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Abstract 
To efficiently control a process, accurate sensor measurements must be provided of the signals used by the 

controller to decide which actions to actuate in order to maintain the system in the desired conditions. Noisy 

or faulty sensors must, then, be promptly detected and their signals corrected in order to avoid wrong control 

decisions. In this work, sensor diagnostics is tackled within an ensemble of Principal Component Analysis 

(PCA) models whose outcomes are aggregated by means of a local fusion (LF) strategy. The aggregated 

model thereby obtained is used for both the early detection and identification of faulty sensors, and for 

correcting their measured values. The fault detection decision logic is based on the Sequential Probability 

Ratio Test (SPRT). The proposed approach is demonstrated on a simulated case study concerning the 

pressure and level control in the pressurizer of a Pressurized Water Reactor (PWR). The obtained results 

show the possibility to achieve an adequate control of the process even when a sensor failure occurs. 

1 Introduction 
When a fault occurs in a sensor whose measurements are used for the control of an industrial process, a 

repair action must be promptly initiated since the use of incorrect information by the controller could 

compromise the correct functioning of the process, with potential fallbacks both on production and safety. In 

this context, on-line monitoring methods can provide an indication of the health of the sensors and supply an 

early warning of incipient faults, thus enabling to assess the reliability of the measurement and to 

opportunely plan the sensor maintenance. Additionally, for continuing operation while reparation is 

performed, the erroneous measurements should be substituted by accurate estimates of the signal true values.  

The main objective of this work is to devise an on-line monitoring scheme to reduce the effects of sensor 

faults on the process control, by detecting the faults and by reconstructing the correct signal values. Three 

steps are envisaged: (a) validate the sensor measurements, (b) detect and identify faults and (c) reconstruct 

the correct values of the faulty signals. Steps (a) and (c) can be performed by resorting to a model that 

generates estimates of the correct sensors signal values based on actual readings and correlations among 

them; step (b) can be performed by a fault detection and identification module which determines, as early as 

possible, whether the sensors are behaving anomalously and identifies the faulty ones among them. 

Concerning the development of a signal validation and reconstruction model, a common approach is that of 

using auto-associative models (Hoffmann, 2006; Holbert and Upadhyaya, 1990; Roverso et al., 2007). The 

practical problem, however, is that a single auto-associative model cannot handle the multiplicity of signals 
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measured on a real plant (Baraldi et al., 2008; Fantoni and Mazzola, 1996; 0Fantoni et al., 2003; Zio et al., 

2007). A possible way to overtake this limitation is to subdivide the signals into small overlapping groups, 

develop an ensemble of models, one for each group, and finally combine their outcomes. Key to building of 

the ensemble is the diversity of the individual models. In the approach investigated in this work, diversity is 

promoted by randomly generating the signals groups according to the Random Feature Selection Ensemble 

(RFSE) technique (Bryll et al., 2003); this is a completely random technique in which no optimization of the 

composition of the individual groups is sought, i.e., no relevance is given, for example, to the correlation 

between the signals in the groups or to their capability of reconstruction. The groups thereby created are used 

to develop a corresponding number of signal validation and reconstruction PCA models (Jolliffe, 2002; 

Diamantaras and Kung, 1996; Scholkopf et al., 1999; Moore, 1981). The outcomes of different models are 

then aggregated using a LF method (Baraldi et al., 2009; Bonissone et al., 2008). To improve the accuracy of 

the reconstruction, past signal measurements are used as further input to the models and the reconstruction of 

the faulty signals is iterated until satisfactory convergence. 

The detection and identification of a sensor fault can be achieved by comparing the actual sensor 

measurements with the signal values estimated by the signal validation and reconstruction model; in this 

work, the Sequential Probability Ratio Test (SPRT) which considers the statistical properties of the residual, 

i.e. the difference between the measurements and their estimation, is used. 

The proposed approach has been applied to a case study concerning the level and pressure control in the 

pressurizer of a PWR nuclear power plant. In order to test the effectiveness of the described procedure, faults 

have been added to sensors whose signals are simulated using a Matlab SIMULINK model of the 

pressurizer. Upon fault detection, the reconstructed value of the faulty signal is used by the controller to 

decide the control action. A comparison is made of the control performance obtained when feeding the 

controller with the measurements coming from the faulty sensor or the reconstructed values. 

The remaining parts of the paper are organized as follows. Section 2 states the problems of fault detection, 

identification and signal reconstruction in the frame of process control; Section 3 describes the signal 

validation module, recalling briefly the RFSE and LF techniques; Section 4 describes the SPRT technique 

implemented in the fault detection module; Section 5 presents the results from a set of experiments 

concerning the control of a simulated PWR pressurizer in presence of faults of the sensors; finally, Section 6 

presents the conclusions and describes potential future directions of research. 

2 Sensor  fault  detection,  identification  and  signal  reconstruction  for 
process control  

The objective of a controller is to correct the mismatch between the true values T
iC

f  of Cn  plant variables and 

their reference values (setpoints) Ref
iC

f  by establishing and actuating corrective actions. In order to decide 

the opportune control actions, the controller considers the available information describing the state of the 

process to be controlled. Let us assume that this information is characterized by the measured values 
Ii

f  of 
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In  plant signals, hereafter called controller input signals. For efficient control of the process, the controller 

should be fed with the best available estimate of the true values T
iI

f , I,...,ni 1  of each controller input 

signal. Since a sensor measurement 
Ii

f  provides an estimate of the true value T
iI

f of the physical quantity 

used by the controller, ideally it should be T
ii II

ff  , but in practice the measurement 
Ii

f  is affected by 

random noise and sometimes it also deviates from the true value T
iI

f because of a sensor fault. 

Fig. 1: fault detection, identification and signal reconstruction strategy in case of sensor faults; the black bullet indicates 

a fault. 

 

Fig. 1 shows the general framework adopted to address the problem of detecting and identifying faults in the 

sensors measuring the controller input signals 
Ii

f , and eventually reconstructing their correct values T
iI

f .  

