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Chapter 1
Reliability estimation by advanced Monte Carlo
simulation

E. Zio and N. Pedroni

Energy Department, Politecnico di Milandia Ponzio 34/3, 20133 Milan, Italy
Phone: +39-2-2399-6340; fax: +39-02-2399-6309

E-mail address: enrico.zio@polimi.it

Abstract Monte Carlo Simulation (MCS) offera powerful means for evaluating

the reliability of a system, due to the modeling flexibility that it offers indiffer-
ently of the type and dimension of the problem. The method is based on the re-
peated sampling of realizations of system configurations, which however are sel-
dom of failure so that a large number of realizations must be simulated in order to
achieve an acceptable accuracy in the estimated failure probability, with costly
large computing times. For this reason, techniques of efficient sampling of system
failure realizations are of interest, in order to reduce the computational effort.

In this paper, the recently developed Subset Simulation (SS) and Line Sam-
pling (LS) techniques are considered for improving the MCS efficiency in the es-
timation of system failure probability. The SS method is founded on the idea that a
small failure probability can be expredsas a product of larger conditional prob-
abilities of some intermediate events: with a proper choice of the intermediate
events, the conditional probabilities can be made sufficiently large to allow ac
rate estimation with a small number of samples. The LS method employs lines in-
stead of random points in order to probe the failure domain of interest. An “impor-
tant direction” is determined, which points towards the failure domain of interest;
the high-dimensional reliability problem is then reduced to a number of condi-
tional one-dimensional problems which are solved along the “important direc-
tion”.

The two methods are applied on two structural reliability models of literature,
i.e. the cracked plate model and the Paris-Erdogan model for thermal fatigue crack
growth. The efficiency of the proposed techniques is evaluated in comparison to
other stochastic simulation methods of literature, i.e., standard MCS, Importance
Sampling (IS), Dimensionality Reduction (DR) and Orthogonal Axis (OA).



1.1 Introduction

In the performance-based design and operation of modern engineered systems, the
accurate assessment of reliability is of paramount importance, particularly for
civil, nuclear, aerospace and chemical systems and plants which are safetly-critica
and must be designed and operated within a risk-informed approach (Thunnissen
et al. 2007; Patalano et al. 2008).

The reliability assessment requires the realistic modelling of the struc-
tural/mechanical components of the system and the characterization of their mate-
rial constitutive behaviour, loading conditions and mechanisms of deterioration
and failure that are anticipated to occur during the working life of the system
(Schueller and Pradlwarter 2007).

In practice, not all the characteristics of the system under analysis can be fully
captured in the model. This is due to: i) the intrinsically random nature of several
of the phenomena occurring during the system life; ii) the incomplete knowledge
about some of these phenomena. Thus, uncertainty is always present in the hy-
potheses underpinning the model (model uncertainty) and in the values of its pa-
rameters (parameter uncertainty); this leads to uncertainty in the model output,
which must be quantified for a realistic assessment of the system (Nutt and Wallis,
2004).

In mathematical terms, the probability of system failure can be expressed as a
multi-dimensional integral of the form

P(F) = P(x € F) = [ I (x)q(x)dx (1)

where x = {xl,xz,...,xj,...,x”}e R" is the vector of the uncertain input parame-
ters/variables of the model, with multidimensional probability density function
(PDF) ¢:R" —[0,0), F c R" is the failure region and, :R" — {0,1} is an in-
dicator function such that, (x)=1, if xe F and/,(x) =0, otherwise. The fail-

ure domainF is commonly defined by a so-called Performance Function (PF) or
Limit State Function (LSF)g,(x) which is lower than or equal to zerofe F

and greater than zero, otherwise.

In practical cases, the multi-dimensional integral (1.1) can not be easily evalu-
ated by analytical methods nor by numerical schemes. On the other hand, Monte
Carlo Simulation (MCS) offers an effeativmeans for estimating the integral, be-
cause the method does not suffer from the complexity and dimension of the do-
main of integration, albeit it implies the nontrivial task of sampling from the mul-
tidimensional PDF. The MCS solution to (1.1) entails that a large number of
samples of the values of the uncertain parametéesdrawn fromg(x) and that

these be used to compute an unbiased and consistent estimate of the system failure
probability as the fraction of the number of samples that lead to failure. However,



a large number of samples (inversely proportional to the failure probability) is
necessary to achieve an acceptable estimation accuracy: in terms of the integral in
(1.1) this can be seen as due to the high dimensiomatifthe problem and the

large dimension of the relative sample space compared to the failure region of in-
terest (Schueller 2007). This calls for new simulation techniques for performing
robust estimations with a limited number of input samples (and associated low
computational time).

In this respect, effective approaches are offered by Subset Simulation (SS) (Au
and Beck 2001; Au and Beck 2003b) and Line Sampling (LS) (Koutsourelakis et
al. 2004; Pradlwarter et al. 2005).

In the SS method, the failure probability is expressed as a product of condi-
tional failure probabilities of some chosen intermediate events, whose evaluation
is obtained by simulation of more frequent events. The evaluation of small failure
probabilities in the original probability space is thus tackled by a sequence of
simulations of more frequent events in the conditional probability spaces. The
necessary conditional samples are generated through successive Markov Chain
Monte Carlo (MCMC) simulations (Metropolis et al. 1953; Hastings 1970;
Fishman 1996), gradually populating the intermediate conditional regions until the
final target failure region is reached.

In the LS methodiines, instead of randomoints, are used to probe the failure
domain of the high-dimensional problem under analysis (Pradlwarter et al. 2005).
An “important direction” is optimally determined to point towards the failure do-
main of interest and a number of conditional, one-dimensional problems are
solved along such direction, in place of the high-dimensional problem (Pradl-
warter et al. 2005). The approach has been shown to perform always better than
standard MCS; furthermore, if the boundaries of the failure domain of interest are
not too rough (i.e., almost linear) and the “important direction” is almost perpen-
dicular to them, the variance of the failure probability estimator could be ideally
reduced to zero (Koutsourelakis et al. 2004).

In this Chapter, SS and LS schemes are developed for application to two struc-
tural reliability models of literature, i.e., the cracked plate model (Ardillon and
Venturini 1995) and the Paris-Erdogan thermal fatigue crack growth model (Paris
1961). The problem is rather challenging as it entails estimating failure probabili-
ties of the order of 10 The effectiveness of SS and LS is compared to that of
other simulation methods, e.g. the Importance Sampling (IS), Dimensionality Re-
duction (DR) and Orthogonal Axis (OA) methods (Gille 1998 and 1999). In the IS
method, the PDR(x) in (1.1) is replaced with amportance Sampling Distribu-

tion (ISD) arbitrarily chosen so as to generate samples that lead to failure more
frequently (Au and Beck 2003a); in the DR method, the failure event is re-
expressed in such a way as to highlight one important variablexsaynd the
failure probability is then computed as the expected value of the Cumulative Dis-
tribution Function (CDF) ok conditional on the remainingy & 1) variables; fi-



nally, in the OA method, a sort of importance sampling is performed around the
most likely point in the failure domain (Gille 1998 and 1999).

The remainder of the Chapter is organized as follows. In Section 1.2, a general
presentation of the SS and LS schemes implemented for this study is given. In
Section 1.3, the IS, DR and OA methods taken as terms of comparison are briefly
summarized. The results of the application of SS and LS to the cracked plate and
thermal fatigue crack growth models are reported in Sections 1.4 and 1.5, respec-
tively. Based on the results obtained, a critical discussion of the simulation tech-
nigues adopted and compared in this work is offered in the last Section. For com-
pleteness of the contents of the paper, detailed descriptions of the Markov Chain
Monte Carlo (MCMC) simulation method used for the development of the SS and
LS algorithms are provided in Appendices 1 and 2, respectively.



1.2 Simulation methods implemented in this study

1.2.1 The Subset Simulation method

Subset Simulation (SS) is an adaptive stochastic simulation method originally de-
veloped for efficiently computing small failure probabilities in structural reliabil-

ity analysis (Au and Beck 2001). The underlying idea is to express the (small)
failure probability as a product of (larger) probabilities conditional on some inter-
mediate events. This allows converting a rare event simulation into a sequence of
simulations of more frequent events. During simulation, the conditional samples
are generated by means of a Markov chain designed so that the limiting stationary
distribution is the target conditional distribution of some adaptively chosen event;
by so doing, the conditional samples gradually populate the successive intermedi-
ate regions up to the final target (rare) failure region (Au and Beck 2003b).

