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Local Fusion of an Ensemble of Models for the
Reconstruction of Faulty Signals

Piero Baraldi, Antonio Cammi, Francesca Mangili, and Enrico E. Zio

Abstract—Sensors are placed at various locations in a produc-
tion plant to monitor the state of its components and accordingly
operate its control and protection. For the plant state monitoring
to be effective, the sensors themselves must be monitored for
detecting anomalies in their functioning and for reconstructing
the correct values of the signals measured. In this work, the task
of sensor monitoring and signal reconstruction is tackled with an
ensemble of Principal Component Analysis (PCA) models. The
novelty of the work consists in the investigation of local fusion
(LF) strategies for the aggregation of the outcomes of the different
models of the ensemble. In the reconstruction of a signal, each
model of the ensemble is assigned a weight and a bias related to
the error committed in the reconstruction of training patterns
similar to the one under reconstruction. Iteration of the recon-
struction procedure and use of past measurements of the signals
are introduced for improved performance.

The proposed methodology is applied to a case study concerning
the reconstruction of seven signals in the pressurizer of a Pressur-
ized Water Reactor (PWR) nuclear power plant.

Index Terms—Local fusion, pressurizer, random feature selec-
tion ensemble, signal monitoring, signal reconstruction.

I. INTRODUCTION

ENSORS contribute to the safe and productive operation
S of a nuclear power plant by conveying information on its
state to the automated controls and the operators. For this to be
effective, it is important to timely detect sensor malfunctions
and reconstruct the incorrect signals before using them in the
operation, control and protection of the plant [1], [2].

An approach to sensor signal validation relies on auto-asso-
ciative models [3]-[5] e.g. based on Principal Component Anal-
ysis (PCA) [6], AutoAssociative Kernel Regression (AAKR)
[7] and AutoAssociative Neural Network (AANN) [4] methods.
The practical problem, however, is that a single reconstruction
model cannot handle the multiplicity of signals measured on a
real plant [8]-[11]. A possible way to overtake this limitation is
to subdivide the signals into small overlapping groups, develop
an ensemble of reconstruction models, one for each group, and
finally combine their outcomes. Key to building of the ensemble
is the diversity of the individual models. In the approach investi-
gated in this work, diversity is promoted by randomly generating
the signals groups according to the Random Feature Selection
Ensemble (RFSE) technique [12]; this is a completely random
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technique in which no optimization of the composition of the
individual groups is sought, i.e., no relevance is given, for ex-
ample, to the correlation between the signals in the groups or
to their capability of reconstruction. The groups thereby created
are then used to develop a corresponding number of signal re-
construction PCA models [13]-[16].

The investigation of different methods for aggregating the
outcomes of the individual models of the ensemble is the main
objective of the present work. In particular, LF methods are ex-
plored, in which the aggregation is guided by the local perfor-
mance of each model, i.e., its reconstruction accuracy on signal
patterns of training similar (and for this reason also called neigh-
bors) to those to be reconstructed (also called test patterns) [17].
These methods rely on the idea that each model can perform
well in some regions of the signals space and poorly in others.

The general LF process is based on the following three steps:

1) retrieve neighbors of the test pattern from the set of training
patterns;

2) associate a weight and a bias to each individual model of
the ensemble depending on its reconstruction accuracy on
the retrieved neighbors;

3) aggregate the outputs, accounting for the models weights
and bias.

With respect to step 1), two strategies have been compared
for the identification of the neighborhood of a test pattern: the
first one considers all the patterns of the training set located in
a hyper-rectangle centered on the test pattern of interest; the
second one includes only its k nearest neighbors.

With respect to step 2), for a given test pattern the bias cor-
rection of each model in the ensemble is taken equal to the local
mean error (me) which the model makes on the neighbor pat-
terns of training, whereas different weighting strategies have
been considered:

a) weight proportional to the inverse of the mean absolute
error (mae) made by the model on the neighboring pat-
terns of training;

b) weight proportional to the logarithm of the inverse of the
mae;

¢) the borda-count method [18].

With respect to step 3), the output aggregation is performed
by a weighted average with the weights computed at step 2 mod-
ifying the model outcomes by subtracting the bias.

In order to enhance the robustness of the method, a variation
of these strategies has been investigated in which the mae is
computed on training patterns to which a noise has been added.

Also, to improve the accuracy of the reconstruction, past
signal measurements are used as further input to the recon-
struction models and the reconstruction of the faulty signals is
iterated until satisfactory convergence.
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Fig. 1. Approach to the reconstruction of signal f; contained in groups F5, F7,... Fy.

The proposed aggregation techniques are compared with the
classical Simple Mean (SM) method of signal aggregation [10],
[19] on a case study concerning the reconstruction of seven sig-
nals simulated by a SIMULINK model of a pressurizer of a Pres-
surized Water Reactor (PWR) nuclear power plant. Faults have
been added to the simulated signals in order to test the robust-
ness of the Local Fusion (LF) and its effectiveness in fault de-
tection and signal reconstruction.

The remaining part of the paper is organized as follows. Sec-
tion II states the problems of fault detection and signal recon-
struction; Section III recalls briefly the RFSE technique; Sec-
tion IV describes the methodologies for fusing multiple models
outcomes, while Section V presents the results from a set of ex-
periments based on the reconstruction of the signals measured
by the sensors of a simulated PWR pressurizer; finally, Sec-
tion VI presents the conclusions and describes potential future
work.

II. FAULT DETECTION AND SIGNAL RECONSTRUCTION

A sensor measurement f; provides an estimate of the true
value fI' of a physical quantity; ideally, it should be f; = fI,
but in practice the measurement f; is affected by random noise
and sometimes it also deviates from the true value fiT because
of a sensor fault.