Let us assume that n  signals of the process under analysis are measured and let if  be the measurement of 

the generic i -th signal, ni ,...,1 ; notice that the In  controller input signals are contained in this set of n  

signals. The n  measured signals if  are processed by a signal validation and reconstruction model which 

provides a first estimate 1
if̂  of the true signal value T

if  based on the correlation existing between the n  

measured signals. These correlations are “learned” by the model from a “training” data set TRNX  containing 

faults-free measurements of the n  signals recorded during normal operation of the system.  
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In order to catch the dynamic evolution of the system and increase the robustness of the method, the set of 

measurements if  which are given in input to the signal validation and reconstruction model is constituted 

not only by the current values )t(fi  of the n  measured signals, but also by the Tn   values 

)Tt(f),...,t(f ii 1  measured in a sliding window of T  previous time instants (Fig. 2). 

 

Fig. 2: inputs and outputs of the signal validation and reconstruction model. 

 

The  estimates )t(f̂ 1
i  generated by the signal validation and reconstruction model are compared with the 

measured values )t(fi  of the current signals values )t(f T
i  and the residuals )t(f̂)t(f)t(e 1

iii   are used 

as input to the fault detection module. By monitoring the evolution of the statistical properties of the 

residuals ie , the conditions of the sensors are verified and an indication about their state of health is 

obtained. When one or more sensors are diagnosed as faulty, their measurements are not reliable and should 

be substituted by the estimates produced by the validation and reconstruction model. However, since the 

estimates 1
if̂  produced by the signal validation and reconstruction model can be themselves affected by the 

incorrect values in input, the reconstruction T
if̂  of a faulty measurement if  is obtained by iterating the 

signal reconstruction a number iterN  of times (Chevalier et al., 2009): at each iteration j , the i -th input to 

the signal validation and reconstruction model is the reconstructed value 1j
if ˆ  of the faulty signal if  

obtained at the previous iteration 1j . After the iterations are completed, the reconstructed value )t(f̂ T
i  is 

used as corrected input to the signal validation and reconstruction model, and also to the controller if if  is 

one of its inputs, in substitution of the erroneous measurement until maintenance of the faulty sensor is 

performed. 

3 Signal validation and reconstruction model 

3.1 The Random Feature Selection Ensemble approach 
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Fig. 3 reports a sketch of the flow of modelling for signal reconstruction. A set of )(TnnT 1  signals

)Tt(f),...,t(f),t(f iii 1 , n,...,i 1  is available for building the signal validation and reconstruction model. 

Given the typically large value of Tn , a single model cannot perform the reconstruction task with the desired 

accuracy and reliability; then, the signal set must be partitioned into subsets, for each of which a 

reconstruction model is built. Actually, in the ensemble approach here proposed the subsets of signals are 

overlapping (i.e., two subsets may contain signals which are the same), a PCA model is built for each subset 

and the reconstruction of a signal contained in different models is obtained by aggregating their outcomes, 

within an ensemble approach. 

In this work, signal grouping is performed by the RFSE technique which consists in randomly sampling from 

the Tn  available signals, with replacement, H  subsets hF , H1h ,..., , each constituted by m  signals 

(Bryll et al., 2003). This guarantees high signal diversity in the overlapping groups upon which the PCA 

models are built and allows for rapid construction of the signal groups. Furthermore, randomly selecting the 

signals in the groups with a reasonable choice of the group size parameters m  and H , can basically 

guarantee coverage of all the signals in the ensemble with adequate redundancy (Aly and Atiya, 2006; Bryll 

et al., 2003).  

As mentioned above, the H  diverse signal groups generated are used as bases for developing a 

corresponding number of PCA validation and reconstruction models. To do this, the data set X  of N  signal 

patterns available is partitioned into a training set TRNX  (made of TRNN  patterns) and a test set TSTX  (made 

of TSTN  patterns); the former is used to train the individual models, whereas the latter is used to verify the 

ensemble performance in the signal reconstruction task in order to determine the optimal values of 

parameters m  and H  (Baraldi et al., 2009a). The models thus obtained are then used online for the signal 

validation and reconstruction process.  

Each signal if  is present in a number iH  of groups and thus a corresponding number of individual PCA 

models provide its reconstruction. Different methods can be used to aggregate the outcomes of these 

individual models in the ensemble, in order to get the final reconstructed value. In this work a local fusion 

strategy has been adopted. 

After the ensemble of PCA models has been trained, it can be used to validate and reconstruct the actual 

sensors measurements: the entire set of Tn  signals is fed into the ensemble of models which returns their 

reconstructed values. In particular, each model h  receives in input and reconstructs only the signals 

belonging to the corresponding subset hF . Although the PCA auto-associative models of the ensemble 

reconstruct in output both current and past values of the measured signals in input, only the reconstructions 

)t(f̂i  of the current measurements are used in the subsequent steps of the control procedure; thus, the 

aggregation of only the reconstructions )t(f̂ h
i  of the current signals values needs to be performed, with 

significant savings of computational time. 
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Fig. 3: approach to the reconstruction of signal if  contained in groups h,...,, FFF 175 . 

3.2 Local fusion strategies for models outcome aggregation 

Different techniques have been proposed for the aggregation of the outcomes of multiple models (Baraldi et 

al., 2009b; Bonissone et al., 2008). In general, the aggregation of the models outcomes requires to associate a 

weight h
iw  and a bias correction h

ib  to the reconstruction h
if̂  of each model h . The idea is to correct the 

values of h
if̂  by subtracting the estimated bias h

ib  and to combine h
if̂  with the other models estimates by 

means of a weighted average: 












hi

hi

f|h

h
i

f|h

h
i

h
i

h
i

i
w

)bf̂(w

f̂

F

F  (1)

The most common technique is the simple mean which assigns the same value to all weights and set to zero 

the bias corrections, i.e. wwh
i  and 0bh

i  ,  n,..,i 1  and iH,...,h 1 . In (Baraldi et al., 2009b) it has 

been shown that the ensemble performance can be increased if both the bias corrections h
ib  and the weights 

h
iw  are computed locally, i.e., they vary as a function of the position of the pattern under reconstruction. In 

this way the two parameters h
ib  and h

iw  can account for the variation of models performances in the 

different regions of the signals space. Fig. 4 shows the overall framework for the reconstruction of the 

generic signal if  by local fusion of the models outcomes. 
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Fig. 4: framework of the locally weighted fusion of model outcomes. 

 

The main steps of the local fusion process are: 

1) Retrieve a set TRNQ  of neighbours of the pattern under reconstruction from the set of training patterns. 

According to the k -nn-based neighbourhood approach here adopted (Bonissone et al., 2008), TRNQ  is 

formed by the k  training patterns nearest to the test pattern (Fig. 5). The optimal number k  of nearest 

neighbours to be considered is obtained verifying the LF performance on the test set TSTX . 