1.2.1.1 The basic principles

For a given target failure eveRtof interest, letF; > F, 5...o F, = F be a se-

m

quence of intermediate events, so that "', F,, k=1, 2, ...,m. By sequentially

=17

conditioning on the everf, the failure probability?(F) can be written as

m—1

P(F) = P(F,) = PCE)[ [ P(F,, | F) (1.2)

Notice that even iP(F) is small, the conditional probabilities involved in (1.2)
can be made sufficiently large by appropriately choosimgnd the intermediate
events Fi,i=1,2,...m-1}

The original idea of SS is to estimate the failure probalig) by estimating
P(Fy) and {P(F, | F):i=1,2,..,m—1}. Considering for example(F) ~ 10° and
choosing m = 4 intermediate events such thatP(Fy) and
{P(F,, |F):i=1,2,3,4 = 0.1, the conditional probabilities can be evaluated effi-
ciently by simulation of the relatively frequent intermediate events (Au and Beck
2001).

Standard MCS can be used to estinifé:). On the contny, computing the
conditional probabilities in (1.2) by MCS entails the non-trivial task of sampling
from the conditional distributions at given that it lies irF, i =1, 2, ...m—1,

i.e. from g(x| F)) = g(x)I.(x)/ P(F') . In this regard, Markv Chain Monte Carlo

(MCMC) simulation provides a powerful method for generating samples condi-



tional on the intermediate regioks i = 1, 2, ...m— 1 (Au and Beck 2001; Au
and Beck 2003b). For completeness of the paper, the related algorithm is pre-
sented in Appendix 1.

1.2.1.2 The algorithm

In the actual SS implementation, with no loss of generality it is assumed that the
failure event of interest can be definedenms of the value of a critical system re-
sponse variabl¥ being lower than a specified threshold leyele.,F = {Y <y}
The sequence of intermediate evefifs:i=1,2,...,m} can then be correspond-
ingly defined asF. = {Y < y,}, i=1,2,...,m wherey1>y>> ... >yi > ... >yn=y >
0 is a decreasing sequence of intermediate threshold values (Au and Beck 2001;
Au and Beck 2003b).

The choice of the sequende, :i=1,2,...,m} affects the values of the condi-
tional probabilities{P(F,,, | F,):i=1,2,...m—1} in (1.2) and hence the efficiency
of the SS procedure. In particular, choosing the sequ{gncezl,z,...,m} a pri-
ori makes it difficult to control the values of the conditional probabilities
{P(F,|F):i=12,.,m—1}. For this reason, in this work, the intermediate
threshold values are chosen adaptively in such a way that the estimated condi-
tional probabilities are equal to a fixed vajwe/Au and Beck 2001; Au and Beck
2003b).

Schematically, the SS algorithm proceeds as follows (Figure 1.1):

1. SampleN vectors {xj :k:1,2,...,N} by standard MCS, i.e., from the original
probability density functior(-). The subscript ‘0’ denotes the fact that these
samples correspond to ‘Conditional Level 0’;

. Seti =0;

. Compute the values of the response variéli[ex,.A ):k=1, 2,...,N};

4. Choose the intermediate threshold vajue as the (1 $o)N™ value in the de-
creasing list of vaIueéY(xf) k=1, 2,...,N} (computed at step 3. above) to de-
fine Fi+1 = {Y < yi+1}. By so doing, the sample estimate R(Fi-1|Fi) = P(Y <
yi+1]Y < i) is equal tquo (note that it has been implicitly assumed thét is an
integer value);

. If yis1  ym, proceed to 10. below;

6. Viceversa, i.e. ifyi-1 > ym, with the choice ofsi+1 performed at step 4. above,
identify the poN samples {x,” u =1,2,...,p0N} among {x,." :k=1,2,...,N}
whose respons¥ lies in Fi-1 = {Y < yi«1}: these samples are at ‘Conditional
leveli + 1" and distributed ag(-| ;) and function as seeds of the MCMC

i+l
simulation (step 7. below);

w N
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7. Starting from each one of the sampl{e$ u =l,2,...,p0N} (identified at step

6. above), use MCMC simulation to generate ()N additional conditional
samples distributed ag(- | F.,,), so that there are a total Mfconditional sam-

i+l
ples {x,ﬁI k= 1,2,...,N}e F,,, at ‘Conditional level + 17

8. Seti «— i+ 1;

9. Return to step 3. above;

10.Stop the algorithm.

For clarity sake, a step-by-step illustration of the procedure for Conditional
levels 0 and 1 is provided in Figure 1.2 by way of example.

Standard MCS
{x k=12, N}

=]

Evaluate response variables

{r(xHk=12,nN} —i=i+1]

Starting from
{x',u=12,.,p,N}
perform MCMC to get
Size{Y(xf)<yi+1}=PoN {x" -k:1,2,...,N}

i+l "

Identify threshold y,,

Identify MCMC seeds
{x".u=12.pN}:
r{x)<y.,

Fig. 1.1.Sketch of the SS algorithm
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Notice that the procedure is such that the response vglues=1,2,...,m} at
the specified probability levelsP(F)=p,, P(F,)=p(F,|F)P(F)=p;, ...,
P(F,)=p; are estimated, rather than the event probabiliies ), P(F,|F)),

), which are a priori fixed gbo. In this view, SS is a method for

o P(F,|F,
generating samples whose response values correspond to specified probability
levels, rather than for estimating probabilities of specified failure events. As a re-
sult, it produces information abol(Y < y) versusy at all the simulated values

of Y rather than at a single valueyfThis feature is important because the whole
trend of P(Y < y) versusy provides much more information than a point estimate

(Au 2005).

1.2.2 The Line Sampling method

Line Sampling (LS) was also originally developed for the reliability analysis of
complex structural systems with small failure probabilities (Koutsourelakis et al.
2004). The underlying idea is to employ lines instead of random points in order to
probe the failure domain of the high-dimensional system under analysis (Pradl-
warter et al. 2005).

In extreme synthesis, the problem of computing the multidimensional failure
probability integral (1.1) in the original “physical” space is transformed into the
so-called “standard normal space”, where each random variable is represented by
an independent central unit Gaussian distribution. In this spaagt sector«
(hereafter also called “important unit vector” or “important direction”) is deter-
mined, pointing towards the failure doméirof interest (for illustration purposes,
two plausible important unit vectora’ and «? pointing towards two different
failure domainsF* andF?, are visually represented in Figure 1.3, left and right,
respectively, in a two-dimensional uncertain parameter space). The problem of
computing the high-dimensional failure probability integral (1.1) is then reduced
to a number of conditional one-dimensional problems, which are solved along the
“important direction” @ in the standard normal space. The conditional one-
dimensional failure probabilities (associated to the conditional one-dimensional
problems) are readily computed by using the standard normal cumulative distribu-
tion function (Pradlwarter et al. 2005).



-

Parameter 2
Parameter 2

Parameter 1 Parameter 1

Fig. 1.3.Examples of possible important unit vectatgleft) anda? (right) pointing towards the
corresponding failure domaiis (left) andF? (right) in a two-dimensional uncertain parameter
space

1.2.2.1 Transformation of the physical space into the standard normal space

Let x= {xl,xz,...,xj,...,x”}e R" be the vector of uncertain parameters defined in

the original physical space € R". For problems where the dimensioiis not so
small, the parameter vectgrcan be transformed into the vect®r R", where
each element of the vectétj = 1, 2, ...,n, is associated with a central unit Gaus-
sian standard distribution (Schueller et al. 2004). The joint probability density
function of the random paramete{a;/ j= 1,2,...,n} is, then:

w@%ﬂ%@) (1.3)

where ¢, (9‘,.):(1/\/2”)@"’3/2 j=1,2,..n

The mapping from the original, physical vector of random variaklesR" to
the standard normal vectdre R" is denoted byr', () and its inverse by, (),
ie.

0=T,(x) (1.4)
x=T,(0) (1.5)

Transformations (1.4) and (1.5) are in general nonlinear and are obtained by
applying Rosenblatt’s or Nataf's transformations, respectively (Rosenblatt 1952;

10



Nataf 1962; Huang and Du 2006). They are linear only if the random vecisr
jointly Gaussian distributed. By transformation (1.4), also the Performance Func-
tion (PF) or Limit State Function (LSFg,(-) defined in the physical space (Sec-

tion 1) can be transformed infg, () in the standard normal space:

2,(0)=g.(x)=2.(7,(0)) (L.6)

Since in most cases of practical interest the functipf#) is not known ana-

Iytically, it can be evaluated only point-wise. According to (1.6), the evaluation of
the system performance functian(-) at a given poin®* , k=1, 2, ...Nr, in the

standard normal space requires i) a transformation into the original space, ii) a
complete simulation of the system response and iii) the computation of the system
response from the model. The computational cost of evaluating the failure prob-

ability is governed by the number of system performance analyses that have to be
carried out (Schueller et al. 2004).