Under normal conditions, sensor measurements are strongly
correlated by the physical relations governing the process. Then,
validation of sensor measurements is possible by taking advan-
tage of the redundant information coming from the correlated
measurements; this allows detecting incorrect measurements,
identifying faulty sensors and reconstructing the correct values
of measurements. More specifically, fault detection and identifi-
cation aim at detecting if a measured signal f; is no longer a re-
liable estimation of the true signal value £, due to an identified
sensor malfunctioning. The detection of a sensor fault is often
achieved by comparison between the actual sensor measure-
ment f; and the measurement estimate f; provided by a phys-
ical or empirical model reproducing the response of the sensor
in non-faulty conditions; many techniques, like the sequential
probability ratio test (SPRT) technique [20], [21], are base/gl on
the monitoring of the residual signal ¢;(¢t) = fi(t) — fi(?).
Faulty signal reconstruction uses the information contained in
other correlated signals to infer a more satisfactory estimate of

the true value ' of the physical quantity: we call this estimate

the reconstructed value f of the faulty signal f;.

The main objective of the present paper is the investigation of
techniques for reducing the deviation between the estimate f; of
the quantity measured by a faulty sensor and its real value fr.
The improvement of the estimate f; brings two main benefits:

i. a more reliable estimate of the residual £;(¢) which leads
to a more prompt and accurate detection of the sensor
faults; .

ii. a more accurate reconstruction f of the faulty signal in

case of sensor fault.

The first beneficial effect above mentioned is not further de-
veloped here, since the definition of an explicit procedure for
sensor faults detection and identification is outside the scope of
the present work.

III. THE RANDOM FEATURE SELECTION ENSEMBLE APPROACH

Fig. 1 reports a sketch of the flow of modeling for the re-
construction of a faulty signal. A set of n sensors’ signals f;,
1 =1,2,...,n, is available for building a model for the recon-
struction of a detected faulty signal. Given the typically large
value of n, a single model cannot perform the reconstruction
task with the desired accuracy and reliability. Then the signal
set must be partitioned into subsets, for each of which a recon-
struction model is built. Actually in the ensemble approach here
proposed the subsets of signals are overlapping (i.e., two sub-
sets may contain signals which are the same), a reconstruction
model is built for each subset and the reconstruction of a signal
contained in different models is obtained by aggregating their
outcomes, within an ensemble approach.

In this work, the individual models employed in the ensemble
for signal reconstruction are based on the PCA technique; the
motivation is the need for a trade-off between computational
time and accuracy of the reconstruction. Other techniques such
as AANN and AAKR have given satisfactory accuracies [22]
but are unfit to be used in an ensemble approach, due to their
very high computational cost (long training time for AANN,
long on-line execution time for AAKR). PCA is based on the
transformation of the data to a smaller set of variables which
are linear combinations of the original variables; the transforma-
tion is made so as to retain as much information as possible. The
principal components correspond to the directions in which the



projected observations have the largest variance: the largest vari-
ance comes to lie on the first principal component, the second
largest variance on the second principal component, and so on.
Principal components are included in the transformation until
the cumulative variance associated to the retained components
reaches a fixed fraction Fy ., of the total variance. Appendix B
gives some details on the application of PCA to signal recon-
struction.

In this work, signal grouping is performed by the RFSE tech-
nique which consists in randomly sampling from the n avail-
able signals, with replacement, H subsets F;,, h = 1,2,...  H,
each constituted by m signals [12]. This guarantees high signal
diversity in the overlapping groups upon which the PCA models
are built and allows for rapid construction of the signal groups.
Furthermore, randomly selecting the signals in the groups with
a reasonable choice of the group size parameters m and H, can
basically guarantee coverage of all the signals in the ensemble
with adequate redundancy [10], [19].

As mentioned above, the H diverse signal groups generated
are used as bases for developing a corresponding number of
PCA reconstruction models. To do this, the data set X of NV
signal patterns available is partitioned into a training set X7 rn
(made of Ny gy patterns) and a test set X g7 (made of Npgr
patterns). The former is used to train the individual models,
whereas the latter is used to verify the ensemble performance
in the signal reconstruction task.

Each signal ¢ is present in a number H; of groups and thus
a corresponding number of individual PCA models provide its
reconstruction. Different methods can be used to aggregate the
outcomes of these individual models in the ensemble, to get the
final reconstructed value. Some of these will be discussed in the
next Section IV.

After the ensemble of PCA models has been trained, its per-
formance is verified on the test data: the entire set of n signals
is fed into the ensemble of models which returns their recon-
structed values. In particular, each model & receives in input
and reconstructs only the signals belonging to the corresponding
subset Fy,.

IV. LocAL FUSION STRATEGIES FOR MODELS OUTCOME
AGGREGATION

A. Motivations

Let fiXTRN be the reconstruction of the ¢-th signal of a test
pattern made by a generic model built on the training set X rrn,
and fI' its real value. Since the model depends on the actual
data used to build it, the randomness of the training set X gy
implies that the response f,L-XTRN of the model at any point is
a random variable. In order to evaluate in a probabilistic sense
the quality of fiXTRN as estimator of f; the mean squared error
(mse) over all possible training datasets is commonly used:

mse = Ex,. . x [(fiXTRN — f?)? €))

The mse can be decomposed in a variance term plus a bias
component [23]:

A~

2 o\ 2

mse = EXTRN |:(.fiXTRN - fl,) :| + (fL - f;T) (2)
where f; = Fx, . [fX7%V] is the expected value of fX7#¥
over all possible training sets X . Notice that the bias com-
ponent represents the mean squared error that is obtained in the
ideal situation where the outcomes of infinite models built over
all possible training sets are combined by means of the arith-
metic average, since this combination technique compensates
the variance component, i.e., the fluctuations around the mean
value of the reconstructions obtained by models built on dif-
ferent datasets.