 

Fig. 5: k -nn-based neighborhood. The black circle represents the test pattern; the other circles are training patterns. 

 

2) Associate a weight and a bias to each individual model of the ensemble depending on its reconstruction 

accuracy on the retrieved neighbours. According to (Baraldi et al., 2009b), the local bias correction h
ib  

and the local weight h
iw  to be assigned to model h  in the reconstruction of signal if  are set equal to:  

Time instant t
{ f1(t), …, fn(t) }

wi
h, bi

h

wi
17, bi

17

wi
5, bi

5

Mod. 17

Mod. h

Trained 
PCA 

models

Correction parameters 
based on the local 
performances on 

neighborhoods of the 
training set












hi

hi

ii

Ffh

h
i

Ffh

h
i

hh

i w

bfw

f

)ˆ(
ˆ

[…] […][…]

Signal fi(t)

5
if̂

17
if̂

h
if̂

Mod. 5

d

xm

x2

x1



8 
 

 
TRN

TRN
Q

i
h

i
h
Q,i

h
i )ff̂(meb  (2)

 


TRN

TRN

Q
i

h
i

h
i,Q

h
i

ff̂mae
w

11
 

(3)

where h
Q,i TRN

me  represents the local mean error and h
Q,i TRN

mae  the local mean absolute error computed on 

a different dataset than the one used for the training of the models. The new data set is built by adding an 

artificial noise to the training data before their reconstruction; in this way, the training error used to 

estimate the weights will also account for the robustness of the model, thus keeping us from assigning 

high weights to models whose outstanding performance on the training set is not due to their real quality, 

but rather derives from overfitting. 

3) Aggregate the outputs by using eq. (1), which accounts for the models weights and bias.  

4 Statistical decision logic for fault detection 
The detection of a sensor fault is often achieved by comparison between the actual sensor measurement 

)t(f i  and the measurement estimate )t(f̂ 1
i  provided by a signal validation and reconstruction model which 

reproduces the response of the sensor in non-faulty conditions. Many techniques are based on the monitoring 

of the residual signal )t(f̂)t(f)t(e 1
iii   (Gross and Kumenik, 1991), for detecting a fault when the 

residual exceeds a threshold value previously set. To provide the earliest possible indication of a process 

anomaly, many techniques adopt the sequential probability ratio test (SPRT) (Wald, 1947) to detect changes 

over time in the statistical characteristics of the residual signal ie  (Gross and Kumenik, 1991). 

The fault detection module implemented in this work also adopts the SPRT and not just for signalling the 

occurrence of a fault when the residual exceeds the threshold value, but also to return in output the condition 

of the sensors, by performing a statistical hypothesis test on the mean and variance of the residuals: at each 

time step t , the null hypothesis 0
iHp , corresponding to the normal, fault-free condition of the i -th sensor, is 

tested against the alternative hypothesis 1
iHp  corresponding to the faulty sensor.  

The residual signal ie  has the Gaussian distribution ),σm(G j
i

j
i , where j

im  and j
iσ , 0,1j   are respectively 

its mean and standard deviation under the hypothesis j
iHp . The decision logic which allows choosing 

between the two hypotheses 0
iHp  and 1

iHp  is based on the value of the log-likelihood ratio )t(λi  in the 

following eq. (4); this is initialized to the value 01 )(λi  at the initial time and is updated as follows, as time 

proceeds (Wald, 1947; Yang et al., 2009): 
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If the hypothesis 0
iHp  is correct, the fourth term of eq. (4) dominates over the third one and the value of 

)t(λi  decreases during time; vice versa, when the correct hypothesis is 1
iHp  the value of )t(λi  increases due 

to the effect of the third term. In order to decide whether sensor i  is faulty or not, a value   is fixed for the 

probability of false alarm (sensor i  is considered faulty although it is in normal condition), and a value   is 

fixed for the probability of missed alarm (sensor i  is considered in normal condition although it is faulty). 

An upper UB  and a lower LB  thresholds for )t(λi  are obtained from   and   through eqs. (5) and (6): 

]1[ αβ)(logBU   (5)

]1[ α)(βlogBU   (6)

When )t(λi  exceeds the value UB  a fault to sensor i  is detected, whereas the normal condition is diagnosed 

when the value LB  is reached. After one of the two boundaries is reached, the value of the log-likelihood 

ratio )t(λi  is kept constant until its trend is inverted. 

Constant bias on the sensor measurement if  can be diagnosed by setting 0
i

1
i σσ   and 00

im , whereas to 

detect an increased noise on the sensor measurement one should set 0 0
i

1
i mm . The value of 1

im  in the 

first case and of 1
iσ  in the second depend on the magnitude of the fault one wishes to detect. Too small 

values of 1
im

 and 1
iσ  can lead to false alarms due to the presence of measurement and reconstruction noises 

also in case of normal sensors conditions, whereas too high values lead to the detection of sensor faults only 

when they have high magnitudes. The calibration of the SPRT parameters   ,  , 1
im  and 1

iσ  is performed 

by a trial and error procedure looking for a trade off between a low rate of false alarms and a low rate of 

undetected faults. 

The fault detection and identification module here implemented is based on the sequential application of the 

SPRT to all sensors and all types of considered faults (in general bias or noise faults). Although in this work 

the case of multiple sensor failures is not considered, the proposed procedure can be extended to deal also 

with this important situation. Also, notice that a fault in the measurement if  may cause some other 

correlated signals to be incorrectly reconstructed and subsequently falsely identified as faulty too; this 

phenomenon is called fault propagation and can lead to a high rate of false alarms in signal validation. Then, 

in case of multiple faults detected by the SPRT, one should verify that they are not a consequence of fault 

propagation. Different techniques have been proposed to tackle the problem of fault propagation. Within an 

ensemble approach to signal validation, the technique proposed in (Chenggang and Bingjing, 2006) based on 

a general sub-grouping technique that uses specially designed intersections between sub-groups to eliminate 

the false alarms caused by fault propagation seems promising.  

5 Case study 
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To verify the applicability of the proposed approach of fault detection, identification and signal 

reconstruction to the measurements used by a controller for deciding which actions to actuate, a simulation 

case study regarding the pressurizer of a PWR nuclear power plant has been considered. 