1.2.2.2 The important directionea for Line Sampling

Three methods have been proposed to estimate the important dire@diohine
Sampling. In (Koutsourelakis et al. 2004), the important unit vecisrtaken as
pointing in the direction of the “design point” in the standard normal space. Ac-
cording to a geometrical interpretation, the “design point” is defined as the vector
point @ on the limit state surfacg,(#)=0 which is closest to the origin in the

standard normal space (Schueller et al. 2004). It can be demonstratéd that
also the point of maximum likelihood (Freudenthal 1956; Schueller and Stix
1987). Then, the unit important vectercan be easily obtained by normalizing

0, ie., a= 6?*/"19”"2 , wherell|, denotes the usual Euclidean measure of a vector.

However, the design points, and their neighborhood, do not always represent
the most important regions of the failure domain, especially in high-dimensional
spaces (Schueller et al. 2004). Moreover, the computational cost associated with
the calculation of the design point can be quite high, in particular if long-running
numerical codes are required to simulate the response of the system to its uncer-
tain input parameters (Schueller et al. 2004), as it is frequently the case in struc-
tural reliability.

In (Pradlwarter et aR005), the direction of is taken as the normalized gradi-
ent of the performance function in the standard normal space. Since the unit vector
a ={al,a2,...,a a”} points towards the failure domalf it can be used to

o
draw information about the relative importance of the random parameters
{9, Jj =1,2,...,n} with respect to the failure probabiliB(F): the more relevant a

random variable in determining the failure of the system, the larger the corre-

11



sponding component of the unit vectowill be (Pradlwarter et al. 2005). Such
guantitative information is obtained from the gradient of the performance function
g,(0) in the standard normal spaceg, (0):

Vg (0): ago(a)ago(ﬂ) 8g0(0) ago(o) (1.7)
’ o0, 06, T 06, 7 06,

The gradient (1.7) measures in a unique way the relative importance of a par-
ticular random variable with respect to the failure probabiity): the larger the
(absolute) value of a component of (1.7), the greater the “impact” of the corre-
sponding random variable on the performance func’@g(ﬂ) in the standard
normal space. In other words, given a specified finite variati®nin the parame-
ter vectord , the performance functiog, (@) will change most if this variation is
taken in the direction of (1.7). Thus, it is reasonable to identify the LS important
direction with the direction of the gradient (1.7) and compute the corresponding
unit vectora as thenormalized gradient of the performance functign () in the
standard normal space, ie=Vg,(0)/|Vg, ()|, (Pradiwarter et al. 2005).

On the other hand, when the performance function is defined on a high-
dimensional space, i.e. when many parameters of the system under analysis are
random, the computation of the gradieﬁg{,(a) in (1.7) becomes a numerically
challenging task. Actually, as the functigr;(a) is known only implicitly through

the response of a numerical code, for a given ve&t@r{el,ez,.,.,e/,.,.,9} at

n

leastn system performance analyses are required to determine accurately the gra-
dient at a given point of the performance functig)g() by straightforward nu-

merical differentiation, e.g. the secant method (Ahammed and Melchers 2006; Fu
2006).

Finally, the important unit vectax can also be computed as the normalized
“center of mass” of the failure domahnof interest (Koutsourelakis et al. 2004). A
point ° is taken in the failure domaif This can be done by traditional Monte
Carlo sampling or by engineering judgment when possible. Subsequéhtig,
used as the initial point of a Markov chain which lies entirely in the failure domain
F. For that purpose a MCMC Metropolis-Hastings algorithm is employed to gen-
erate a sequence bk points {0” u =1,2,...,N§} lying in the failure domairf

(Metropolis et al. 1956). The unit vectoﬁs/"a“ ||2 u=1, 2, ...Ns, are then aver-

014

, (Fig-

ure 1.4). This direction is not optimal, thiti is clear that it provides a good ap-
proximation of the important regions of the failure domain (at least as the sample

N,
aged in order to obtain the LS important unit vectoaasNL-za“/
s =l

12



sizeNs is large). On the other hand, it should be noticed that the procedure implies
Ns additional system analyses by the deterministic model simulating the system,
which substantially increase the computational cost associated to the simulation
method.

)
“Center of mass” e - !, == @
ofthee L — = i ‘

failure domain ¥ = 00 » ‘

\le @
L e ¢
O

- = u=l

1 &0
2 SRl =0
a// a N Z 6“ ] gﬂ( )

P
O g,

Fig. 1.4.Line Sampling important unit vectertaken as the normalized “center of mass” of the
failure domainF in the standard normal space. The “center of masF’isfcomputed as an av-
erage ofNs failure points generated by means of arlda chain starting from an initial failure
point &° (Koutsourelakis et al. 2004)

In the implementation of LS for this work, the method based on the normalized
“center of mass” of the failure domdihas been employed, because it relies on a
“map” approximating the failure domaif under analysis (given by the failure
samples generated through a Markov chain) and thus it provides in principle the
most realistic and reliable estimate for the LS important direation

For completeness, a thorough description of the Line Sampling algorithm and
its practical implementation issues is given in Appendix 2 at the end of the paper.

13



1.3 Simulation methods considered for comparison

The performances of Subset Simulation (Section 1.2.1) and Line Sampling (Sec-
tion 1.2.2) will be compared to those of the Importance Sampling (IS) (Section
1.3.1), Dimensionality Reduction (DR)€&ion 1.3.2) and Orthogonal Axis (OA)
(Section 1.3.3) methods; the comparison will be made with respect to the results
reported in (Gille 1998 and 1999) for the two literature case studies considered, of
the cracked plate and thermal fatigue crack growth models.

1.3.1 The Importance Sampling method

The concept underlying the Importance Sampling (IS) method is to replace the
original PDF ¢g(x) with an Importance Sampling Distribution (ISJYx) arbi-

trarily chosen by the analyst so as to generate a large humber of samples in the
“important region” of the sample space, i.e. the failure refio®\u and Beck
2003a; Schueller et al. 2004).

The IS algorithm proceeds as follows (Schueller et al. 2004):
1. Identify a proper Importanc&ampling Density (ISD),c}(-), in order to in-

crease the probability of occurrence of the failure samples.
2. Express the failure probabili§(F) in (1.1) as a function of the ISB(-):

P(F)= [ 1, (x)glx)ax
e
o [Leekle]

q(x

3. Draw Nr independent and identically distributed (i.i.d.) samples
{x* :k=1,2,..,N, | from the ISD("); if a good choice for the ISE(-) has
been made, the sampl{:s" k= 1,2,...,NT} should be concentrated in the fail-
ure regionF of interest.

4. Compute an estimaté(F) for the failure probability?(F) in (1.1) by resorting
to the last expression in (1.8):

14



IS(F)=LZ]F(xk)q.(xk) (1.9)

(1.10)

It is straightforward to verifthat the quantity (1.10) becomes zero when

T(x) =1, ) L) a1

This represents the optimal choice for the importance sampling density which
is practically unfeasible since it requires the a priori knowledde(fef. Several
techniques have been developed in order to approximate the optimal sampling
density (1.11) or to at least find one giving small variance of the estimator (1.9).
Recent examples include the use of engineering judgment (Pagani et al. 2005), de-
sign points (Schueller et al. 2004) and kernel density estimators (Au and Beck
2003a).

1.3.2 The Dimensionality Reduction method

Objective of the Dimensionality Reduction (DR) method is to reduce the variance
associated to the failure probability estimates by exploiting the property of condi-
tional expectation (Gille 1998 and 1999). In extreme synthesis, the failure event
gx(x)SO is re-expressed in such a way as to highlight one af tirecertain in-

put variables ok (say,x); then, the failure probability estimate is computed as the
expected value of the CDF &f conditional on the remaining) & 1) input vari-

ables. By so doing, the zero values contained in the standard MCS estimator (i.e.,
Ir(x) = 0, if x € F) are removed: this allows to i) reach any level of probability
(even very small) and ii) reduce the variance of the failure probability estimator
(Gille 1998 and 1999).