In [24], two issues are raised in this regard:

1) although an ensemble of models built on different training
sets actually boosts the accuracy of the reconstruction by
reducing the variance component, the simple average fu-
sion strategy of the single model outcomes cannot effec-
tively reduce the bias;

2) the mean squared error also depends on the test pattern
under reconstruction since all terms in (2) depend on it.
Therefore, different patterns in the signals space will usu-
ally have different error profiles of the model reconstruc-
tions.

In this context, a procedure is defined in [24] for the aggre-
gation of an ensemble of models trained over different datasets
generated through the bootstrap technique. The proposed fusion
strategy aims at favoring the best performing models in each re-
gion of the input space and, at the same time, effectively cor-
recting not only the variance component of the error, but also
the bias.

In this work, this local strategy for the aggregation of multiple
outcomes is applied in the context of multiple models in which
diversity is injected through the RFSE technique, since the con-
siderations about the dependence of the model error on the input
pattern remains true for each model A built on the signal subset
Fy.

To further delve into the aspect of local variation of the error
profile, Fig. 2 and Fig. 3 show some examples of models re-
constructions for the water level signal in the PWR pressurizer
application.

Fig. 2 represents the time evolution of the water level in the
pressurizer during a plant transient (top) and the residual error
(f12 — fT) made by model 12 in its reconstruction (bottom).
Notice that the reconstruction error varies in the different time
regions and seems correlated to the signal value. For example,
the dotted boxes highlight regions corresponding to flat peaks
of the level measurement signal, to which correspond similar
trends of the residual error. Thus, in order to correct the error in
the reconstruction of a test pattern falling in the region of a flat
peak, it would seem more effective to compute the mean error
of model 12 considering only the similar (neighbor) training
patterns of the highlighted regions, instead of using the mean
error on all the available training patterns.

Fig. 3 shows the performances of models 8 and 11 in
the reconstruction of the same signal of Fig. 2; although
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Fig. 3. Comparison between model 8 and model 11 reconstruction errors. Dotted boxes highlight some regions where the model built on the 11th group of signals
performs better than the one built on the 8th group.

according to the mean absolute error (mae) model 11 is more accurate. Also this example points out the importance
globally performing better than model 8, there are some time of assigning local weights to the models in the aggregation
regions (highlighted by dotted boxes) in which model 8 is of their outcomes.
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B. Models Outcome Aggregation

In general, the aggregation of the models outcomes requires
to associate a weight w! and a bias correction b” to the recon-
struction fih of each model k. The idea is to correct the values of
th by subtracting the estimated bias b? and to combine fih with
the other models estimates by means of a weighted average:

- Supenvf - (fi-0)

P =

Zhlfith wil @

According to the considerations of Section IV-A, the
ensemble performance can be increased if both the bias correc-
tions b? and the weights w! are computed locally. Fig. 4 shows
the overall framework for the reconstruction of the generic
signal f;.

The following two subsections provide some details on how
to select the neighboring training patterns to be used for the
computation of the bias and weight parameters and how to as-
sociate them to the models of the ensemble.

1) Neighborhood of Patterns for Bias and Weight Computa-
tion: Let QT rN be the set of training patterns to be used for the
computation of the models biases and weights in the reconstruc-
tion of a given test pattern. With respect to this set, two aggre-
gation approaches can be distinguished: global and local. In the
former, Qr gy is constituted by the entire training set X gy
in the latter approach, only a subset of the training set is con-
sidered and one talks about “Local Fusion” (LF). The main idea
behind LF is to take into consideration the location of the test
pattern in the signal space and its neighborhood in the training
set. To this aim, two different techniques are here considered
for the identification of the test pattern neighborhood by: a) an
hyper-rectangle and b) the k-nearest neighbors (k-nn).

a) Hyper-rectangle-based neighborhood: For each model
h, an hyper-rectangle centered in the test pattern is considered in
the m-dimensional space of the signals contained in the subset
F}, (Fig. 5). The length of each side of the hyper-rectangle is
defined as a fraction Hrf of the range of values of the corre-
sponding signal. The patterns of the training set contained in this
hyper-rectangle make up the set Qrrn. A limitation of this ap-
proach is that the cardinality Ng .., of Q1 rn varies depending
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Fig. 5. Hyper-rectangle-based neighborhood. The crossed circle represents the
test pattern; the other circles are training patterns.

on the density of the training patterns in the neighborhood of the
test pattern.

b) k-nn-based neighborhood: Within the k-nn-based
neighborhood approach, Q7 gy is formed by the k training
patterns nearest to the test pattern (Fig. 6). Notice that in this
way the cardinality Ng,. . of Qrry is fixed. A drawback of
this approach is that when the neighborhood of the test pattern
has a low density of patterns, its dimensions increase and the
precision of the estimated parameters is reduced.

2) Local Weights and Bias Estimation: In order to evaluate
the performance of the generic model % in the reconstruction
of the 7-th signal of a given test pattern, the model reconstruc-
tions fzh of the training patterns in the neighborhood set Qrrn
are compared to the measured signal f;, which, for a fault-free
training set, is supposed to be equal to the true signal value f,
except for the presence of noise. The true signal value f; cannot
be used in real applications, since it is not available. To this pur-
pose, the following two indicators are considered:

* the local mean error

h
Me; Qrrn

= Sqran (1 - 1) @
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Fig.6. k-nn-based neighborhood. The crossed circle represents the test pattern;
the other circles are training patterns.