5.1 Pressurizer model 

Fig. 6 is a schematic representation of the pressurizer system for which a Matlab SIMULINK model has 

been developed, based on the application of the mass and energy conservation equations to the two regions 

of vapour and liquid; exchanges between the two regions, due to evaporation of liquid and condensation of 

steam, are taken into account (Kuridan and Beynon, 1998; Todreas and Kazimi, 1990). The system of non 

linear differential equations describing the model is detailed in the Appendix. 

 

Fig. 6: simplified model of a pressurizer. 

 

The data set X  is built using the signals recorded during different transients, which have been simulated by 

randomly changing the rate of the surge line mass flow entering the pressurizer. All transients are simulated 

starting from the initial conditions reported in Table 1. The surge line mass flow rate depends on the reactor 
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power; in particular, when the Primary Heat Transport (PHT) system pressure or temperature rise, the higher 

pressure or the increase of water volume in the PHT circuit push some coolant from this system into the 

pressurizer (in-surge flow); on the contrary, in case of low PHT system pressure, some liquid moves from the 

pressurizer into the PHT system circuit (out-surge flow). In this application, the transients have been 

generated by assuming surge mass flow rates in the range of [-10; +10] kg/s, positive values indicating in-

surge flow and negative values out-surge flow. In order to represent a realistic situation, the simulations have 

been carried out based on the operational parameters of a standard PWR pressurizer. Moreover the total mass 

of water entering or exiting the pressurizer during a surge line mass flow transient has been related to the 

temperature variations of the coolant in the PHT system. 

Table 1 
Initial conditions of the pressurizer. 

 INITIAL CONDITION 
Level  7.221 m 
Liquid Temperature 342.1 °C 
Vapour Temperature 342.3°C 
Pressure 150.0 bar 

 

During the simulations, the 7n  sensors measuring the signals reported in Table 2 have been considered. 

Table 2 
Measured signals. 

PHYSICAL QUANTITY SYMBOL MEASURED SIGNAL 
Liquid water level L Lf  

Liquid water temperature LT
LTf  

Vapour temperature VT
VTf  

Pressure P Pf  

Spray mass flow rate spm spf  

Heaters power Q Qf   

Surge line mass flow rate surgem surgef  

 

A block diagram of the model identifying the inputs, state of the system, sensors outputs and controller 

variables is shown in Fig. 7.  
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Fig. 7: inputs, state, controller outputs (gray), controller inputs (black) and sensors outputs of the SIMULINK model of 

the pressurizer. 

 

In order to test the method on pseudo-realistic data, white noise has been added to each signal according to 

engineering considerations on the sensors accuracy (Hashemian, 2004; Hashemian, 2006; Johnson, 2008). 

Table 3 reports the standard deviations of the considered noises.  

Table 3 
Standard deviation of sensors noise. 

 NOISE STANDARD 

DEVIATION 
Level Sensor ±0.01 m 
Pressure Sensor ±0.5 bar 
Flow Sensor ±0.2 kg/s 
Power Sensor ±50 kW 

 

5.2 Controller model 

In this application, the control of the level L  and the pressure P  in the pressurizer is achieved through the 

feedback control scheme shown in Fig. 7, which reproduces the scheme used in a standard PWR pressurizer. 

The pressure Pf  and level Lf  are the controlled signals as well as the controller input signals; the sprayers 

mass flow rate spm , the relief valve mass flow rate vlvm , the heaters power Q  and the charging/letdown 

mass flows rates clm  are the controller outputs. More details on the characteristics of the controller 

implemented in this application are described in the Appendix. 
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Fig. 8 reports the noise-free evolution of the seven measured variables during one of the simulated transients. 

The initial state of the system is varied by an out-surge mass flow rate 6surgem  kg/s lasting for 175 s and 

removing from the pressurizer a total mass 970M  kg corresponding to a variation of the PHT system 

temperature of -2 °C. The out-surge flow produces a decrease in the pressure and consequently the heaters 

are turned on so that the pressure decrease is slowed down. When the out-surge flow ends, the heaters drive 

the pressure back to its reference value of Ref
Pf . The loss of liquid in the pressurizer causes the water level 

to decrease until a stabilized value of 686.L   m is reached. The controller intervenes only when the 

absolute value of difference L
Ref

LL ff   between the level reference value and level signal is greater than 

a tolerated error band 2
LB  m, which is much larger than the pressure tolerated error band 20.BP   bar. 

In this case, the error L  is equal to 0.06m, as the reference value for the level is 746.f Ref
L   m for a PHT 

temperature decrease of -2 °C; since  LL B  and the control on the level does not intervene.  

 

Fig. 8: true noise-free values T
if  of the seven measured variables evolving during a plant transient. 
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The actual values of the signals if  measured by the seven sensors during this transient are shown in Fig. 9. 

In this case the measurement noises received by the controller cause the irregular shape of the heaters power 

controller output signal. Notice that the controller inputs signals 
Ii

f  are the pressure and level signals Pf  

and Lf  of Fig. 9 and not those noise-free of Fig. 8, that represent the true values T
Pf  and T

Lf  of the physical 

quantities.  

 

Fig. 9: signal values if  actually measured (with noise) during the transient of Fig. 8. 
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When a fault affects the pressure or the level measurements, the controller receives incorrect input signals 
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iC

 represent the evolution of the Ci -th controlled signal if all sensors are in normal conditions and 
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and )t(f T
)i(F,i IC

 indicate the true value of the Ci -th controlled signal in a transient but they result from two 

different controller decision strategies, because based on fault-free and faulty information respectively. 

In this case study, pressure and level sensor faults are simulated by adding a constant bias of magnitude BM  

to the true value T
if  of the signal. For the entire duration of the fault, the measurement produced by sensor 

,i  which usually is given by noiseff T
ii  , will then be equal to noiseMff B

T
ii  .  

To illustrate the consequences of a fault on a sensor measuring a controller input signal, the effects on the 

system of the fault reported in Table 4 are considered. 

Table 4 
Pressurizer condition during the faulty transient simulated. 