The DR algorithm proceeds as follows (Gille 1998 and 1999):

15



1. Write the failure eventg‘,(x):g‘,(xl,xz,...,x xn)go in such a way as to

FER)

highlight one of then uncertain input variables (e.gs):

x <h(x,),i=1,2 ..n (1.12)

wherehx(") is a function defined o"" which takes values on the set of all
(measurable) subsets 8f and x_, is a vector containing all the uncertain in-

put variables excep, i.e., x_, = (xl,xz,...,xk,.,],x_,.ﬂ,...,xn);
2. Write the failure probability?(F) as follows:

P(F)=Plg,(x)<0]
[x hE B (1.13)

£ (e, )}

where F, () is the Cumulative Distribution Function &f conditional on
x_,le, x, =(x,,xz,...,x/_l,x/+l,...,x”);

3. Draw Nr samples{xk. k=12,. } where x’ = (xk Xy e Xy XX )

JRERIEEN

from the @ — 1)-dimensional marglnal probability density funcnqn(x )
ie., qm(xij):qm (xl,xz,...,xl.il,xﬁl,...,x”): L q(x],xz,...,x X, Jax, |

4. Using the last expression in (1.13), compute an unbiased and consistent esti-
mate P(F) for the failure probabilityP(F) as follows:

AF)=— S F, ()] (1.14)

r k=l

It is worth noting that in (1.14) the failure probability estimate is computed as
the expected value of the cumulative distribution functiqr‘;’() of x; condi-

tional on the remainingn(- 1) input variables. Since this quantity takes vahges
tween 0 and 1, the zero values contained in the standard MCS estimatde()e.,

=0, ifx e F) are removed: this allows to i) reach any level of failure probability
(even very small) and ii) reduce the variance of the failure probability estimator.
However, such method can not always be applied: first, the performance function
o«(-) must be known analytically; second, it must have the property that one of the
uncertain input variables can be separated from the others to allow re-writing the
failure conditiong (x)< 0 in the form of (1.12) (Gille 1998 and 1999).
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Finally, notice that DR can be considered a very special case of LS (Section
1.2.2) where the performance functigi-) is analytically known and the impor-
tant direction @ coincides with the *“direction” of the variable;, i.e.,
a=(0,0,...,x,,...,0,0).

1.3.3 The Orthogonal Axis method

The Orthogonal Axis (OA) method combines the Fist Order Reliability Method
(FORM) approximation (Der Kiureghian 2000) and Monte Carlo Simulation
(MCS) in a sort of importance sampling around the “design point” of the problem
(see Section 1.2.2.2).

The OA algorithm proceeds as follows (Gille 1998 and 1999):

1. Transformx = {xl,xz,...,x/.,...,xﬂ}e R", i.e., the vector of uncertain parameters

defined in the original physical spaoces R", into the vectord € R", where

each element of the vectér j = 1, 2, ...,n, is associated with a central unit
Gaussian standard distribution (Schueller et al. 2004) (see Section 1.2.2.1).
Thus, the joint probability density function éf can simply be written as

0,0)=TT.40) (1.15)

whereqﬁ(&j.):(1/\/27r)e’(‘9’1/2),j =1,2,..n;
. Find the “design point®" of the problem (see Section 1.2.2.2);

3. Rotate the coordinate system (i.e., by means of a proper rotation mR3tsrp
that the new coordinaté, is in the direction of the axis defined by the design

N

point §°;
4. Define a new failure functior, (#) as

g..(0)=g(RO) (1.16)

5. Writing @ as (5,9”), whered =(6,.6,....,6, ), express the failure probability
P(F) as follows:
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P(F)= P[gm (5 .6, )s 0]
- [Pls..(6.0.)<010)p,,(6)a0
=E, {P[gm (5 6, )s o]}

(1.17)

6. GenerateNr i.i.d. (n — 1)-dimensional sample%ﬁ" :k:1,2,...,N,}, where
0" =(0:,6:,...,6");
7. Compute an estimaté(F) for the failure probability?(F) as follows:

P(F)= Niip[gm (5 .0 )s o] (1.18)
T k=l
The termsP[gax,.A_(E",a‘)s 0] , k=1, 2, ...,Nr, are evaluated with an iterative

algorithm which searches for the roots of the equagior §k,6?”): 0 (Gille 1998
and 1999).

It is worth noting that the idea underlying the OA method is essentially the
same as that of LS (Section 1.2.2). However, in OA the “important direction” is
forced to coincide with that of the design point of the problem; moreover, OA em-
ploys a rotation of the coordinate system which can be difficult to define in very

high-dimensional problems.
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1.4 Application 1: the cracked plate model

The cracked plate model is a classical example in Fracture Mechanics and its rela-
tive simplicity allows a detailed and complete study of different simulation tech-
nigues. A thorough description of this model can be found in (Ardillon and Ven-
turini 1995).

1.4.1 The mechanical model

A metal plate of infinite length with a defect of initial length equa fom] is con-
sidered. The plate is supposed to be subject to a uniform normal loading (i.e.,

stress)s [MPa]. The intensity factoK [MPa\/E ], determined by the uniform
loading in the neighborhood of the defect is defined as follows:

K=Fs m (1.19)

whereF is the shape factor of the defect.eTplate is supposed to break (i.e.,
fail) when the intensity factdf in (1.19) becomes greater than or equal to a criti-
cal valueKc, i.e.:

K=FsJm>K, (1.20)

The variables of the mechanical model are summarized in Table 1.1.

Table 1.1.Names, descriptions and unitsmeasure of the variables of the cracked plate model

Variables of the cracked plate model

Name Description Unit of measure
Ke Critical stress intensity factor MPa m
a Initial length of the defect m
F Shape factor of the defect /
Uniform normal loading (stress) which the plate is subject MPa

1.4.2 The structural reliability model

From the point of view of a structural reliability analysis, the cracked plate me-
chanical model of Section 1.4.1 is analyzed within a probabilistic framework in
which the variable&., a, F ands are uncertain (for simplicity of illustration with

19



respect to the notation of the previous Sections, the four variables are hereafter
namedxs, X2, X3 andxs, respectively).
Referring to (1.20), the performance functmp(ix ) of the system is

g.(x)=g.(x.x,.x,.x,) = x, —x,x, [z, (1.21)

The failure regiorf is then expressed as

F={x:g (x)<0}= {(xl,xz,xS,xA):x1 SxSxM/E} (1.22)

Finally, the probability of system failuf(F) is written as follows:

P(F)=P(xeF)=Plg (x)<0]= P(xl < xx,\[me, ) (1.23)

1.4.3 Case studies

Four case studies, namely Case 0 (Reference case), 1, 2 and 3, are considered with
respect to the structural reliability model of the previous Section 1.4.2. Each case
study is characterized by different PDFs for the uncertain varighbes xs andxs

and by different failure probabilitig®(F): these features are summarized in Table

1.2. Notice that in Cases 0, 1 and 2 the random variables are independent and
normally distributed, whereas in Case 3 they are independent and lognormally dis-
tributed. Moreover, it is worth noting that the exact (i.e., analytically computed)
failure probabilitiesP(F) approximately range from £Qo 107, allowing a deep
exploration of the capabilities of the simulation algorithms considered and a
meaningful comparison between them (Gille 1998 and 1999).

Table 1.2.Probability distributions and parameter®.(i means and standard deviations) of the
uncertain variableg, x., xs, andxs of the cracked plate model of Section 1.4.2 for the four case
studies considered (i.e., Cases 0, 1, 2 and 8)ast row reports the values of the corresponding
exact (i.e., analytically computed) failure probabilitie&;) (Gille 1998 and 1999). N = Normal
distribution; LG = Lognormal distribution

Case 0 Case 1 Case 2 Case 3

X1 (K) | N(149.3,22.2) | N(149.3, 22.2) | N(160, 18) LG(149.3, 22.2)
X2 (a) N(510% 10% | N(510% 109 | N(510% 109 | LG(510% 109
x3(F) | N(0.99,0.01) | N(0.99,0.01) | N(0.99,0.01) | LG(0.99, 0.01)
Xa(s ) | N(e0o, 60) N(300, 30) N(500, 45) LG(600, 60)
P(F) 1.16510° 4500107 4.400107 3.06710*
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1.4.4 Results

In this Section, the results of the application of SS and LS for the reliability analy-
sis of the cracked plate model of Section 1.4.1 are illustrated with reference to
Case studies 0, 1, 2 and 3 described in the previous Section 1.4.3.

For fair comparison, all methods have been run with a totgt f50000 sam-
ples in all four cases. The efficiency of the simulation methods under analysis is

evaluated in terms of four quantities: the failure probability estinzf%(fé), the
sample standard deviatiah of the failure probability estimaté’(F), the coeffi-
cient of variation (c.0.v.p of 13(F) (defined as the ratio of the sample standard
deviation & to the estimate(F)) and the Figure Of Merit (FOM) of the method
(defined asl/(&ztm ) whereteom is the computational time required by the simu-

lation method). The closer is the estima{?@?) to the exact (i.e., analytically
computed) failure probability?(F), the more accurate is the simulation method.
The sample standard deviatien and the c.0.v5 of f’(F) are used to quantify

the variability of the failure probability estimator; in particular, the lower are the
values ofé and § , the lower is the variability of the corresponding failure prob-
ability estimator and thus the higher is the efficiency of the simulation method
adopted. Finally, the FOM is introduced to take into account the computational
time required by the method. The value of the FOM increases as the sample vari-

anceg’ of the failure probability estimaté(F) and the computational tirem

required by the method decrease; thus, in this case the higher is the value of the
index, the higher is the efficiency of the method (Gille 1998 and 1999).