¢ the local mean absolute error

h

£h
mae; Qrry = EQTRN fz — fi (®)]

Since the local mean error me! Q
yWTRY

bias which affects the reconstructions f/* produced by model
h of the training patterns closer to the test pattern, it can be con-
sidered an estimate of the bias which affects the reconstruction
f,ih of the test patterns. Thus, the local bias affecting model A
in the reconstruction of the i-th signal with respect to the test
pattern is set equal to:

represents the mean

b? = meZQTRN (6)

The local mean absolute error maehQ
sS&WTRN

i provides informa-
tion about the performance of model / in the reconstruction of
the patterns of the training set which are closer to the test pat-
tern. Therefore, it can be considered an estimation of the error
that will affect the reconstruction flh by model h and thus be
used as estimate of the weight w! to be associated to model A
in the reconstruction of signal 7. Since the weight must reflect
the contribution of the model to the fusion, the most reliable
models must have the highest weights, and vice versa.

In this work three different relationships between the weights
and the local mean error are investigated:
1) The weight is the inverse of the mean absolute error:

1
e ™
Mae; Qrrn
2) The weight is proportional to the logarithm of the inverse

of the normalized mean absolute error:

TRN,N fzh - fz
sy (12~ 1) N

wh = log

The normalization factor maxx, .4 (/1 — fi) is the max-

imum value of the residual error over all patterns of the

training set Xy and all models h = 1,..., H;; being

always greater than the maez Q- it forces the argument
of the logarithm to be greater than 1, thus maintaining the
value of the weight w! positive.
This strategy, which is inspired by the assignment of the
weights in the adaboost algorithm [25], is here employed to
attenuate the difference in the weights of groups with very
different local mean absolute errors; this can be useful, in
particular, when an outstanding performance of a group on
the training set is not due to the real quality of the model,
but derives from overfitting.

3) The Borda Count method [18]. The estimated local error
is used to make a ranking of the different models and to
assign them a score s,fL, 1< s? < H;, according to their
position in the ranking, being 1 the score associated to the
worst performing model and H; that to the best performing
one:

wh = st ©

Another possibility to overcome the overfitting problem is to
compute the model performance not on the training data but on
a different dataset. In this respect, an artificial noise has been
added to the training data before their reconstruction so that the
training error used to estimate the weights will also account for
the robustness of the model, reducing in this way the risk of
giving high weights to models that are overfitting.

All the three proposed strategies defined to assign a weight
to the different models ((7), (8), (9)) can be used with the local
mean absolute error computed without bias and with the dis-
turbed training error instead of the mae.

V. APPLICATION

The case study used to test the LF strategies presented in the
previous Sections concerns the reconstruction of signals mea-
sured in a controlled PWR pressurizer. The pressurizer main-
tains the pressure in the primary system of the plant at an op-
portune value; in particular, for safety and operational reasons,
it is fundamental to have a pressure sufficiently high to avoid
boiling of the coolant while the plant is operating.

The data for the analysis (training and test patterns) were gen-
erated by means of a SIMULINK model purposedly developed.
The SIMULINK model is based on a system of non-linear dif-
ferential equations derived from the mass and energy conserva-
tion laws applied to the two regions of vapour and liquid of the
pressurizer; exchanges between the two regions, due to evapora-
tion of liquid and condensation of steam, are taken into account.
The water and steam properties used in the SIMULINK model
are based on the Industrial Formulation IAPWS-IF97 [26].

The variables controlled in the pressurizer are the level and
the pressure. Their control is achieved by acting on the heaters,
the charging/letdown flows and the relief valve (Fig. 7). The re-
lief valve is a safety device which opens only when the pressure
exceeds a limit value (here set equal to 165 bar). Since this limit
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TABLE I
INITIAL CONDITIONS OF THE PRESSURIZER

Equilibrium condition

LEVEL 10m
LIQUID TEMPERATURE 322.16°C
STEAM TEMPERATURE 362.16°C
PRESSURE 150 bar

pressure value has never been reached during the simulated tran-
sients, the relief valve flow signal has not been considered in this
work.

Fig. 8 reports the control scheme adopted. The measured level
is compared with the level set point: in case of low level, the
charging/letdown flows correct the mismatches and the heaters
are turned off independently from the value of the pressure. Be-
sides, when the measured pressure is lower than its set point, the
heaters are turned on. The control signal sent to charging/let-
down flows, relief valve and heaters is obtained by using a pro-
portional-integral-derivative (PID) controller.

Starting from the initial conditions reported in Table I, 50
transients of 100 time instants each have been simulated by ran-
domly changing the value of the surge line flow entering the
pressurizer. Fig. 9 reports the evolution of the signals in one of
the simulated transients.

The surge line flow depends on the reactor power; in partic-
ular, when the Primary Heat Transport (PHT) system pressure

rises, the higher pressure pushes some coolant from the PHT
into the pressurizer (in-surge flow); on the contrary, in case of
low PHT system pressure, some liquid moves from the pres-
surizer into the PHT system circuit (out-surge flow). In this ap-
plication, the transients have been generated by assuming surge
flows in the range of [-40; 4+-40] kg/s, positive values indicating
in-surge flow and negative values out-surge flow.

During the simulations, the following seven signals are
recorded:

* the level in the pressurizer

* the liquid temperature

* the steam temperature

* the pressure

* the charging/letdown flows

* the surge line flow

* the heaters power.

In order to test the method on pseudo-realistic data, white
noise has been added to each signal according to engineering
considerations on the sensors accuracy [27]-[29]. Table II re-
ports the standard deviations of the considered noises.

The reconstruction task has been carried out both for clean
and noisy data.

A. Sensor Measurement Reconstruction

In order to catch the dynamic evolution of the system, the set
of input measurements f; which are given as input to the re-
construction model is constituted not only by the current values
of the 7 signal measurements but also by a sliding window that
contains measurements at previous times: in particular, for each
one of the 7 signals, the current and the previous 9 measure-
ments have been considered, leading to a total number of 70
input measurements (Fig. 10).