TRANSIENT TYPE Out-surge [Fig. 8, Fig. 9] 

SURGE LINE MASS FLOW RATE  6surgem  kg/s 

FAULTY SENSOR Pressure sensor 

TYPE OF FAULT Constant bias 

FAULT MAGNITUDE  54.M B   bar 

BEGINNING TIME  50t  s 

 

Fig. 10 compares the evolution of the pressure )t(f T
P  (upper) and the level )t(f T

L  (bottom) signals in 

normal sensor conditions (left) to the evolution of the same two signals )t(f T
)P(F,P  and )t(f T

)P(F,L  in the 

case of the pressure sensor fault of Table 4 (right). Fig. 11 compares, in the same case, the behaviours of the 

two controller output variables used to control the process, i.e. the sprayers mass flow rate (upper) and the 

heaters power (bottom). 
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Fig. 10: evolution of the pressure (upper) and of the level (bottom) in the pressurizer when all the sensors are in normal 

conditions (left), and when a constant bias fault of +4.5 bar on the pressure measurement is simulated and the measured 

signal 
Ii

f is used as input to the controller (right). 
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Fig. 11: evolution of the sprayers mass flow rate (upper) and of the heaters (bottom) in the pressurizer when all the 

sensors are in normal conditions (left), and when a constant bias fault of +4.5 bar on the pressure measurement is 

simulated and the measured signal 
Ii

f is used as input to the controller (right). 
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This example demonstrates that the controller can actually take wrong decisions when its inputs are altered 

by a sensor fault. 

5.4 Application  of  the  fault  detection  and  signal  reconstruction 

methodology 

In this Section, the developed model for the fault detection, identification and signal reconstruction is 

described and applied to the case study under analysis.  

5.4.1 Signal validation  

Since the pressurizer operation strongly depends from the pressure and temperature of the PHT system, in 

order to build a more accurate signal validation model the information coming from the seven sensors of the 

pressurizer should be integrated by information related with the PHT system state. In this case study, since 

only the pressurizer and not the complete reactor has been simulated, the variations occurring outside the 

pressurizer are taken into account by considering an additional signal numerically computed as 


t

surgeM d)(f)t(f
0

 , which represents the transfer of mass between the PHT system and the pressurizer 

during a transient.  

The set of )T(nnT 1
 signals )Tt(f),...,t(f),t(f iii 1 , 9T , n,...,i 1 , 8n  which are given as 

input to the validation model is made of current and past values of the measured signals listed in Section 

5.1.1 plus the present and past values of Mf  (Fig. 12). 

LEVEL 
( Lf ) 

LIQUID TEMPERATURE  
(

LTf ) 
VAPOR TEMPERATURE  

(
VTf ) 

PRESSURE 
( Pf ) 

t t-1 t-2 t-3 t-4 t-5 t-6 t-7 t-8 t-9 t t-1 t-2 t-3 t-4 t-5 t-6 t-7 t-8 t-9 t t-1 t-2 t-3 t-4 t-5 t-6 t-7 t-8 t-9 t t-1 t-2 t-3 t-4 t-5 t-6 t-7 t-8 t-9

 

SPRAY FLOW 
( spf ) 

HEATERS POWER 
(

Q
f  ) 

SURGE LINE FLOW 
( surgef ) 

TOTAL MASS OF 
LIQUID  
( Mf ) 

t t-1 t-2 t-3 t-4 t-5 t-6 t-7 t-8 t-9 t t-1 t-2 t-3 t-4 t-5 t-6 t-7 t-8 t-9 t t-1 t-2 t-3 t-4 t-5 t-6 t-7 t-8 t-9 t t-1 t-2 t-3 t-4 t-5 t-6 t-7 t-8 t-9

Fig. 12: input pattern used for the reconstruction of the current signal measurement. 

 

A set of 70 faults-free transients have been simulated and used for the training of the PCA models, whereas 

10 distinct transients have been used for testing the performance of the proposed approach in order to 

optimize the parameters m , H  and k . The final asset consists of 32H  subsets hF , each one containing 

25m  signals; for each signal, 10 different models reconstructions are aggregated by the LF strategy with 

parameters h
iw  and h

ib  computed on the basis of 30k  neighbouring training patterns. Notice that in order 
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to reduce the computational time, redundancies higher than 10 have not been considered although they may 

increase the ensemble performance.  

Fig. 13 illustrates how the signal validation strategy presented in Section 2 has been applied to the 

pressurizer case study. The set of seven current measured signals Lf , 
LTf , 

VTf , Pf , spf , 
Qf  , surgef  of 

Table 2 and the additional artificial signal Mf  are completed with their past 9 measurements and sent to the 

signal validation model. For each one of the seven measurements, the reconstruction 1
if̂ , 71,...,i   is 

produced by the ensemble model and compared with the measured value if . The residual ie  is sent to the 

fault detection module where it is processed by means of the SPRT technique. The faults eventually detected 

are corrected by iterating 5iterN  times the reconstruction of the signal. The final reconstruction 5
if̂  is the 

best available estimate T
if̂  of the faulty signal true value T

if and it is memorized in place of the 

measurement if . If the detected fault concerns the pressure or the level signals, the controller receives in 

input the corresponding reconstructed signal T
Pf̂  or T

Lf̂ . In any case, the reconstruction T
if̂  of the faulty 

signal is also included in place of the measured value if  into the patterns sent to the signal validation model 

during the next T  time instants. 

Fig. 13: signal reconstruction strategy for control of the pressurizer of a PWR in the case of a fault of the level sensor 

(black dot). 
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5.4.2 The fault detection and identification module 

The signal validation model produces a reconstruction 1
if̂ , 71,...,i   of each measured signal, which allows 

the fault detection and identification module to recognize the presence of sensor faults (bias or noise), by 

applying the SPRT sequentially to each sensor signal.  

Since in this work we only consider constant bias faults, the standard deviations of all the residuals ie , 

n,...,i 1  are set at the same value 1 0
i

1
i σσ  whereas their mean values under the hypothesis 0

iHp  are 

00
im . The SPRT parameters ,    and 1

im  have been calibrated by a trial and error procedure performed 

on the test set TSTX  after addition of artificial faults, with the goal of compromising between the objective of 

detecting faults of an as small as possible magnitude and in a short time after their occurrence, and that of 

achieving a low rate of false alarms. The values assigned to the mean values of the residuals under 

hypothesis 1
iHp  are 11

Pm  for a pressure sensor fault, 70.m1
L   for a level sensor fault and 41

im  for all 

other signals faults. This choice implies a small sensibility of the fault detection module in case of faults 

affecting signals other than the pressure or the level, but it reduces the risk of false alarms due to fault 

propagation. Finally, the false and missed alarm probabilities   and   are set to the values 0050.,  , 

for all sensors. 