The different simulation methods are also compared with respect to two direct
performance indicators relative to standard MCS. First, the ratio of the sample
standard deviatior,,. obtained by Standard MCS to that obtained by the simula-

tion method under analysié , is computed. This rationly quantifies the im-

provement in therecision of the estimate achieved by using a given simulation
method instead of standard MCS. Then, the ratio of the FOM of the simulation
method in object, namely FOM, to that of standard MCS, namely F@is
considered to quantify theverall improvement irefficiency achieved by a given
simulation method with respect to standard MCS, since it takes into account also
the computational time required. Obviously, the higher are the values of these two
indices for a given method, the higher is the efficiency of that method (Gille 1998
and 1999).

Table 1.3 reports the values &{(F), 6, &, FOM, 6,./6,, and FOM-
met/FOMwmc obtained by Standard MCS, SS and LS in Cases 0, 1, 2 and 3 (Section
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1.4.3); theactual numberNss of system response analyses (i.e., model evalua-
tions) is also reported. Notice that for both SS and LS the actual niNgbef
system analyses does not coincide with the total nuiibef random samples
drawn (i.e. Nt = 50000). In particular, in the SS method, the presenoepedted
conditional samples in each Markov chain (used to gradually populate the inter-
mediate event regions) allowseduction in the number of model evaluations re-
quired: actually, one evaluation is enough for all identical samples (see Appendix
1). In the LS method, instead, the actual nunidgrof system analyses is given

by Nss = Ns + 2N in particularNs = 2000 analyses are performed to generate the
Markov chain used to compute the important unit vegtas the normalized “cen-

ter of mass” of the failure domak(Section 1.2.2.2); the I8r analyses are carried

out to compute theNr conditional one-dimensional probability estimates

{13" (F):k=1,2,.., N,} by linear interpolation (equation (1.5') in Appendix 2).

Table 1.3.Results of the application of standard MGS and LS to the reliability analysis of
Cases 0 (Reference), 1, 2 and 3 of the cracked platlel of Section 1.4.2; the values of the per-

formance indicators used to compare dffectiveness of the methods (i.6., /&,, and FOM-
met/FOMwc) are highlighted in bold
Case 0 (Reference)
P(F) é c.ov., o Nss FOM 6,16, F OMmen/F OMwc
Standard MCS | 1.120-1¢ | 1.496-10 | 1.336-1C | 50000 | 893.65 1 1
SS 1.274-16 | 7.136:1G | 5.597-1G | 49929 | 3936.67 | 2.10 4.41
LS 1.169-1G | 5.142:10 | 4.399-1 | 102000| 3.782-0| 290.92 42318
Case 1
P(F) ¢ C.OV., o Nss FOM 6,16, FOMmen/FOMuc
Standard MCS | 4.500-10 | 3.000-16 6.667 50000 | 2.222-90| 1 1
SS 4.624-10 7.295-1¢ 1.578-10 | 49937 3.762-10 | 41.12 1.7-10
LS 4.493-10 1.791-10° | 3.986-10 102000 3.117-76| 16750 1.4-10
Case 2
I;(F) G Cc.0v., o Nsys FOM 6'"(_ /&m \ FOM men/FOMwc
Standard MCS | 4.400-10 3.000-10 6.667 50000 2.222:90| 1 1
SS 4.679-10 6.890-1¢ 1.473-16 49888 4.222-170 | 43.54 1.9-10
LS 4.381-10 4.447-16° 1.015-1¢ 102000| 4.959-19 | 6746.7 2.2-10
Case 3
P(F) ¢ cov.,d | Nss FOM 6, 6,, | FOMman/FOMuc
Standard MCS | 3.000-1¢ | 7.745-10 | 2.582-1G | 50000 | 3.334-0| 1 1
SS 3.183:10 | 2.450-1G | 7.697-1G | 49907 | 3.339-10| 3.16 10.01
LS 3.068-10 | 1.817-10 | 5.923-1¢ | 102000| 3.028-£0| 426.16 9.1-.10
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It can be seen that SS performs consistently better than standard MCS and its
performance significantly grows as the failure probability to be estimated de-
creases: for instance, in Case 0 (Reference), wP@ge~ 10° the FOM of SS,
namely FOMs, is only four times larger than that of Standard MCS, namely
FOMwc; whereas in Case 1, wheléF) ~ 107, the ratio FOMJFOMwc is about
557. On the other hand, LS outperforms SS with respect to &gtfs,,, and

FOMmen/FOMwc in all the Cases considered. For instance, in Case 2, where the
failure probabilityP(F) to be estimated is very small, i.B(F) = 4.4-10, the ratio
G,./6,s is 155 times larger than the ratié, /5, , Whereas the ratio
FOM.YFOMwc is 11750 times larger than the ratio F&IMOMwc. Notice that for

the LS method even though the determination of the sampling important direction
a (Section 1.2.2.2) and the calculations of the conditional one-dimensional failure
probability estimate%f’k(F):k:l, 2,...,NT} (equation (1.5%) in Appendix 2) re-

quire much more thaNr system analyses by the model, this is significantly over-
weighed by the accelerated convergence rate that can be attained by the LS
method with respect to SS.

1.4.4.1 Comparison with other stochastic simulation methods

The results obtained by SS and LS are compared to those obtained by the Impor-
tance Sampling (IS), Dimensionality Reduction (DR), Orthogonal Axis (OA)
methods and by a combination of IS and DR (Section 1.3) (Gille 1998 and 1999).

For DR, the variable: is explicited.

The values of the performance indicatats. /&, and FOMew/FOMwmc ob-
tained by the four methods in Cases 0, 1, 2 and 3 are summarized in Table 1.4.
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Table 1.4.Values of the performance indicatofs, /&,, and FOMew/FOMuc obtained by IS,

DR (with variablex: specified), OA and IS + DR when ajga for the reliability analysis of
Cases 0 (Reference), 1, 2 and 3 of the cragha® model of Section 1.4.2 (Gille 1998 and
1999)

Case 0 (Reference)
6,./6,, | FOM meth/FOMmc
IS 17 100
DR (Variable x1) | 14 14
OA 340 7.7:19
IS + DR 194 2.1-10
Case 1
OA'M(. /&mm. F OM metn/FOMwmc
IS 630 376
DR (Variable x1) | 856 7.3:10
OA 17255 2.0-10
IS + DR 8300 1.3-19
Case 2
6, /6,, | FOM meth/FOMmc
IS 643 1.5-10
DR (Variable x1) | 242 242
OA 10852 7.9-10
IS + DR 8077 3.6-10
Case 3
6'”(. /&mm F OM metn/FOMwmc
IS 29 289
DR (Variable x1) | 7 7
OA 4852 4.9-10
IS + DR 150 1.2:10

Comparing Table 1.3 and Table 1.4, it can be seen that LS performs signifi-
cantly better than IS and DR in all the case studies considered: in particular, in
Cases 1 and 2 the values of the performance indicatgrgs,, (16750 and

6746.7) and FOM/FOMwc (1.4-16 and 2.2.-10 are more than one order of mag-
nitude larger than those reported in (Gille 1998 and 1999) for IS (630, 376 and
643, 1.5-10for Cases 1 and 2, respectively) and DR (856, 72200 242, 242

for Cases 1 and 2, respectively). Moreover, it is worth noting that in the reference
studies by (Gille 1998 and 1999) a significant number of simulations has been run
to properly tune the parameters of the 1S@sthe IS method (in particular, 8, 6, 6
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and 8 simulations have been performed for Cases 0, 1, 2 and 3, respectively), with
a significant increase in the associated computational effort.

LS is found to perform slightly worse than OA in all the case studies consid-
ered: actually, the values of both,./6,, and FOMsFOMwc are slightly lower

than those reported in (Gille 1998 and 1999) for OA. However, it should be con-
sidered that in these studies the OA method has been applied to a simplified ver-
sion of the problem described in Sections 1.4.1 and 1.4.2; actually, only three un-
certain variables (i.ex1, x2 andxs) have been considered by keeping variable
(i.e.,F) fixed to its mean value (i.e., 0.99): this certainly reduces the variability of
the model output and contributes to the reduction of the variability of the associ-
ated failure probability estimator.
Further, LS performs consistently better than the combination of IS and DR in
the task of estimating failure probabilities around +01L0* (for instance, in Case
0 6,./6smm =194 ands,./5,; = 290, whereas in Cased\,./c = 150
and 6,,./6,; = 426). In addition, LS performs comparably to the combination of
IS and DR in the estimation of failure probabilities arouné &@tually, in Case 1
G e/ G = 8300 ands,./d,, = 16750, whereas in Cases2,./6.,, = 8077
and 6,./6,, = 6746. However, it has to be noticed again that in the reference
studies by (Gille 1998 and 1999) a significant number of simulations has been run
to properly tune the parameters of the 1SDs for the IS method (in particular, 4, 8, 8
and 10 simulations have been performed in Cases 0, 1, 2 and 3, respectively).
Finally, it is worth noting that in these cases SS performs worse than the other
methods proposed.