In this application, 2730 patterns, corresponding to 30 tran-
sients, have been used to train the PCA models and to com-
pute the single model local mean errors and local mean abso-
lute errors which are the quantities used for the settings of the
ensemble local weights and bias, whereas the remaining 1820
patterns, taken from 20 different transients, are used to test its
performance. Notice that, in order to avoid any overfitting of the
data, the ensemble performance is evaluated on test data that are
different from the training data used to evaluate the single model
performances which are necessary for setting the ensemble pa-
rameters.
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TABLE II
STANDARD DEVIATION OF SENSORS NOISE

Noise standard deviation

LEVEL SENSOR +0.01 m
PRESSURE SENSOR +0.5 bar
FLOW SENSOR +0.2 kg/s
POWER SENSOR +50 kW

The optimal number of models to be used in the ensemble H
and the optimal number of input signals in each PCA model
m have been established through optimization of the perfor-
mances on fault-free noisy validation data (different from both
the training and test data). The best results have been obtained
by using 20 PCA models, each one with 25 input measurements.
In this way, all signals are reconstructed by at least 7 models.
Notice that in order to reduce the computational time, redun-
dancies higher than 7 have not been considered although they
may increase the ensemble performance.

The fraction of retained variance for each PCA model is
Fyor = 0.99.

Finally notice that in the evaluation of the performance of the
ensemble model, only the reconstruction of the 7 signal mea-
surements at the present time and not their past values have been
considered for the estimation of the mean absolute error. The
values refer to the signals normalized in the range [0.2; 1].

The following Section V-B considers the problem of recon-
structing the true signal values in the case in which there are no
failures in the sensors. Since the comparison between the recon-
structed signal values f; and the sensor measurements f; is the
base for the identification of anomalies in the sensors, the re-
construction is fundamental for a correct sensor fault detection.
In Section V-C, the problem of signal reconstruction in the case
of sensor failure will be tackled.

In both cases, the use of a set of signals containing also pre-
vious measurements (9 in this work) has demonstrated to be ef-
fective. In case of noisy data the mae of a single PCA model
built on the 7 present signals is 1.157 - 103, while consid-
ering the past measurements the obtained mae is 1.094 - 1073,
with a reduction of the error of +5.5%. Moreover, as shown in
Fig. 11, referring to the case of a constant bias fault of the pres-
sure sensor, a significant improvement is obtained in the signals
reconstruction during the first instants after the initiation of a
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Fig. 11. Comparison of the reconstruction of the pressure signal undergoing a
constant bias fault, obtained from a single PCA model built on the current values
of the 7 signals and the one built on the set containing also the 9 most recent
measurements.

fault. When past information is considered, the signals used for
the reconstruction, in the 9 instants just after the fault, have in
part been measured before the beginning of the faulty condition;
this allows an improvement in the reconstruction of the faulty
signal, which facilitates the fault detection and identification.
Finally, if the pressure signal is reconstructed by the iteration
procedure explained in Section V-C, a mae of 2.691 - 1073 is
obtained using the past measurements in input, which is 60%
lower than the mae of 6.658 - 10~3 obtained when only the cur-
rent measurements are used.

B. Signal Validation for Sensor Fault Detection

In this Section, the results obtained by using the proposed
LF strategies are compared with those obtained by using two
global approaches: 1) the Simple Mean (SM) and 2) the Glob-
ally Weighted Average (GWA). The latter is realized by as-
signing to the h-th model reconstruction of signal 7 a weight
proportional to the inverse of its mae?, computed on the whole
training dataset [24].

Table III shows the performances obtained in the reconstruc-
tion of clean (top) and noisy (bottom) data with the different
fusion strategies.

Several runs have been carried out to set the values of the
hyper-rectangle length Hr f and the number of nearest neigh-
bors Ng, ,» in order to get the best results for fair comparison.
The value of Hr f has to be high enough to avoid empty neigh-
borhoods in correspondence of any test pattern. Notice that in
the case of clean data, the Hr f value which leads to the best re-
sults is the smallest one respecting the condition. This is in ac-
cordance with the fact that the optimal number of nearest neigh-
bors is very low (Ng, ., = 4) in case of clean data.

When noise is added to the test data measurements, the op-
timal values of Hr f and N, ., increase. This is due to the fact
that, when noise is present, the error committed by a model h
in the reconstruction of signal ¢ of a generic pattern is the result
of two contributions: the modeling error £ = fih — fT and the

TABLE III
MEAN ABSOLUTE ERROR (mae) OBTAINED BY USING DIFFERENT
COMBINATION STRATEGIES

CLEAN DATA
Fusion strategy MAE (107%)
1. Simple Mean 2.1130
2. Globally Weighted 1.1399 (+46%)
Average
Hrf=0.25° 4-nn °
3. Constant common 1.599 (+24%) 0.8572 (+59%)
weight
4. Local Weight + Bias 0.6272 (+70%) 0.3754 (+82%)
correction
NOISY DATA
Fusion strategy MAE (1073)
1. Simple Mean
. 10.319
2. Globally Weighted 10.045 (+2.7%)
Average
Hrf=03* 90-nn *

3. Constant common
weight

4. Local Weight + Bias
correction

10.144 (+1.7%) 10.112 (+2.03%)

9.944 (+3.6%) 9.895 (+4.12%)

The reported percentages refer to the improvement of the performance with
respect to the SM. ® Hyper-rectangle-based neighborhood; ® k-nn-based
neighborhood.

noise error €, i.e. the error resulting from having inaccurate in-
puts to the model. The ¢,, error component cannot be properly
estimated using the training data because of the random nature
of the noise. The me?Q . Tesults from the average of the local

errors made on the NQT rn Deighbors ((10)).

me?;QTRN = EQTRN [Eil + 6”] = EQTRN [Ef] + EQTRN([?S])

When we consider a large number of neighbors, the last term
of (10) can be approximated to 0, so that the contribution of
noise to the error estimate is eliminated. However, as a conse-
quence of the increased value of Ng,,., ., the local character of
the procedure is reduced because a wider region of the input
space is considered; thus the quality of the parameters estima-
tion is decreased and the performance of local and global tech-
niques tend to become more similar.