Fig. 14 shows the evolution of )t(P  in the case of the pressure sensor fault of Table 4, when the signal 

validation strategy is applied; one can see that during the first time instants, the value of P  resulting from 

the SPRT applied to the pressure sensor decreases until it reaches at 19t  s the lower bound 295.BL   

and thus one can say that the pressure sensor is in normal condition with a degree of confidence 

%.)( 5991   ; at time 50t  s the value of P  quickly increases up to the upper bound 295.BU   and 

the fault is detected with a probability of %.50  of being a false alarm; from the detection time on, the 

controller receives in input the reconstructed value T
Pf̂  of the pressure signal. 
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Fig. 14: evolution of )t(P  during the transient of Table 4 where a fault is added to the pressure sensor measurement. 

 

5.4.3 The signal reconstruction module 

Once again the pressure sensor fault of Table 4 is used to illustrate the improvements which can be obtained 

by reconstructing the faulty signals after the fault has been detected by the SPRT. Fig. 15 compares the 

evolution of the true pressure and level signals values, )t(f T
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L  respectively, in the case of normal 

sensors conditions (left) and in the case of the fault affecting the pressure measurement, when applying the 

fault detection, identification and signal reconstruction modules (right). Fig. 16 compares, in the same case, 
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Fig. 15: evolution of the pressure (upper) and of the level (bottom) in the pressurizer when all the sensors are in normal 

conditions (left), and when a constant bias fault of +4.5 bar on the pressure measurement is simulated and the measured 

signal T
iI

f̂ is used as input to the controller (right). 
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Fig. 16: evolution of the sprayers mass flow rate (upper) and of the heaters (bottom) in the pressurizer when all the 

sensors are in normal conditions (left), and when a constant bias fault of +4.5 bar on the pressure measurement is 

simulated and the measured signal T
iI

f̂ is used as input to the controller (right). 
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Assuming as reference the behaviour of the controller when all sensors are in normal conditions, the 
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are compared to those without. The deviation )t(f)t(f)t(d T
)i(F,i

T
ii ICCC

  of the true value of the Ci -th 

controlled signal in case of normal sensor conditions T
iC

f  and in case of fault T
)i(F,i IC

f  is considered. In 

particular two performance indicators are evaluated, providing local (eq.(7)) and integral (eq.(8)) information 

about the effects of the fault on the controlled system, respectively (the lower the indicators, the better the 

controller performance): 

][ )t(dmaxMd
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t
i   (7)
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CC

t

t
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f

i dt)t(d
)tt(

Id
0

2

0

][
1

 (8)

Table 5 reports the performance indicators for the transient with a fault of the pressure sensor of Table 4, in 

the case with or without fault detection, identification and signal reconstruction. 

Table 5 
Comparison of the performance indicators values in case the fault detection, identification and reconstruction is applied or 

not. 
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LMd        
7810.  m 0020.  m 

PId          
310042 .  bar 310050 .  bar 

LId          
210713 .  m 0070.  m 

 

As expected, the performance indicators are significantly lower (better) in the case in which fault detection, 

identification and signal reconstruction is applied, thus indicating that the objectives of the control system 

are better satisfied, i.e. the controlled variables values are kept closer to their setpoints. 

To confirm these results a number of other system faults have been analyzed (Table 6 and Table 7 for the 

faults of the pressure and level sensors, respectively). To verify the controller performance under different 

operative conditions of the pressurizer, eight transients have been considered, keeping the surge line mass 

flow rate at the constant value 6T
surgef  kg/s (in-surge) or 6T

surgef  kg/s (out-surge) for different time 

durations. For each transient, the total mass of liquid entering or exiting the pressurizer, i.e., the integral of 

the surge line mass flow rate over the entire duration of the transient, reflects a variation of the PHT water 

temperature ranging from -4 to +4 °C. 

Table 6 
Pressurizer condition during the simulated faulty transients. 

FAULTY SENSOR Pressure sensor 

TYPE OF FAULT Constant bias with 16 different fault magnitude values 

FAULT MAGNITUDE  ]090654035101750450[ ........M B   bar 

BEGINNING TIME  50t  s

 

Table 7 
Pressurizer condition during the simulated faulty transients. 

FAULTY SENSOR Level sensor 

TYPE OF FAULT Constant bias with 16 different fault magnitude values 

FAULT MAGNITUDE  ]512101750500350200100[ ........M B   m 

BEGINNING TIME  50t  s 

 

In particular, two tests have been performed by considering:  

1) the 16 sensor faults of Table 6 and Table 7 occur during each of the eight pressurizer transients; 

2) as in 1) but applying fault detection, identification and signal reconstruction. 

To evaluate the performance in test 2, the delay time   necessary to detect the fault after its occurrence is 

considered. Fig. 17 shows the mean value of the delay times obtained in the eight transients simulated for 

each fault magnitude, in case of pressure (left) or level (right) fault. 
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Fig. 17: mean fault detection time delay vs fault magnitude. 

 

One can notice that as the fault magnitude BM  gets smaller, the detection time   increases until the fault is 

too small to be detected; in particular, faults to the pressure sensor with an absolute value of their magnitude 

lower than 501.M B   bar are not detected; similarly, faults of the level sensor with an absolute value of 

their magnitude lower than 750.M B   m are not detected. The numerical values of the mean time delays   

before detecting the faults are reported in Table 8. 

Table 8 
Mean fault detection time delay τ  for the smallest detectable faults. 
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-0.75 m  37 s 
+0.75 m  591 s 
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cost indicator CiId  is obtained by averaging the eight performance indicators 
Ci

Id  obtained for each 

transient.  
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detected or are detected with a significant time delay  : thus, the signal reconstruction module is not 

working for the entire duration of the fault or for its first   time instants. 

Similar results are shown in Fig. 20 in the case of level sensor faults. Since the tolerated error band 2
LB  

m is quite large, the faults of magnitude included in the interval ]0121[ ..M B   m have no consequences 

on the correct control of the process.  