IS+DR
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1.5 Application 2: thermal fatigue crack growth model

The thermal fatigue crack growth model considered in this study is based on the
deterministic Paris-Erdogan model which describes the propagation of a manufac-
turing defect due to thermal fatigue (Paris 1961).

1.5.1 The mechanical model

The evolution of the siza of a defect satisfies the following equation:

da "
N C-(f(R)-AK) (1.24)

whereNc is the number of fatigue cycleS,andm are parameters depending on
the properties of the materi&(R) is a correction factor which is a function of the
material resistanc® and K is the variation of the intensity factor, defined as

AK = As-Y(a)-m (1.25)

In (1.25), sis the variation of the uniform loading (stress) applied to the sys-
tem andY(a) is the shape factor of the defect. ISet s be the variation of the
uniform normal stress at cycle= 1, 2, ...,Nc. The integration of equation (1.24)
gives

[ ey - vy @26)

whereao and a, are the initial and final size of the defect, respectively. In
(1.26) the following approximation can be adopted

N,

Y (f(R)-8,) ~(T-T,)-N.-(£(R)-S)" (1.27)

i=1

whereT andTo are the initial and final times of the thermal fatigue treatment
(of Nc cycles).

The system is considered failed when the aieef the defect at the end of the
Nc cycles exceeds a critical dimenseni.e.:

<0 (1.28)
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which in the integral form (1.26) reads
w(a.)-wla, )0 (1.29)

where

via)=] da (1.30)

Using (1.27), a safety margii (') can then be defined as follows:

Mr)=[ e r-n)N GRSy e

The failure criterion can then be expressed in terms of the safety margin (1.31):

M(T)<0 (1.32)

The variables of the model are summarized in Table 1.5.

Table 1.5.Names, descriptions and units of measurthefvariables of the thermal fatigue crack

growth model
Variables of the thermal fatigue crack growth model
Name Description Unit of measure
a Initial size of the defect [m]
a Critical size of the defect [m]
To Initial time [years]
T Final time [years]
C Parameter of the material /
m Parameter of the material /
f(R) Correction factor /
Ne Number of cycles per year /
S Stress per cycle [MPa]

1.5.2 The structural reliability model

For the purpose of a structural reliability analysis, the thermal fatigue crack
growth model is framed within a probabilistic representation of the uncertainties
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affecting the nine variable®, ac, To, T, C, m, f(R), Nc andS (hereafter namest,
X2, X3, X4, Xs, X6, X7, X8 andxe, respectively).
From (1.32), the probability of system failu?éF) is written as

P(F)=P[M(T)<0]= P{ﬂ‘ﬁ—c-@-n)w{ (f(R)-S) < o} (1.33)

or

P(F)=PM(T)<0]= P[ J' Y(a)fii’/% (=) x (3 e, ) < 0} (139

It is worth noting the highly nonlinear nature of expressions (1.33) and (1.34)
which increases the complexity of the problem.

1.5.3 Case studies

Two different case studies, namely Case 1 and Case 2, are built with reference to
the structural reliability model of the previous Section 1.5.2. The characteristics of
the PDFs of the uncertain variables of Table 1.5 are summarized in Table 1.6; the
values of the exact (i.e., analytically computed) failure probabilBig3, for both

Cases 1 and 2 are also reported in the last row of Table 1.6.

Table 1.6.Probability distributions and parameter®.(i means and standard deviations) of the
uncertain variableg, x, ..., xo of the thermal fatigue crack growth model of Section 1.5.2 for
the two case studies considered (i.e., Cases 2)atidge last row reports the values of the corre-
sponding exact (i.e., analytically computed) failure probabilif&E) (Gille 1998 and 1999).
Exp=exponential distribution; LG=Lognorindistribution; N=Normal distribution

Case 1 Case 2
X1 (a0) Exp(0.6110°) Exp(0.8110°)
X2 () N(21.410° 0.21410% | N(21.410° 0.214109
X3 (To) 0 0
xa (T) 40 40
xs (C) LG(6.510" 5.7510%) | LG(1.0010% 5.7510%)
Xs (M) 3.4 3.4
xi (f(R) |2 2
xe (No) N(20, 2) N(20, 2)
X9 (S) LG(300, 30) LG(200, 20)
P(F) 3.3380-10 1.78010°
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1.5.4 Results

In this Section, the results of the application of SS and LS for the reliability analy-
sis of the thermal fatigue crack growth model of Sections 1.5.1 and 1.5.2 are illus-
trated with reference to Cases 1 and 2 (Table 1.6 of Section 1.5.3).

Again for fair comparison all simulation methods have been run with the same
total number of sampledif = 40000) in both Cases 1 and 2. The efficiency of the
methods has been evaluated in terms of the same indices and performance indica-
tors defined in Section 1.4.4.

Table 1.7 reports the values &f(F), 6, &, FOM, 6,./5,, and FOM-
met/ FOMwmc obtained by Standard MCS, SS and LS in the Cases 1 and 2 of Section
1.5.3; theactual numbermNss of system response analyses (i.e., model evaluations)
is also reported.

Table 1.7.Results of the application of standard MGS and LS to the reliability analysis of
Cases 1 and 2 of the thermal fatigue crack gromdldel of Section 1.5.2; the values of the per-

formance indicators used to compare éifectiveness of the methods (i.6,, /&, and FOM-
met/ FOMwc) are highlighted in bold
Case 1
B(F) ¢ c.ov., o Nss | FOM 6,./6,, | FOMman/FOMuc
Standard MCS | 2.500-1¢ | 7.905-1G | 3.162:16 | 40000 | 4.001-10| 1 1
SS 3.006-10 | 3.214-1G | 1.069-16 | 40019 | 2.419-10| 2.46 6.05
LS 3.768-10 4.610-10 1.223-16 82000 | 5.737-70| 171.46 1.434-10
Case 2
B(F) ¢ C.OV., & Nss | FOM 6,16, FOMmen/F OMuc
Standard MCS | 1.780-16 2.269-10 1.102 40000/ 4.860-10| 1 1
SS 1.130:1G | 1.653-16 | 1.462-1G | 39183 | 9.341-70| 13.73 192.36
LS 1.810-10 2.945-1¢ 1.627-1G 81999| 1.188-18 | 770.02 2.892-10

Also in this application, the LS methodology is found to outperform SS in both
Cases 1 and 2: for example, in Case 2, where the failure prob&g#ijtyo be es-
timated is around 19 the ratio FOMyYFOMwc is about 1500 times larger than the

ratio FOMs/FOMwc.

1.5.4.1 Comparison with other stochastic simulation methods
As done for the previous application of Section 1.4, the results obtained by SS and

LS have been compared to those obtained by other literature methods, in particular
the Importance Sampling (IS) and a combination of Importance Sampling and
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Dimensionality Reduction (Section 1.3) which have turned out to give the best re-
sults in the case studies considered (Gille 1998 and 1999). Notice that the Or-
thogonal Axis (OA) method has not been implemented for this application in the
reference study (Gille 1998 and 1999): this is due to the high dimensionality of the
problem which makes the definition of a proper rotation matrix very difficult (step
3. in Section 1.3.3).

The values of the performance indicatets./J,,, and FOMenW/FOMwc ob-

tained by IS and IS and DR for Cases 1 and 2 of the thermal fatigue crack growth
model of Sections 1.5.1 and 1.5.2 are summarized in Table 1.8.

Table 1.8.Values of the performance indicatofs, /&,,, and FOMen/FOMwc obtained by IS

and IS + DR when applied for the reliability analysis of Cases 1 and 2 of the thermal fatigue
crack growth model of Séon 1.5.2 (Gille 1998 and 1999)

Case 1

5,./6,., | FOMmen/FOMuc
IS 16.9 424.36
IS+DR | 65.4 864.36
Case 2

. lo,, FOM meth/FOMmc
IS 41.1 4.396-10
IS+DR | 1724 8.317-10

In this application, LS is found to outperform both IS and the combination of IS
and DR: for example, in Case 2, the ratio RMOMwc is 65 and 35 times larger
than FOMyYFOMwc and FOMs:or/FOMwc, respectively. This confirms the capa-
bility of the LS method to efficiently probe complex high-dimensional domains of
integration.
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1.6 Summary and critical discussion of the techniques

One of the major obstacles in applying simulation methods for the reliability
analysis of engineered systems and structures is the challenge posed by the estima-
tion of small failure probabilities: the simulation of the rare events of failure oc-
currence implies a significant computational burden (Schueller 2007).