In order to distinguish the contribution to the improvement
of the performance of the bias correction from that of the local
weights, Table III reports in the third row the performance ob-
tained by assigning a constant weight equal to 1/H, to all the
models and correcting the bias locally, according to (3). In the
fourth row, Table III reports the results obtained by applying the
complete LF scheme of (3), which includes bias correction and
local weighting, using a weight proportional to the inverse of the
mae ((7)). Notice that the main contribution to the improved
performances of the local fusion is due to the local weights,
whereas the bias correction conveys only a small amelioration,
particularly in case of noisy signals.

Finally, notice that the best strategy for the selection of the
neighbors seems to be the k-nn-based neighborhood, given that
it leads to lower reconstruction errors than the hyper-rectangle-
based neighborhood, in both cases of clean and noisy data.
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Fig. 12. Examples of signals in fault conditions.

C. Reconstruction in Case of Faulty Sensor

When one of the plant sensors is faulty, a faulty signal is
sent in input to the PCA models which include that signal. The
ensemble should however still provide a good estimate of the
true value of the signal, by exploiting the correlated information
coming from the non-faulty signals. To verify the performance
of the different local fusion techniques in dealing with sensor
faults, a number of tests have been performed as described in
this Section.

Two faults types are considered: constant bias faults (CF) and
noise faults (NF), affecting both the pressure and level sensors.
These two sensors have been chosen since their measurements
influence the controller decisions and thus are particularly crit-
ical for plant operation. The faults are supposed to start in all
the transients at t = 50 s, with various intensities. Fig. 12 shows
some examples of sensor faults analyzed.

The LF signal reconstruction approach based on the k-nn-
based neighborhood (which has given the best results in the pre-
vious Section), has been considered with Ng,.,., = 4 in case
of clean training data and Ng,.,,, = 90 in case of noise. The
different techniques introduced in the previous Section IV-B-2
for the estimation of the local weights have been investigated
and compared to the SM global approach. Table IV reports the
mae obtained in the reconstruction of the true value f; of the
signal measured by the faulty sensor.

The results show that in the case of faults affecting the
pressure sensor, the SM performs better than the LF tech-
niques. Also, among the local techniques, the best performing
weighting mechanism is the one based on logarithmic weights.
The reason of this is that some models achieve a very high per-
formance in the reconstruction of the training data just because
they tend to exactly reproduce the input measurements and
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TABLE IV
rmae(10~2) OF THE FAULTY SIGNAL RECONSTRUCTION
PRESSURE FAULT
MAE (10)
LF
SM /g Log Borda NT
25.36 24.69 24.77 23.44
CF Cleandata 2441 3600 ((12%)  (1.5%)  (+4.0%)
. 24.34 2422 25.60 24.05
Noisydata  23.92 [y g ((139%)  (7.0%)  (-0.54%)
6.784 6.447 6.609 6.439
NF - Cleandata  6.713 [/ jor (140%) (+1.6%) (+4.1%)
. 7391 7.347 8.029 7.385
Noisy data  7.365 (3600 (+024%) (-92%)  (-0.27%)
LEVEL FAULT
MAE (107
LF
M /g Log Borda NT
29.06 29.01 30.68 28.05
CF Cleandata 2986 )00 (129%) (2.8%) (+6.1%)
. 31.06 31.06 31.44 30.85
Noisy data 3147 [y 300 (113%)  (+0.10%)  (+2.0%)
31.76 30.34 31.96 28.15
NF Cleandata 31.20 (-1.8%) (+2.8%)  (2.4%)  (+9.8%)
. 32.60 33.00 34.94 3246
Noisydata  33.69 3500 (1219%) (3.7%) (+3.7%)

SM = simple mean; LF = local fusion, k-nn-based
neighborhood; 1/ = weights computed with eq.(7);

Log = weights computed with eq.(8); Borda =
weights computed with eq.(9); NT = weights computed with eq.(7),
adding noise on training data; CF = constant fault, NF' = noise fault.

thus they are associated with very high weights; however, such
models are not robust in the case of sensor faults; nevertheless,
according to the good performance on the training set, the LF
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Fig. 13. Weights associated to the 7 models of the ensemble using the training data and corresponding reconstruction of the pressure during a plant transient.

mechanism will assign to them weights excessively high com-
pared to the other models. A logarithmic weight mechanism
reduces the weights associated to these non robust models and
thus improve the local fusion performance with respect to the
1/e technique, but its performance is still worse than the SM
weighting.

In order to investigate this effect, Fig. 13 (left) shows the re-
construction of the pressure in a transient obtained by the seven
models of the ensemble which use as input measurements the
actual pressure, while Fig. 13 (right) shows the weights assigned
to the models according to their performance on the training
dataset. Notice that from approximately ¢ = 60 s, model 1 has
an exceptionally high weight even if, when the fault is present,
it is the worst performing one. In this example, the use of loga-
rithmic weights permits to reduce the predominance of model
1 in the reconstruction, thus improving the ensemble perfor-
mance. However, even with a logarithmic weight mechanism,
the weight associated to model 1 would be greater than the
weight associated to the actual best performing model.

To overtake this limitation of the local fusion techniques, it
is possible to estimate the actual robustness of the models by
computing the reconstruction error not on the training dataset
but on a new data set obtained by adding noise on the training
data. The results shown in the 4th and 8th columns of Table IV
confirm our expectation: the new weights assigned to the pres-
sure reconstructions of Fig. 13 (left) are shown in Fig. 14.