These results confirm that the sensor diagnostic procedure integrated in the controller of the PWR pressurizer 

allows improving significantly the control of the process not only in some critical local points as stated by 

the 
Ci

Md  indicators, but also during the entire transient as demonstrated by the CiId  integral indicators.  
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Fig. 18: PMd (upper left), LMd  (upper right), PId  (bottom left) and LId  (bottom right) indicators versus the 

magnitude BM  of the constant bias fault added to the pressure measurement. 
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Fig. 19: PMd (upper left), LMd  (upper right), PId  (bottom left) and LId  (bottom right) indicators versus the 

magnitude BM  of the constant bias fault added to the level measurement. 

 

5.5 Results discussion 

The results presented in this Section demonstrate that with the fault detection, identification and signal 

reconstruction approach proposed it is possible to effectively control the pressurizer when a fault occurs on 

the pressure or level sensors, in the sense that the controlled variables obtained using the reconstructed 

signals do not diverge from their setpoints and the system behaviour is kept similar to the one under normal, 

fault-free sensors operation. 
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Faults of different magnitudes within a given range have been simulated to verify these results; larger faults 

magnitudes would not have been realistic. Only the results obtained for the constant bias fault type have been 

presented; nevertheless, similar results have been achieved also in the case of noise-type faults. 

The entire fault detection, identification and reconstruction procedure requires about 0.3 s for the elaboration 

of each measurement performed with a standard personal computer; the delay thus introduced in the 

controller decision is compatible with the typical time constant of a pressurizer and does not affect the 

effective control of the system. 

The constant values of +6 kg/s in case of in-surge or -6 kg/s for the out-surge assigned to the surge line mass 

flow rate have not been chosen too high in order to avoid falling in a region not represented by the training 

patterns used to train the model; if the surge line mass flow rate and at the same time the total mass of liquid 

entering the pressurizer have high values, the pressure and level can take too high (in-surge) or too low (out-

surge) values, which are not represented by any pattern of the training set. In this case, the measurements 

cannot be reconstructed properly by the model which would be extrapolating its reconstructions. 

Another case in which the model looses its validity is when the charging/letdown mass flows rates are 

different from zero. During standard transients the controller does not need to act on the charging/letdown 

flows; as a consequence, all training patterns have charging/letdown mass flow rates equal to zero and thus 

the signal has not been used to build the model. In some particular cases, for example in case of level sensor 

faults, a controller action on the charging/letdown flows might take place; this situation is not handled by the 

current set up of the approach. 

In all these cases, the diagnostic system should signal that the measurements are out of the range of validity 

of the model and that the methodology should not be applied. 

For lower values of the surge line mass flow rate, it has been verified that the consequences of faults are 

smaller and at the same time the proposed approach work best because the measured signals fall in the region 

with the highest density of training patterns, where the signal validation model is more accurate. 

6 Conclusions  
An approach for the detection and identification of faulty sensors and the reconstruction of their erroneous 

measurements has been proposed. The effectiveness of the approach in increasing the performance of system 

control when a fault affects the controller input signals is confirmed by the results obtained from its 

application to the control of a PWR pressurizer. 

The reconstruction provided by the signal validation and reconstruction model described in Section 3 

provides good estimates of the true values of the measured variables and can be used for control. 

The boundaries of operation of the proposed approach are defined by the region in which the training 

patterns fall; techniques exist to warn when the pattern under reconstruction is outside such region and is 

thus, no longer reliable (Fantoni et al., 1997). 
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The case of simultaneous presence of multiple faults has not been considered: future work should test the 

approach in this situation. Also, the problem of fault propagation has not been tackled directly: the definition 

of a refined strategy for the distinction of false alarms will be considered in future research. 
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Appendix A 

Acronyms 

k-nn = k-nearest neighbors 
LF = Local Fusion 
PCA = Principal Components Analysis 
PID = Proportional Integral Derivative 
PHT = Primary Heat Transfert 
PWR = Pressurized Water Reactor 
RFSE = Random Feature Selection Ensemble 
SPRT = Sequential Probability Ratio Test 

Nomenclature 

Signals: 

n  Total number of sensors’ signals available 

Cn  Total number of controlled signal  

In  Total number of controller input signal 

if  Sensor measurement 

if̂  Estimate of the i -th sensor measurement provided by a model 

j
if̂  Estimate of the i -th sensor measurement provided by a model at the j -th iteration of the reconstruction 

T
if  True value of the physical quantity measured by the i -th sensor 

T
if̂  Final reconstruction of T

if  

T
)i(F,i IC

f  True value of the Ci -th controlled signal in case of fault of the Ii -th controller input signal  

Signal Validation: 

X  Data set 
TRNX  Training data subset 

TSTX  Test data subset 

N  Total number of signal patterns 

TRNN  Number of training patterns 

TSTN  Number of test patterns 

hF  Subset of signals 

m  Number of signals in each subsets hF  

H  Total number of models 
iH  Number of models reconstructing the i -th signal 

h
if̂  Reconstruction made by the h -th model of the i -th signal 
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TRNQ  Subset of training patterns similar to the test pattern, also called neighborhood of the test pattern 

k  Cardinality of the neighborhood TRNQ  

h
Q,i TRN

mae  Mean absolute error of the h -th model in the reconstruction of the i -th signal of the patterns in the set 

TRNQ  

h
Q,i TRN

me  Mean error of the h -th model in the reconstruction of the i -th signal of the patterns in the set TRNQ  

h
ib  Bias correction associated to the h -th model for the reconstruction of the i -th signal 

h
iw  Weight associated to the h -th model for the reconstruction of the i -th signal 

Fault detection: 

0
iHp  Hypothesis of i -th sensor being in normal condition 

1
iHp  Hypothesis of i -th sensor being in faulty condition 

 )t(f̂)t(f)t(e 1
iii  

Residual signal  

j
im  Mean value of the residual ie  under the hypothesis j

iHp , 10,j   

j
i  Standard deviation of the residual ie  under the hypothesis j

iHp , 10,j   
  False alarm probability 
  Missed alarm probability 

 ]))(logBU 1[  Upper thresholds for )t(λi  

 ]1[ )(logBL   Lower thresholds for )t(λi  

)t(i  Log likelihood ratio of the residual ie  

  Delay time necessary for fault detection 

Control: 


CCC i

Ref
ii ff Distance between the measured value of the Ci -th controlled signal and its reference value 


iB

 
Band of tolerated error i  


Ci

d  deviation )t(f)t(f T
)i(F,i

T
i ICC

  of the true Ci -th signal in case of sensor fault and in case of normal sensor 

conditions. 
 ])t(dmaxMd

CC i
t

i [  Local performance indicator computed for the Ci -th signal 




 
f

CC

t

t

i
f

i dt)t(d
)tt(

Id
0

2

0

][
1

 Integral performance indicator computed for the Ci -th signal 

PWR pressurizer model: 