In order to overcome the rare-evgnbblem, the Importance Sampling (IS)
method has been introduced (Au and Beck 2003a; Schueller et al. 2004). This
technique amounts to replacing the original PDF of the uncertain random variables
with an Importance Sampling Distribution (ISD) chosen so as to generate samples
that lead to failure more frequently (Au and Beck 2003). IS has the capability to
considerably reduce the variance compared with standard MCS, provided that the
ISD is chosen similar to the theoretical optimal one (equation (1.11) of Section
1.3.1). However, generally substantial insights on the system stochastic behaviour
and extensive modelling work is needed to identify a “good” ISD, e.g. by identify-
ing “design points” (Schueller et al. 2004), setting up complex kernel density es-
timators (Au and Beck 2003a) or simply by tuning the parameters of the ISD
based on expert judgment and trial-and-error (Gille 1998 and 1999; Pagani et al.
2005). Overall, this greatly increases the effort associated to the simulation for ac-
curate failure probability estimation. Furthermore, there is always the risk that an
inappropriate choice of the ISD may lead to worse estimates compared to Standard
MCS (Schueller et al. 2004).

Subset Simulation (SS) offers a clever way out of this problem by bredddng t
small failure probability evaluation task into a sequence of estimations of larger
conditional probabilities. During the simulation, more frequent samples condi-
tional to intermediate regions are generated from properly designekowla
chains. The method has been proven much more effective than standard MCS in
the very high-dimensional spaces characteristic of structural reliability problems
in which the failure regions are just tiny bits (Au and Beck 2001).

The strength of Subset Simulation lies in the generality of its formulation and
the straightforward algorithmic scheme. In contrast to some of the alternative
methods (e.g., Line Sampling and Orthogonal Axis), it is not restricted to standard
normal spaces and can provide equally good results irrespectively of the joint dis-
tribution of the uncertain variables as long as one can draw samples from it. Fur-
thermore, a single run of the SS algorithm leads to the calculation of the probabili-
ties associated with all the conditional events considered: if for example, the
probability of exceeding a critical level by a system response statistic of a stochas-
tic system (e.g., the mean or a percentile of the displacement, stress, temperature,
etc) is sought, then by appropriate parametrization of the intermediate conditional
events, a single run can provide the probabilities of exceedance associated with a
wide range of values ahe response statistic of interest irrespectively of their
magnitude (Au 2005).

On the other hand, a word of caution is in order with respect to the fact that the
conditional samples generated during the Markov Chain Monte Carlo (MCMC)
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simulation are correlated by construction. Since it is demonstrated that a high cor-
relation among conditional samples increases the variance of the SS estimates, a
good choice/tuning of the SS parameters (i.e., the conditional probabibiyd

the proposal PDFs for MCMC simulation) is required to avoid it (Au and Beck
2003b). Finally, another drawback of the SS method is the need to express the
failure eventr in terms of a real valued parameter crossing a given threshold (i.e.,

F = {Y <y}). This parametrization is natural for the cases of practical interest in
structural reliability and otherwise specific for other system reliability problems
(Zio and Pedroni 2008).

An alternative way to perform robust estimations of small failure probabilities
without the extensive modelling effort required by IS is offered by Line Sampling
(LS). The LS method employses instead of randomoints in order to probe the
high-dimensional failure domain of interest. An “important direction” is optimally
determined to point towards the failure domain of interest and a number of condi-
tional, one-dimensional problems are solved along such direction, in place of th
original high-dimensional problem (Pradlwarter et al. 2005). In case the bounda-
ries of the failure domain of interest are not too rough (i.e., approximately linear)
and the “important direction” is almost perpendicular to them, only few simula-
tions suffice to arrive at a failure probability with acceptable confidence. The de-
termination of the important direction requires additional evaluations of the sys-
tem performance which increases the computational cost (Section 1.2.2.2).
Further, for each random sample (i.esteyn configurationfirawn, two or three
evaluations of the system performance are necessary to estimate the conditional
one-dimensional failure probability estimates by linear or quadratic interpolation
(equation (1.5) in Appendix 2). In case the “important direction” is not the opti-
mal one, the variance of the estimator will increase. Of particular advantage of
Line Sampling is its robustness: in the worst possible case where the “important
direction” is selected orthogonal to the (ideal) optimal directiame sampling
performs at least as well as standddnte Carlo simulation (Schueller et al.
2004).

Finally, the Dimensionality Reduction (DR) method and the Orthogonal Axis
(OA) method employ simulation concepts similar to those of LS, but with impor-
tant limitations (Gille 1998 and 1999). In the DR method, the failure event of in-
terest is re-expressed $mich a way as to highliglone (say,x) of the input ran-
dom variables, recognized as more important; then, the failure probability estimate
is computed as the expected value of the CD& obnditional on the remaining
(n — 1) input variables. By so doing, the zero values contained in the standard
MCS estimator (i.elr(x) = 0, if x € F) are removed: this allows to i) reach any
level of probability (even very small) and ii) reduce the variance of the failure
probability estimator (Gille 1998 and 1999). Notice that DR can be considered a
very special case of LS where the important direati@oincides with the “direc-
tion” of the variableg, i.e., a = (O, 0,....x,,...,0, 0). However, such method can not

always be applied: first, the performance function of the system must be analyti-
cally known (which is never the case for realistic systems simulated by detailed
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computer codes); second, the performance function must have the characteristic
that one of the variables can be separated from the others (Gille 1998 and 1999).

Finally, the Orthogonal Axis (OA) method performs a sort of importance sam-
pling around the design point of the problem in the standard normal Jppars if
the design point is actually representative of the most important regions of the
failure domain, the OA leads to an impressive reduction in the variance of the
failure probability estimator. However, it is worth noting that the design points
and their neighbors do not always represent the most important regions of the fail-
ure domain, especially in high-dimensional problems. Moreover, the computa-
tional cost associated with the identification of the design points may be quite
relevant which adversely affect the efficiency of the method (Schueller et al.
2004). Finally, the implementation of the OA method requires the definition of a
rotation matrix in order to modify the coordinate system, which can be very diffi-
cult for high-dimensional problems.

A synthetic comparison of the stochastic simulation methods considered in this
work is given in Table 1.9 (the second column, namely “Decisions”, refers to pa-
rameters, distributions and other characteristics of the methods that have to be
chosen or determined by the analyst in order to perform the simulation).
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Table 1.9.Synthetic comparison of the stochastic simulation methods considered in this work (Part 1)

Method Simulation concepts Decisions Advantages Drawbacks
Standard - repeat random sampling of / - samples the full range of each input variable| - high computational cost (in presence of
MCS possible system configurations - consistent performance in spite of complexity long-running models for determining
and dimension of the problem system response and small failure
. probabilities)
- accuracy easily assessed
- no need for simplifying assumptions nor
surrogate models
- no complex elaborations of the original modg
- identification of nonlinearities, thresholds and
discontinuities
- simplicity
SS - express a small probability as a | - conditional failure - general formulation - parametrization of the failure event
product_ _o_f larger conditional p_robabi_litypo at each - straightforward algorithmic scheme in terms of intermediate conditional
probabilities simulation level e events
" - no restriction to standard normal space . =

- generate conditional samples by | - proposal PDFs for istent perf ) ite of | - correlation among conditional
Markov Chain Monte Carlo MCMC Simulation . 'ants:DsDelg performance in Spité of COMpIeX | samples: bias in the estimates and
(MCMC) simulation join S possibly increased variance

- consistent performance in spite of
irregularities in topology and boundary
of the failure domain
- one single run computes probabilities for more
than one event
- reduced computational effort with respect
to other methods
LS - turn a high-dimensional - one failure point to start | - no assumptions about regularity of the limit | - determination of important directian
problem in the physical space intd the Markov chain for the| state function (robustness) requires additional evaluation of system
one-dimensional problems in the| determination o& - if limit state function is almost linear, few performance (with increase in the
standard normal space simulations suffice to achieve acceptable computational cost)

- project the problem onto a estimation accuracies - for each sample drawn, two or three
line & pointing at the important - no necessity to estimate important direction | €valuations of system performance are
regions of the failure domain a with excessive accuracy negﬁ;sary to e§t|tmhate fallur:a Erob?blllty

i i . . with increase in the computationa

- use linex almost perpendicular - even in the worst possible cageofthogonal S:ost) P
to the failure domain to reduce to optimal direction) the performance is _ o
the variance of the estimates at least comparable to standard MCS - essential restriction to standard nor_mal sp