Finally, notice that once the fault has been detected, in order
to correctly reconstruct the true signal value, it is possible to re-
peat the reconstruction of the faulty signal N;., times, usir}g as
input to the ensemble model at the n-th iteration the value 7~
of the reconstructed measurement at the previous iteration [22].
This technique has proven very effective in the reconstruction of
the measurements of faulty sensors as it can be seen in Table V,
which reports the results obtained by repeating the reconstruc-
tion N;4, = 5 times. First of all, notice the reduction of the
mae obtained by repeating the reconstruction. Furthermore, it
is interesting to observe that computing the weight by adding a
noise on the training data (NT technique) leads to the best signal
reconstruction in the case of noisy data, whereas, as expected,
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Fig. 14. Weights associated to the reconstructions of Fig. 13, obtained adding
a noise to the training data.

it is not effective in case of clean data where the best results are
obtained by the logarithmic weighting technique.

D. Results Discussion

The results reported in Sections V-B and V-C show that the
local fusion approach performs better in the signal validation
task, than the two global techniques considered, SM and GWA.

Concerning the choice of the local neighborhood for the fu-
sion, the best results are obtained using a nearest neighbors ap-
proach. When data are affected by noise, the number of neigh-
bors to be considered increases significantly.

In case of sensor failure, the best results are obtained by as-
signing the model weights proportional to the inverse of the ab-
solute error computed on training data to which a noise has been
added. This strategy permits to avoid assigning high weights to
overfitting models, i.e., models that perform very well on the



TABLE V
mae(10~2) OF THE FAULTY SIGNAL RECONSTRUCTION AFTER 5 ITERATIONS

PRESSURE FAULT

MAE (107%)
LF
SM /g Log NT

3.296 3.103 3.608
CF Cleandata  3.855 (+15%) (+20%) (+6.4%)

. 4.675 4.683 4.431
Noisy data ~ 5.009 (6.7%) (+6.5%) (+12%)
3.181 2.909 3.657

NF Cleandata  3.855 (+18%) (+25%) (+5.2)
. 4.573 4.575 4.463
Noisy data ~ 5.009 (+8.7%) (+8.7%) (+11%)

LEVEL FAULT
MAE (107)
LF
SM /g Log NT

< 2.608 2.475 3.572
CF  Clean data 3.589 (+27%) (+31%) (+0.47)
. 5.048 5.056 5.080
Noisy data ~ 6.262 (+19%) (+19%) (+20%)

< 2.527 2.422 3.422

NF Cleandata  3.589 (+30%) (+33%) (+4.7)
. 5.181 5.194 5.156
Noisy data ~ 6.262 (+17%) (+17%) (+18%)

SM = simple mean; LF = local fusion; 1/e =

weights computed with eq.(7); Log = weights computed with eq.(8);
NT = weights computed with eq.(7), adding noise on training data;
CF = constant fault, NF = noise fault.

training data but are not suitable for the reconstruction of faulty
signals.

A significant improvement of the results can also be obtained
by repeating thereconstruction task iteratively several times, each
time feeding the reconstructed value of the previous iteration.

VI. CONCLUSIONS

The ensemble approach has been shown to be an effective
way for increasing the accuracy and robustness of signal recon-
struction.

The goodness of the results depends on the methods used for
aggregating the multiple outcomes of the ensemble models. This
work has shown that local approaches can increase the perfor-
mance of the ensemble in the signal reconstruction task. The best
results have, in fact, been obtained when the parameters of the ag-
gregation procedure dynamically change depending on the values
of the signals to be reconstructed, i.e., the location of the test pat-
tern in the signal space relative to the set of training patterns.

Realistic noise and sensor faults have been considered in
order to show that the proposed local fusion approach is ef-
fective for boosting model prediction accuracy, in practical
settings.

Furthermore, the use of a set of signals containing also pre-
vious measurements has been demonstrated to be an effective
way to reduce the detrimental contribution of noise or faults.

In the case of sensor faults, the proposed procedure of faulty
signal reconstruction, based on iterations of the reconstruction
step and memorization of the reconstructed signal for use at the
next iteration, improves the accuracy of the reconstruction of the
value of the signal.

Although the methodology has been demonstrated in the
context of multiple models based on PCA and constructed
on groups of signals selected by the random feature selection
technique, it seems to be broadly applicable to other empirical
modeling paradigms. Investigations in this direction could
be of interest, considering in particular other fast empirical
regression techniques.

Finally, the local performance identification and parameters
computation have to be performed online; this could be a costly
procedure that might not be suitable when response time is an
issue. Future work will be devoted to the set up of a procedure
for the offline assignment of the local fusion parameters values.

APPENDIX A
ACRONYMS AND NOMENCLATURE

k-nn k-nearest neighbors

LF Local Fusion

mae Mean Absolute Error

me Mean Error

mse Mean Squared Error

PCA Principal Components Analysis

PHT Primary Heat Transport

PID Proportional Integral Derivative

PWR Pressurized Water Reactor

RFSE Random Features Selection Ensemble

SM Simple Mean

SPRT Sequential Probability Ratio Test

fi Sensor measurement

ﬁ Estimate of the ¢-th sensor measurement
provided by a model

Jid True value of the physical quantity
measured by the -th sensor

? Final reconstruction of f'

nL Total number of sensors’ signals available

X Data set

X71RrN Training data subset

XrsT Test data subset

N Total number of signal patterns

Nrrn Number of training patterns

Nrst Number of test patterns

F, Subset of signals

m Number of signals in each subsets F},

H Total number of models

H; Number of models reconstructing the ¢-th
signal

fih Reconstruction made by the h-th model of
the i-th signal

fi Expected value of fﬁ over the H; models
built on groups which contain the i-th
signal

ei(t) Residual error f;(t) — f;(t)



Part of the reconstruction error f* — fi(t)
due to modeling errors

.