P
 
Pressure 
Lh

 
Enthalpy of the liquid in the pressurizer 

Vh
 
Enthalpy of the vapour in the pressurizer 

surgeh
 
Enthalpy of the surge line liquid water 

clh
 
Enthalpy of the charging/letdown liquid water 

sph
 
Enthalpy of the sprayers liquid water 

)P(hF  
Enthalpy of the liquid in saturation condition at pressure P  

)P(hG  
Enthalpy of the vapour in saturation condition at pressure P  

)h,P(T LL  
Temperature of the liquid 

)h,P(T VV  
Temperature of the vapour 

)P(TF  
Temperature of the liquid in saturation condition at pressure P  
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 FG T)P(T
 
Temperature of the vapour in saturation condition at pressure P  

V
 
Volume of the pressurizer 

VV
 
Volume of the vapour in the pressurizer 

 VL VVV
 
Volume of the liquid in the pressurizer 

S
 
Surface of the pressurizer horizontal section 

 S/VL L  
Level of the liquid water in the pressurizer 

Q
 
Heaters power 

)h,P( LL  
Density of the liquid water in the pressurizer 

)h,P( VV  Density of the vapour in the pressurizer 

)h,P( FF  
Density of the liquid water in saturated conditions at pressure P  

)h,P( GG  Density of the vapour in saturated conditions at pressure P  

vlvm
 
Relief valve mass flow rate  

surgem
 
Surge line mass flow rate 

spm  Sprayers mass flow rate 
 







)hh(

)hh(
mm

FG

spF
spcs   Mass flow rate of the steam condensed by the sprayers

 

flm  Liquid flashes mass flow rate 
 

rom  Condensing steam mass flow rate 
 

clm  Charging/letdown mass flow rate 
 

h  Heat transfer coefficient
 

0P
 
Pressure initial condition 

0
VV

 
Vapour volume initial condition 

0
surgeT

 
Initial condition of the surge line water temperature 

0
clT

 
Initial condition of the charging/letdown water temperature 

0
spT

 
Initial condition of the sprayers’ water temperature 

)T,P(h surgesurge
000

 
Initial condition of the surge line water enthalpy 

)T,P(h clcl
000  Initial condition of the charging/letdown water enthalpy 

)T,P(h spsp
000

 
Initial condition of the sprayers’ water enthalpy 

0
LT  Initial condition of the pressurizer liquid water temperature

 
0

VT  Initial condition of the vapour temperature
 

)T,P(h LL
000  Initial condition of the pressurizer liquid water enthalpy

 
)T,P(h VV

000  Initial condition of the vapour enthalpy 

Appendix B 

Pressurizer model equations: 

The pressurizer model is designed to handle the four possible situations listed in Table B.1. 

Table B.1 
Liquid water and vapour conditions in the four situations tackled by the SIMULINK pressurizer model. 

CASE 
LIQUID WATER 

CONDITION 
VAPOUR 

CONDITION 
A Subcooled Overheated 
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B Saturated Overheated 
C Subcooled Saturated 
D Saturated Saturated 

 

Each situation is represented by a different dynamic model of the pressurizer described by the system of differential 

equations  zΨ , where Ψ  is the coefficients matrix,  is the inputs vector  and z  is the state variables vector. 

The elements of Ψ ,   and z  are here detailed for each situation considered. 
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Case B.   FL hh   and  GV hh   
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Case C.   FL hh   and  GV hh   
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Case D.   FL hh   and  GV hh   
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Notice that the elements of the coefficients’ matrix Ψ  depend from the state variables so that the model is nonlinear. In 

practice at each time step the SIMULINK model checks in which one of the four possible cases the pressurizer is and 

evaluates the coefficients’ matrix Ψ according to values of the state variables at the previous time step. 

Appendix C 

Pressurizer control scheme: 

The main function of a pressurizer is that of maintaining the pressure in the primary system of the plant at the reference 

value (150 bar) to give adequate overpressure, suppress pump cavitations and avoid bulk boiling. The pressurizer is also 

designed to accommodate normal volume surges. The level L  of the liquid water contained in it must also be 

controlled in order to avoid emptying or overfilling its volume.  

In order to allow this component to fulfil its functions, it is necessary to continuously control that the value of the water 

level L  and the pressure P  in the pressurizer agree with the desired reference value Ref
Lf  and Ref

Pf . Fig. C.1 shows 

how decisions are generated by the controller.  
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Fig C.1: pressurizer control scheme 

 

The pressure measurement Pf  is compared with the constant pressure setpoint of 150 bar, whereas the measured value 

of the level Lf  is compared with a reference value which varies according with the variation of the temperature in the 

PHT system. The controller intervenes only if the controlled signal Ci , which is at the same time a controller input 

signal, differs from its reference value Ref
iC

f  of a quantity greater than the tolerated error band, here set to the values 

20.BP   bar for the pressure and 2
LB  m for the level. Notice that a stricter control condition is applied to the 

pressure than to the level. When one of the tolerated error band is exceeded, the difference 
CCC i

Ref
ii ff   between 

the measured signal and its reference value is given in input to a proportional-integral-derivative (PID) controller which 

generates the control signal for the corresponding actuator, i.e., the charging/letdown flows, the sprayers or the heaters. 

The relief valve, instead, is a safety device which opens only when the pressure exceeds a limit value (here set equal to 

165maxP  bar) and has a constant mass flow rate. 

In case of low pressure, the heaters are turned on. For a more precise control of the supplied power only one out of five 

heaters can deliver variable PID controlled power, whereas the other four units are back-up heaters run by control 

relays. All units have a maximum power of 320 kW each. The pressure is increased as a consequence of the greater 

mass flow rate flm  generated by liquid water flashes produced by warming up the liquid water. If the pressure is 

getting too high the control signal generated by the corresponding PID is sent to the sprayers which start injecting 

nebulised water into the pressurizer with a maximum mass flow rate of 7 kg/s. The flow of nebulised cold water coming 

from the sprayers causes the condensation of the steam, thus inducing a pressure decrease. In a similar way, the 

deviations of the level from the reference value Ref
Lf  are controlled by regulating the charging/letdown mass flows 

rates. 
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