariance function is the variance σ2. More generally, assume that k(x, y) =
σ2 r(x, y; θ): in this case we proceed by conditioning as in Section 3. Indeed,
assume that θ is independent from

(
m,σ2

)
with a prior distribution π0. Let us

denote by ρ̃n(x; θ) = En

(
(ξ(x)−Mn)+ | θ

)
the value of the EI criterion at x

provided by Theorem 1 when the value of the unknown parameter is θ. Then

En

(
(ξ(x)−Mn)+

)
= En

(
ρ̃n (x; θ)

)
=

∫
ρ̃n(x; θ)πn(dθ), (15)

where πn denotes the posterior distribution of θ after n evaluations. As explained
in Section 3, the integral (15) boils down to a finite sum that can be computed
exactly (using Bayes’ rule) when the prior π0 has a finite support; in the general
case, approximation techniques have to be used.

5 Numerical experiments

5.1 Optimization of a deceptive function

Experiment. Consider the objective function f : X = [−1, 1] → R defined by

f(x) = x (sin(10x+ 1) + 0.1 sin(15x)) , ∀x ∈ X .

We choose an initial set of four evaluation points with abscissas −0.43, −0.11,
0.515 and 0.85, as shown in Figure 1. Our objective is to compare the evaluation
points chosen by the plug-in approach (i.e., the EGO algorithm) and those chosen
by the fully Bayesian algorithm (FBA) proposed in Section 4.

In both approaches, we consider a Matérn covariance function with a known
regularity parameter ν = 2 (see Section 2.2). In the approach of Section 4, we
choose an inverse gamma distribution IG(0.2, 12) for σ2. Since X has dimension
one, there is only one range parameter β. To simplify the implementation of
the approach proposed, we shall assume that β has a finite support distribution.
More precisely, define a βmin and a βmax, such that βmin < βmax, and set, for all

i = 0, . . . , I, βi = βmin

(
βmax

βmin

)i/I

. We assume a uniform prior distribution over

the βis, with βmin = 2× 10−3, βmax = 2 and I = 100.
The optimization of the two sampling criteria is performed by a Monte Carlo

approach. More precisely, we generate once and for all a set of q = 600 candidate
points uniformly distributed over X and the search for the maximum of each
sampling criterion is carried out at each iteration by determining the value of
the sampling criterion over this finite set (the same set of points is used for both
criteria).

Results. Figures 2, 3 and 4 show that the standard deviation of the error of
prediction is severely underestimated when using the EGO algorithm, as a result
of the maximum likelihood estimation of the parameters of the covariance from



a deceptive set of evaluation points. If the uncertainty about the covariance
parameters is taken into account, as explained above, the standard deviation
of the error is more satisfactory. Figures 3 and 4 show that the maximum is
approximated satisfactorily after only four iterations with FBA, whereas EGO
needs nine more iterations before making an evaluation in the neighborhood of
the maximizer. Indeed, we observe that EGO stays in the neighborhood of a
local optimum for a long time, while X remains unexplored. This behavior is
not desirable in a context of expensive-to-evaluate functions.

5.2 Comparison on sample paths of a Gaussian process

Experiment. In order to assess the performances of EGO and FBA from a
statistical point of view, we study the convergence to the maximum using both
algorithms on a set of sample paths of a Gaussian process.

We have built several testbeds Tk, k = 1, 2, . . ., of functions fk,l, l = 1, . . . , L,
corresponding to sample paths of a Gaussian process, with zero-mean and a
Matérn covariance function, simulated on a set of q = 600 points in [0, 1]d

generated using a Latin hypercube sampling (LHS), with different values for d
and for the parameters of the covariance. Here, due to the lack of room, we
present only the results obtained for two testbeds in dimension 1 and 4 (the
actual parameters are provided in Table 1).

Parameter \ Testbed T1 T2

Dimension d 1 4
Number of sample paths L 20000 20000
Variance σ2 1.0 1.0
Regularity ν 2.5 2.5
Scale β = (β1, . . . , βd) 0.1 (0.7, 0.7, 0.7, 0.7)

Table 1. Parameters used for building the testbeds of Gaussian-process sample-paths.

We shall compare the performance of EGO and FBA based on the approxi-
mation error ε(Xn, fk,l), l = 1, . . . , L. For reference, we also provide the results
obtained with two other strategies. The first strategy corresponds to using an
EI criterion with the same values for the parameters of the covariance function
of ξ than those used to generate the sample paths in the testbeds. In principle
this strategy ought to perform very well. The second strategy corresponds to
space-filling sampling, which is not necessarily a good optimization strategy.

For FBA, we choose the same priors as those described in Section 5.1. More
precisely, whatever be the dimension d, we choose an isotropic covariance func-
tion (with only one scale parameter) and we set βmin = 1/400 and βmax = 2

√
d.

Results. Figures 5(a) and 6(a) show that EGO and FBA have very similar
average performances. In fact, both of them perform almost as well, in this
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Fig. 2. A comparison of a) EGO and b) FBA at iteration 1. Top: objective function
(dashdot line), prediction (solid line), 95% confidence intervals derived from the stan-
dard deviation (gray area), sampling points (dots) and position of the next evaluation
(vertical dashed line). Bottom: EI criterion.
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Fig. 3. Iteration 3 (see Figure 2 for details)
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Fig. 4. Iteration 8 (see Figure 2 for details)



experiment, as the reference strategy where the true parameters are assumed
to be known. Comparing the tails of complementary cumulative distribution
function of the error max f − Mn makes it clear, however, that using a fully
Bayesian approach brings a significant reduction of the occurrence of large errors
with respect to the EGO algorithm. In other words, the fully Bayesian approach
appears to be statistically more robust than the plug-in approach, while retaining
the same average performance.
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