En Part of the reconstruction error th — fi(®)
due to the presence of a noise on the input

Hrf Length of each side of the hyper-rectangle
expressed as a fraction of the range of
values of the corresponding signal

QTrRN Subset of training patterns similar to the
test pattern, also called neighborhood of
the test pattern

NQrrn Cardinality of the neighborhood Q1 rn

maeszRN Mean absolute error of the h-th model in

the reconstruction of the i-th signal of the
patterns in the set Qrrn

me,ﬁ Qran Mean error of the h-th model in the
reconstruction of the i-th signal of the
patterns in the set Qrrn

bfb Bias correction associated to the h-th
model for the reconstruction of the 2-th
signal

wh Weight associated to the h-th model for the
reconstruction of the ¢-th signal

sh Score assigned by the Borda Count method

to the h-th model for the reconstruction of
the ¢-th signal.
APPENDIX B
APPLICATION OF PRINCIPAL COMPONENT ANALYSIS (PCA) TO
SIGNAL RECONSTRUCTION

In this Appendix, the procedural steps of Principal Compo-
nent Analysis (PCA) are briefly sketched [9].

Let X = (N, m) be the data set matrix with row vector f; =
(fi(t) ... fi(t) ... fm(t)),t = 1,..., N, which gathers the
N signals patterns measured at different time instants ¢. The
purpose of the PCA is to identify a A-dimensional (A < m)
subspace R C R™ in which the most of the data set variation
is retained and the least information is lost.

Let P = (m,m) € R™ be a matrix constituted by m or-
thonormal principal vectors which are the eigenvectors associ-
ated to the eigenvalues A; of the covariance matrix V of X:

V=(X-X)'(X -X) =PAP” (B1)
where it is assumed, without loss of generality, that
A = diag(Ay,...,A;,...,Ay,) is a diagonal matrix with
diagonal elements in decreasing order of magnitude.

P represents an orthonormal basis for the data set and the
transformation

U=X-P=(N,m) (B2)
projects the data in the new basis. The data set has now two rep-
resentations: when intended in the original basis, the ¢-th pattern
is the vector f; with components f;; = f;(¢); when intended in
the orthonormal P basis, the same ¢-th pattern is represented by

the ¢-th rows u, of the principal component matrix U with com-
ponent uy; along p;. To get the inverse relation, we right-mul-
tiply by P7 to obtain the data set X in the original basis:

X=U.PT (B3)
Egs. (B2) and (B3) represent an optimal linear transformation
of the data matrix X in the sense that the new set of variables,
the principal components (PCs), are uncorrelated and ordered
so that the first few retain the most of the variation present in all
of the original variables [13]. Up to this point the equations are
exact and the data values are transformed in both senses without
any loss of information.

The PCA approximation consists in mapping the observations
in a subspace R C RN™ identified by A < m vectors. For that,
the matrix P is partitioned as follows:

P =(P\P,,_») (B4)
where P, = (m, \) is the submatrix constituted by the first A
columns of P and P,,,_» = (m, m — \) is the submatrix con-
stituted by the last m — A columns of P. The column vectors in
P, and P,,,_, constitute the bases of the two mutually orthog-
onal subspaces ?** and R™~* in which ®™ has been divided. In
terms of the above submatrices, matrix X can be rewritten as:

PT
X =X (PaPu-s)(
m—X\

=X (P\P} +P,,_\P]_,)

m—A
=X + XP,,_\PT _, (B5)
where X is the principal part of the data explained by the first
A eigenvectors:

X = XP,PT = (N, m) (B6)

The ¢-th row of X, namely E, is the orthonormal projection of
f, onto R},

If all the information about the data set X essentially lies
in a A-dimensional space R* (apart from small components in
Rm-* given by XP,,_» - PT | as stated in (BS), then each
observation vector f; € R™ can be approximated by its or-
thonormal projection f; € R plus a residual vector r in ™~
which is postulated to be independent of ¢:

forrr —f, 4 r-PT | =£,P,PL +1-P”

m—A\

(B7)

The best residual vector is the one which, on average, minimizes
the absolute value F of the square error between the real {f;}
and approximated {f;7""} data patterns, i.e.:

~ 2
appr
f, — f

(B8)

1N
t=1



The calculations for the minimization can be found in [9]; the
resulting optimal residual vector takes the form:

Ly Lyg)opr, ot
r_NZ t'Pm—A— Nzt 'Pm—A_ 'Pm_)\
t=1 t=1
(B9)

where the vector f is the arithmetic average of the observation
vectors, i.e. the average value of the signals. In particular, the
i-th component of f is the arithmetic average of the i-th column
of X.

Then, from (B7), the expression for the PCA approximation
of the data pattern f; is given by:

£ = §, + - P,,_\PT. (B10)

m—X\

or in matrix form,

X =X 4+ X Py PT_| (B11)

As demonstrated and explained in details in [13], [14] and [30],
the minimum error corresponding to the optimal residual vector
r can be written as:

Epin = %Tr [PT_ sV P, (B12)

and the fact of choosing P as the eigenvectors of the covariance
matrix V corresponds to minimizing the minimal error F,,;, of
(B12).

Finally, for the specific problem of signal validation and re-
construction the orthonormal basis P has been obtained by (B1)
from the covariance matrix V of the pairwise signal correlations
between the m signals. The number \ of eigenvectors to be re-
tained is determined as follows: components corresponding to
the largest variance of the data are retained until the cumulative
variance associated to the retained components reaches a frac-
tion Iy, of the total variance.

Furthermore, in order to simplify the calculations, the time
trends of the signals have been previously normalized so that
their mean is zero and their standard deviation equals 1. This
allows skipping the computation of the residuals, since f = 0
and, according to (B10)

£ = (). ) fa0) =f B13)
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