(Rosenblatt’s or Nataf's transformations are
required) (Rosenblatt 1952; Nataf 1962)

nce
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Table 1.9.Synthetic comparison of the stochastic simulation methods considered in this work (Continued)

Method

Simulation concepts

Deisions

Advantages

Drawbacks

IS

- repeated random sampling of
possible system configurations

- sample from Importance
Sampling Density (ISD) to
generate more samples in the region
of interest (e.g., low probability of
occurrence)

- construction/choice of
the ISD

- if the ISD is similar to optimal one: significant
increase in estimation accuracy (or, converse|
reduction in samplsize for given accuracy)

- many system behavior insights and
ly, and much modelingiork needed for
identification of good ISD

- inappropriate ISD leads to worse
estimates compared to Standard MC

DR

- express failure event in such a way
as to highlight one random variable

- estimate failure probability as expecteq
value of the CDF of the chosen
variable conditional on the remaining
(n—1) variables

- random variable to be
separated from others

- remove zero values included in the Standard
MCS estimator (reduced variance)

- any probability level can be reached (also the
very small ones of rare events)

- analytical expression for the system
performance function is required

- performance function must have
the characteristics that one of the
variables can be separated out from
the others

OA

- identification of the design point
- rotation of system coordinates

- solve one-dimensional problems
along direction of design point

- if the design point is representative of the mo
important regions of the failure domain, then
the variance is significantly reduced

st- design point frequently not
representative of the most important
regions of the failure domain
(high-dimensional problems)

- high computational cost associated t
design point (nonlinear constrained
optimization problem)

- rotation matrix difficult to introduce

in high-dimensional spaces
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Appendix 1.Markov Chain Monte Carlo (MCMC) Simulation

Markov Chain Monte Carlo (MCMC) simulation comprises a number of powerful
simulation techniques for generating samples according to any given probability
distribution (Metropolis et al. 1953).

In the context of the reliability assessment of interest in the present work,
MCMC simulation provides an efficient way for generating samples from the mul-
tidimensional conditional PDR(x | F) . The distribution of the samples thereby

generated tends to the multidimensional conditional RDF F) as the length of

the Markov chain increases. In the particular case of the initial sasipheing
distributed exactly as the multidimensional conditional RRk | F) , then so are

the subsequent samples and the Markov chain is always stationary (Au and Beck
2001).
In the following it is assumed without loss of generality that the components of

x are independent, that iﬂ,(x)zﬁqj(xj), where g,(x;) denotes the one-

dimensional PDF oij (Au and Beck 2001).

To illustrate the MCMC simulation algdhnim with reference to a generic fail-
ure regionfi, let x* = {xf,xg,...,xj’,...,xjj} be theu™ Markov chain sample drawn
and letp (¢, |x"),j =1, 2, ...n, be a one-dimensional ‘proposal PDF’ fgr,
centered at the valuex; and satisfying the symmetry property
p,(& |x)=p (x)|&,). Such distribution, arbitrarily chosen for each element
x, of x, allows generating a ‘precandidate valde’based on the current sample
value x7. The following algorithm is then applied to generate the next Markov
chain samplex*"' = {xl”*',xg*',...,xj*‘,...,x;‘“}, u=1,2, ..,Ns—1 (Au and Beck
2001):

Sutl Yutl utl

1. Generation of a candidate samplé' = {x1 LML X ,Y““}: for each pa-

JRERU

rameterx,,j=1,2, ...

Sample a precandidate valgé" from p’(-|x");
a. Compute the acceptance ratio:

i &)
r' =

_ 1.1
! q,(x}) 1)
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b. Setthe new valu@;" of thej" element ofx*" as follows:

1.2)

u u+l

x"  withprobability 1 —min(L,»"")

J

Sl {g/w with probability min(1, ")

2. Acceptance/rejection of the candidate sample veetor

If X' =x" (i.e., no precandidate values have been accepted)x‘set x".

Otherwise, check whethe¥""' is a system failure configuration, i.&"' € F,:

if it is, then accept the candidai¢™ as the next state, i.e., set” = X" ; oth-

erwise, reject the candidaté’” and take the current sample as the next one,

ie., setx"

In synthesis, a candidate sampl&’ is generated from the current sample
and then either the candidate samplé or the current sample” is taken as the
next samplex""', depending on whether the candidate' lies in the failure re-
gionFi or not.

= x".

Finally, notice that in this work, the one-dimensional proposal RDF = 1,

2, ..., n, is chosen as a symmetrical uniform distribution centered at the current
samplex, j = 1, 2, ...,n, with width 2, wherel; is the maximum step length, i.e.

the maximum allowable distance that the next sample can depart from the current
one. The choice df is such that the standard deviation;ojf is equal to that odj,

j=1,2,..n
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Appendix 2. The Line Sampling algorithm

The LS algorithm proceeds as follows (Pradiwarter et al. 2005):

1. Determine theunit important directiona={al,a2,...,a/,...,aﬂ}. Any of the

methods summarized in Section 1.2.2.2 can be employed to this purpose.
Notice that the computation @f implies additional system analyses, which
substantially increase the computational cost associated to the simulation
method (Section 1.2.2.2).

2. From the original multidimensional joint probability density function
q(-):‘R" —[0,0), sample Nr vectors {xk k :1,2,...,NT}, with
xt = {xf,xé,...,xj,...,xf} by standard MCS.

3. Transform theNr sample vectors{x" k =1,2,...,N,} defined in the original
(i.e., physical) space of possibly dependent, non-normal random variables (step
2. above) intoNr samples{ﬂ" k :1,2,...,NT} defined in the standard normal
space where each component of the ve@tor {Hf,@j,...,&f,...,@:}, k=1, 2,
..., N1, is associated with an independent central unit Gaussian standard distri-

bution (Section 1.2.2.1).
4. Estimate Nr conditional “one-dimensional” failure  probabilities

{ﬁk(F):kzl, 2,...,NT}, corresponding to each one of the standard normal
samples{ﬂ" :k=1,2,...,NT} obtained in step 3. above. In particular, for each
random samplé* , k = 1, 2, ...,Nr, perform the following steps (Figure 1.1")
(Schueller et al. 2004; Pradlwarter et al. 2005; Pradlwarter et al. 2007):

a. Define the sample vectat’ , k=1, 2, ...Nr, as the sum of a de-
terministic multiple ofe and a vecto®w** , k =1, 2, ...Nr, per-
pendicular to the directiosm, i.e.,

0" =cta+0" k=12, ..Nr (1.3)

wherec®is a real numberin[- ,+ ]and

0" =0"—(a.0")a , k=1,2, . Nr (1.4)

In (1.4, 6, k=1, 2, ...Nr, denotes a random realization of the
input variables in the standard normal space of dimemsemd
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<a,0"> is the scalar product betweerand " , k=1, 2, ...Nr.

Finally, it is worth noting that since the standard Gaussian space
is isotropic, both the scalaf and the vectow'* are also stan-
dard normally distributed (Pradlwarter et al. 2007).

b. Compute the value® as the intersection between the limit state
function g{,(ﬁk): g,(c*a+0")=0 and the line/*(c*,a) pass-
ing through#* and parallel tax (Figure 1.1°). The value of*
can be approximated by evaluating the performance function
g,(-) at two or three different values df (e.g., ¢/,c' and ¢!
in Figure 1.1"), fitting a first or second order polynomial and de-
termining its root (Figure 1.1"). Hence, for each standard normal
random sampled” , k = 1, 2, ...,Nr, two or three system per-
formance evaluations by the model are required.

c. Solve the conditional one-dimensional reliability problem asso-
ciated to each random sam@é, k=1, 2, ...,Nr, in which the
only (standard normaljandom variable i*. The associated
conditional failure probability?*(F), k = 1, 2, ...,Nr, is given

by

P (F)=P[N(0,1)>2"]=
1-P[N(0,1)< 2" ]= (1.5)
1-0(ct)=o(-c*

where @(-) denotes the standard normal cumulative distribution

function.
5. Using the independent conditional “one-dimensional” failure probability esti-

mates{f?k(F):k :1,2,...,N,} in (1.5) (step 4.c. above), compute the unbiased
estimator P(F) for the failure probability?(F) as

NLZJB“(F). (1.6)

P(F)=
The variance of the estimator (1.6) is

o (005 S ()P0 @7
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With the described approach the variance of the estin{B) of the failure
probability P(F) is considerably reduced. In general, a relatively low nuriNlber

of simulations has to be carried out to obtain a sufficiently accurate estimate. A
single evaluation would suffice for the ideal case in which the limit state function
is linear and a Line Sampling directienperpendicular to it has been identified
(Koutsourelakis et al. 2004).

gy =0

K conditional one-dimensional
failure probability estimate

P r)=-2*)

Fig. 1.1". The Line Sampling procedei(Pradlwarter et al. 2005)
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